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Abstract. Symmetric Taylor-Görtler-like vortices at Re=3200 and 5000 in 3D rect-
angular cavities with a moving top lid are studied numerically and tested with a
spanwise aspect ratio of 1 : 1 : L, where L=1, 2, 3. Solutions are obtained by solv-
ing the momentum equations and the continuity equations using the consistent
splitting scheme. The code presented here was ported to the Parallel Interoper-
able Computational Mechanics System Simulator (PICMSS). Stable solutions are
obtained as limit cases of the transients.
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1 Introduction

Numerical modelling of the three-dimensional (3D) flow of an incompressible vis-
cous fluid in a 3D rectangular cavity with a moving wall is the most recognized test
problem for verifying the accuracy and effectiveness of a numerical algorithm. Many
researchers gave a comparative analysis of the solutions of the test problem in the
GAMM workshop [6] in 1991 and reported that for moderate Reynolds number, say
Re≥3200 for the spanwise aspect ratio (SAR) 1:1:3 the flow is essentially complex and
unsteady. One of the most striking features of the flow pattern, known as the Taylor-
Görtler-like (TGL) vortices, that were probably first found experimentally in [10], oc-
curred in the transitive direction. Since then, many algorithms have been used for
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finding supportive evidence for the appearance of TGL vortices, e.g. finite volume [3],
finite difference [2], and lattice Boltzmann method [14].

In the present work, we report the results of a numerical integration with the mixed
finite element (FE) formulation of the consistent splitting scheme (CSS), as proposed
earlier by Shen and Guermond [8]. Based on our observations, with finer grid refine-
ment, several pairs of symmetric TGL vortices are obtained and even better results are
yielded. Parallel computing is an indispensable tool for producing long-time simula-
tions of a large scale problem while increasing the degrees of freedom. The code devel-
oped here was ported to the Parallel Interoperable Computational Mechanics System
Simulator (PICMSS) [15]. Our calculations have been performed by two choices of
Reynolds numbers, Re=3200 and 5000, and three SARs of 1:1:1, 1:1:2 and 1:1:3. As we
shall see below, not only are stable solutions obtained as limit cases of the transients,
but also the behaviour of the pressure solution is free of node-to-node oscillations in
this work.

The paper is divided into five sections; the first being the Introduction. Section 2
includes the general formulation of the problem and the physical problem with the
boundary condition is described. Section 3 addresses the detailed numerical proce-
dure for solving the 3D Navier-Stokes equations in the primitive variable form and
the parallel computing engine, namely the PICMSS. Section 4 presents the results us-
ing the parallel mixed FE of the CSS solver and compares them with the other existing
results. Section 5 gives the concluding remarks.

2 Formulation of the problem

The motion induced in a viscous incompressible fluid, contained in a 3D cavity of
width W, length L and height H due to instantaneous motion of a sliding wall at a
constant velocity is governed by the relation:

∂u
∂t

+ (u · ∇)u = −∇p +
1

Re
∇2u, in Ω× (0, T], (2.1)

∇ · u = 0, in Ω× [0, T], (2.2)

where u=u(x, t)=(u, v, w) is the non dimensional velocity, p=p(x, t) is the non-
dimensional pressure, Re is the Reynolds number, t is the time, and x=(x, y, z) is the
spatial coordinate. A fixed final time is T. The bounded domain is

Ω = [0, W]× [0, L]× [0, H].

Given an initial velocity field, which satisfies Eq. (2.2) and appropriate boundary con-
ditions for u, Eqs. (2.1) and (2.2) can be solved, in principal, for u and p as functions
of space and time.

It is well-known that several pairs of Taylor-Görtler-like vortices, experimentally
and numerically speaking, appear on the lower wall when the Reynolds number in-
creases and the SAR of the cavity (Width:Height:Length = W : H : L) varies. The
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analysis model is depicted in Fig. 1. All the walls of the cavity have no-slip bound-
ary conditions except the top lid, which has the non-dimensional velocity of 1 in the
x-direction. The cubic cavity initially occurs in motionless fluid, i.e., u = v = w = 0, and
the initial pressure is zero. In the reference frame illustrated in Fig. 1, the boundary
conditions are no-slip walls, given by

u|∂ΩTop
= (1, 0, 0), and u|∂Ω−∂ΩTop

= (0, 0, 0),

where ∂Ω is the boundary of Ω and ∂ΩTop represents the top surfaces.
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Figure 1: Geometry and boundary conditions for the 3D lid-driven cavity.

