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Abstract. We consider pricing options in a jump-diffusion model which requires
solving a partial integro-differential equation. Discretizing the spatial direction
with a fourth order compact scheme leads to a linear system of ordinary differ-
ential equations. For the temporal direction, we utilize the favorable boundary
value methods owing to their advantageous stability properties. In addition, the
resulting large sparse system can be solved rapidly by the GMRES method with a
circulant Strang-type preconditioner. Numerical results demonstrate the high order
accuracy of our scheme and the efficiency of the preconditioned GMRES method.
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1 Introduction

One of the most influential financial models is the jump-diffusion model presented by
Merton [19] in 1976. In Merton’s model, the asset return follows a standard Brownian
process impelled by a compound Poisson process with normally distributed jumps.
Under this assumption, the value of a contingent claim satisfies a partial integro-
differential equation (PIDE). A PIDE usually comprises a differential operator and
a non-local integral term. Numerical methods for solving PIDEs have already been
widely studied [1, 2, 10–12, 15, 24]. However, the commonly used central difference
discretization is only second order accurate in the spatial direction. Recently the au-
thors of this paper proposed to apply a fourth order compact (FOC) finite difference
scheme with local mesh refinement strategy to attain fourth order convergence in the
spatial direction [18]. The approach in [18] is to firstly discretize the temporal direction
of the PIDE by an implicit-explicit (IMEX) scheme. Then the semi-discretized equation
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at each time step can be naturally approximated by the FOC scheme. Though conve-
nient to use, the IMEX scheme is only first order accurate. Therefore one has to employ
the extrapolation strategy to reach high order accuracy for the time direction [12], and
thus the operation cost depends highly on the number of extrapolation stages.

The unwanted workload of the above treatment pushes us to seek an alternative
path. In 2003, Sun and Zhang [23] combined the boundary value method (BVM) with
FOC scheme to solve one-dimensional heat equations. The main concept in [23] is
as follows. After discretizing the derivatives of the spatial variable by FOC scheme,
they utilize a high order BVM to approximate the semi-discretized linear system of
ordinary differential equations (ODEs). The BVMs are a class of numerical methods
based on the linear multistep formula (LMF) for solving initial value problems (IVPs)
of ODEs [5,6]. In particular, the unconditional stability properties of BVMs make them
preferable over other initial value methods (IVMs) [6]. Furthermore, one can obtain a
high order BVM by implementing the LMF properly [5], i.e., there is no need to use
any extrapolation strategy.

In this paper, we consider solving a PIDE by extending Sun-Zhang’s idea. Un-
like [18], we first carry out a three point FOC discretization for the spatial direction,
and then a high order BVM is employed for the semi-discretized ODE system. This
combination, known as the FOCBVM, retains high order accuracy and remarkable sta-
bility property at the same time. Unfortunately, we remark that the initial condition
is always non-smooth in option pricing theory. In the spatial direction, a specific lo-
cal mesh refinement strategy [18, 25] is required to ease the impact of the non-smooth
payoff function and restore fourth order convergence of the FOC scheme. In the tem-
poral direction, as stated in [13, 20, 24], a numerical correction process should be exe-
cuted beforehand or numerical oscillations are likely to spoil the desired convergence.
For a high order BVM, we can retrieve the expected result by replacing the approxi-
mations of the beginning time steps with the second order backward difference for-
mula (BDF2). The BDF2 has been previously used by Almendral and Oosterlee [1]
to achieve second order convergence in time, and they showed that the linear system
at each time step can be swiftly solved by an iterative method based on the regular
splitting of matrices.

Nevertheless, a direct solver for FOCBVM may not be a wise move because of
the incredibly huge size of the resulting system. In fact, this is a major challenge for
solving systems of LMF-based ODE codes. In 2000, Bertaccini [3] proposed to use the
Krylov subspace method with block-circulant preconditioners to solve such systems.
From then on, many circulant preconditioners are designed to pair with the GMRES
method for the same purpose [8,16,17]. In this paper, we follow [8] ’s idea to speed up
calculation by constructing a Strang-type circulant preconditioner. We will see from
the numerical results that the preconditioned GMRES method works very well.

The rest of the paper is organized as follows. In Section 2 we apply the FOC scheme
with local mesh refinement strategy to discretize the spatial direction of the PIDE. In
Section 3 we introduce the BVM implementation and the BDF2 startup procedure.
The preconditioning technique is discussed in Section 4. In Section 5 we illustrate the