3 Numerical method & PICMSS

3.1 Consistent splitting scheme

Based on the Hodge-Helmholtz decomposition in conjunction with the pressure in-
cremental scheme, velocity-pressure decoupling for solving a 3D rectangular cavity is
achieved at Re=1000 and SAR 1:1:2 (see [7]). In order to further reduce the numerical
boundary layer effect for the pressure, Shen and Guermond [8] proposed an efficient
scheme for solving the velocities and pressure successfully for each time step, which
they named the consistent splitting scheme. To the best of our knowledge, using the
parallelization of the CSS for handling Re=3200 at various SAR cases is not an estab-
lished practice yet.

Let us briefly describe the scheme here: The initial values

u0 = u−1 = u(x, 0), and p0 = p−1 = p(x, 0),

are given. Let (un, pn) be the nth-order approximation to (u(x, n∆t), p(x, n∆t)), where



802 Y.-H. Kuo, K.-L. Wong, J. C.-F. Wong/ Adv. Appl. Math. Mech., 6 (2009), pp. 799-815

∆t is the time-step size. For n ≥ 1, find un and pn such that




un − un−1

∆t
+ (un−1 · ∇)un +

1
2
(∇ · un−1)un − 1

Re
∇2un = −∇pn−1,

un|∂Ω = bn.
(3.1)

(∇φn,∇q) = −
(
∇ ·

(
un − un−1

∆t

)
, q

)
, ∀q ∈ H1(Ω), (3.2)

pn = φn + pn−1 − 1
Re
∇ · un. (3.3)

Remarks: (1) We use the first-order scheme in space, together with the backward Euler
scheme in time. Error estimates for this scheme can be found in [13] (see Theorem 3.1).
(2) The time integrator used in the momentum equation (see Eq. (3.1)) is fully implicit
for the viscous term and semi-implicit for the nonlinear advection term. To avoid any
restriction on the time step (i.e., to ensure unconditional stability), the advection term
u · ∇u has been replaced by its skew-symmetric counterpart (e.g., [7])

(u · ∇)u +
1
2
(∇ · u)u.

(3) Of particular interest in Eq. (3.2) is that the auxiliary pressure φn, treated as a cor-
rection term, is unknown and will be determined at each time-step. (4) The pressure
pn in Eq. (3.3) is not only updated by the previous term pn−1 but also reduced down
by the boundary layer effect among the bounded surface because of the term

1
Re
∇ · un.

3.2 Mixed FE formulation

Let Th be a regular FE mesh consisting of hexahedral FE mesh. We define Xh, the
approximation space for the velocity, as the set of continuous functions that are piece-
wise quadratic on each hexahedron of Th. The approximation space Nh for the auxil-
iary pressure and pressure consists of continuous functions that are piecewise linear
on each hexahedron. To ensure that the auxiliary pressure and pressure are uniquely
defined, we require it to have a mean value of zero.

The weak formulation of the advection-diffusion step Eq. (3.1) is: for n ≥ 1, find
un

h ∈ Xh with un
h

∣∣
∂Ω = bn

h , such that

(un
h − un−1

h
∆t

, vh

)
+

(
(un−1

h · ∇)un
h +

1
2
(∇ · un−1

h )un
h , vh

)

+
1

Re
(∇un

h ,∇vh) = −
(
∇pn−1

h , vh

)
, (3.4)

for all vh with vh|∂Ω = 0.
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The weak form of the two correction steps take the following forms: for n ≥ 1, find
φn

h ∈ Nh such that

(∇φn
h ,∇qh) = −

(
∇ ·

(un
h − un−1

h
∆t

)
, qh

)
, (3.5)

and find pn
h ∈ Nh such that

(pn
h , qh) =

(
φn

h + pn−1
h − 1

Re
∇ · un

h , qh

)
, (3.6)

for all qh∈Nh. The basic principle in the choice of FE base functions is to avoid node-to-
node pressure oscillations that satisfy the inf-sup compatibility condition. The element
pair used for the present work is a Hood-Taylor type (see e.g., [1]); uh, vh and wh
are interpolated in a quadratic fashion, while ph and φh are interpolated in a linear
manner, as depicted in Fig. 2.
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Figure 2: Mixed finite element method of hexahedral elements: 27/8 nodes.

By recalling the following result established in [13], we have:

Theorem 3.1. Under convenient regularity assumptions on the data u and b, and provided
the inf-sup condition is satisfied, the solution to the first order CCS (Eqs. (3.4)–(3.6)) satisfies
the error bounds

‖ u− uh ‖l2(0,T;(H1(Ω))3) + ‖ p− ph ‖l2(0,T;L2(Ω))≤ c(hl + ∆t),

where c depends on u and p, and l is the polynomial order of interpolation of velocity.

3.3 PICMSS

PICMSS is a versatile implicit parallel FE computational engine built to solve large
scale complex computation fluid dynamics (CFD) problems. PICMSS is capable of
admitting various formulations of fluid flow simulations, directly written in partial
differential equation (PDE) form, which makes it readily extensible to the CSS used in
this paper. Some of its salient features are summarized as follows:
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• An interface translates meshes generated by PATRAN or CUBIT to a set of par-
allel input data files.

• The computational kernel of PICMSS takes the input files and executes the prob-
lem statements defined in the equation file as written in PDE form.

• PICMSS provides a wide variety of options for FE types, time discretization
schemes, choices of inner and outer iterations for multiple sets of linear and non-
linear equations, structured or unstructured mesh layouts, and many selections
of sparse solvers and preconditioners.

• PICMSS is written in C language and MPI, hence it is widely portable.
• PICMSS adopts the Trilinos suites developed at the Sandia National Laboratory

which is shown to be scalable on many supercomputer platforms.
• PICMSS writes out results in Tecplot and VTK formats. A user interface is also

available to view the results using VISIT, a graphical tool freely available from
Lawrence Livemore National Laboratory.

Until stated otherwise, we shall use the VISIT visualization software for analyzing all
the flow physics.

4 Results and discussion

Until otherwise stated, the BiCGSTab Krylov sparse iterative solver, in conjunction
with the least squares polynomial preconditioner, was selected to solve a system of
matrix equations (see Eqs. (3.4) - (3.6)). Computations were carried out on the CRAY
XT4 supercomputer at the Oak Ridge National Laboratory. For all the calculations, the
uniform mesh-layout is used.

4.1 Numerical verification

The performance of the parallelized CSS on the accuracy of the numerical solutions is
assessed against the following analytical test problem. The domain is [0, π]3, and the
exact solution of the problem is given, in dimensionless form, as

u(x, y, z, t) = sin x sin(y + z + t),
v(x, y, z, t) = cos x cos(y + z + t),
w(x, y, z, t) = cos x sin(y + t),
p(x, y, z, t) = cos x cos y cos z sin t.

The nonzero values at T=0 were used as an initial condition for the Reynolds number
of 40 with the final time T=1.

In Table 1 are the errors of the velocities and pressures in various norms. In the
mixed FE technique, three different uniform grids,

G1 :
173

93 , G2 :
333

173 , and G3 :
653

333 ,
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Table 1: Convergence results for velocities and pressures. h0=maxK̃∈Th
{hK̃ : hK̃ = diam(K̃)}∈G1, where K̃

is a hexahedral element, and ∆t0 = 0.1 using the 27/8 hexahedral element pair with the first-order scheme
in time.

Mesh Mesh Time ‖ u− uh ‖l2(0,T;L2(Ω)) ratios |u− uh|l2(0,T;H1(Ω)) ratios
types sizes steps

G1 h0 ∆t0 0.7793E-1 — 0.9486E00 —
G2

1
2 h0

1
4 ∆t0 0.2110E-1 0.2727 0.3378E00 0.3562

G3
1
4 h0

1
16 ∆t0 0.5542E-2 0.2491 0.1023E00 0.3029

Mesh Mesh Time ‖ v− vh ‖l2(0,T;L2(Ω)) ratios |v− vh|l2(0,T;H1(Ω)) ratios
types sizes steps

G1 h0 ∆t0 0.1131E00 — 1.3030E00 —
G2

1
2 h0

1
4 ∆t0 0.3270E-1 0.2490 0.4354E00 0.3342

G3
1
4 h0

1
16 ∆t0 0.8676E-2 0.2491 0.1212E00 0.2783

Mesh Mesh Time ‖ w− wh ‖l2(0,T;L2(Ω)) ratios |w− wh|l2(0,T;H1(Ω)) ratios
types sizes steps

G1 h0 ∆t0 0.7278E-1 — 0.3914E00 —
G2

1
2 h0

1
4 ∆t0 0.2324E-1 0.3193 0.1366E00 0.3490

G3
1
4 h0

1
16 ∆t0 0.6190E-2 0.2664 0.4101E-1 0.3003

Mesh Mesh Time ‖ p− ph ‖l∞(0,T;L2(Ω)) ratios ‖ p− ph ‖l2(0,T;L2(Ω)) ratios
types sizes steps

G1 h0 ∆t0 0.1011E00 — 0.5968E00 —
G2

1
2 h0

1
4 ∆t0 0.3229E-1 0.2481 0.2072E00 0.3472

G3
1
4 h0

1
16 ∆t0 0.8833E-2 0.2495 0.6048E-1 0.2919

were used, e.g., for the G1 type, the cavity was regularly divided into 17 grid points in
the each direction. For all the computations, the number of processors is set to 33. It
can be seen that the | · |l2(0,T;H1(Ω))-error norms of the approximate velocities and the
‖ · ‖l2(0,T;L2(Ω))-error norm of the approximate pressure are O(h1.7 + ∆t) (note that
the expected ratio should be of O(h2 + ∆t)), while the ‖ · ‖l2(0,T;L2(Ω))-error norms
of the approximate velocities and ‖ · ‖l∞(0,T;L2(Ω))-error norm of the approximate
pressure are O(h2 + ∆t).

4.2 Case studies

A numerical investigation has been provided for different geometric configurations
of cavity and different choices of Reynolds numbers. A Dirichlet pressure boundary
value is imposed in order to ensure the uniqueness of the auxiliary pressure and pres-
sure solutions.

The numerical results are summarized as follows:
• 1 : 1 : 1 —The number of degrees of freedom for the velocity and pressure are
2,146,689 and 274,625, respectively. The final time is T=180 with ∆t=0.005 at Re=3200.

From Figs. 3 and 4 we can see that the flow structures in the specified planes agree
well with those in [4, 9, 12, 14], and three pairs of symmetric TGL vortices are clearly
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Figure 3: Velocity vectors on the y-z plane at (a) x = 0.0625, (b) x = 0.375, (c) x = 0.5 and (d) x = 0.75
for Re = 3200 at 1 : 1 : 1.

Figure 4: Velocity vectors on the x-z plane at (a) y = 0.25, (b) x = 0.5, (c) x = 0.625 and (d) x = 0.9375
for Re = 3200 at 1 : 1 : 1.
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Figure 5: Velocity vectors on plane z = 0.5 at various time levels for Re = 3200, (a) t = 12.5, (b) t = 24,
(c) t = 32, (d) t = 48, (e) t = 84, (f) t = 180.

visible along the spanwise direction as in [14].
Fig. 5 shows the x-component of the velocity on the A− A′ line (see Fig. 1). A pri-

mary vortex gradually grows bigger and bigger near the right corner of the top wall,
and the center of the primary vortex moves to a location at about (0.64, 0.49), while
the downstream secondary vortex, upstream secondary vortex, and upper secondary
vortex are also found in Fig. 5. Good agreement was found in the appearance of the
primary as well as the corner vortices.
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Figure 6: Comparison of the centerline velocity profile with the experimental and the existing results for a
cubic cavity at Re = 3200.

Previous results from Koseff et. al. [11] and Cortes & Miller [5] are presented for
comparison, as shown in Fig. 6. Good agreement was found in the u-velocity profile
of the x-y plane (see S1 plane in Fig. 1).

Similar to the TGL vortices, the formation, evolution and finally dissipation of the
pressure solutions were found, as shown in Fig. 7. No unphysical oscillation was seen
in the boundary wall of the cavity, except at the top lid corners.

• 1 : 1 : 2 — The number of degrees of freedom for the velocity and pressure are
4,276,737 and 545,025, respectively. The time-step size is ∆t=0.01.

Re=3200. The transient solutions for Re=3200 are given at time levels T=18, 20,
25, 30, 35 and 40, as shown in Fig. 8. Inspection of these figures indicated that instan-
taneous velocity fields in a y-z plane (see S2 plane in Fig. 1) from the downstream
wall show the formation and evolution of seven symmetric pairs of TGL vortices in
the whole cavity. Based on the reference [14], our results as shown in Fig. 10 (b), indi-
cated that seven symmetric pairs of TGL vortices did occur at T=110. On the S1 plane,
several pairs of symmetric vortices are found in Fig. 10 (a). Upper and lower corner
vortices are obtained as shown in Fig. 10 (b).

Similar to the TGL vortices, the formation, evolution and finally dissipation of the
pressure solutions were found, as shown in Figs. 9 and 10 (c) - (d). It can also be seen
that the tube-like pressure solutions gradually grow intense and move the geometric
center of cavity with respect to the x-y plane. No spurious oscillation was seen in the
boundary wall of the cavity, except near the top lid corners.

Re=5000. The transient solutions for Re=5000 at T=18, 20, 26, 30, 35 and 40 are
shown in Fig. 11. Instantaneous velocity fields in the S2 plane from the downstream
wall also show the presence and evolution of seven symmetric pairs of TGL vortices,
and a lower corner vortex at the end wall is seen. Comparison of Figs. 8(f) and 11(f)
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Figure 7: Pressure contour plots at various time levels for Re = 3200, (a) t = 12.5, (b) t = 24, (c) t = 32,
(d) t = 48, (e) t = 84, (f) t = 180.

indicates that for the latter case, a pair of the TGL vortices burst out vividly at the
vertical center line of the y-z plane, due to the influence of forced convection induced
by the Reynolds number.

Similar to the results of Re=3000, Fig. 12 shows the formation, evolution and fi-
nally dissipation of the pressure solutions. No node-to-node oscillation was seen in
the boundary wall of the cavity, except near the top lid corners.

• 1 : 1 : 3 — Let us summarize the computational cost and performance of this prob-
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(a) t = 18 (b) t = 20

(c) t = 25 (d) t = 30

(e) t = 35 (f) t = 40

Figure 8: Velocity vectors on plane x = 0.5 at various time levels for Re = 3200 at 1 : 1 : 2.

lem at Re=3200. The number of degrees of freedom for the velocity and pressure are
4,276,737 and 545,025, respectively. The time-step size is ∆t=0.01.

Fig. 13 displays the transient solutions at T = 40. The flow structures in the spec-
ified planes are seen in Figs. 13 (a)-(b). Several pairs of symmetric TGL vortices are
visible along the spanwise direction. In Fig. 13 (c)-(d), in particular, yet again, no node-
to-node oscillation was seen at the boundary wall of the cavity, except near the top lid
corners.

5 Concluding remarks

The CSS for the 3D incompressible Navier-Stokes equation and its parallel version has
been established. The fluid flow at moderate Re can be simulated accurately and effi-
ciently on finer uniform grids by the parallelized CSS, which is verified by the numer-
ical tests of 3D lid-driven cavity problems for various Re and SAR. Some interesting
observations were made:

• When the resolution was sufficiently high, a few pairs of symmetric TGL vortices
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Figure 9: Pressure contour plots at various time levels for Re = 3200 at 1 : 1 : 2, (a) t = 4, (b) t = 12, (c)
t = 16, (d) t = 25, (e) t = 30, (f) t = 40.

were preserved.
• The pressure solutions are free of oscillation in the work, except at the corner of

the sliding wall as expected.

There is more work to be done on the subject of the long time simulation of fluid
flow problems at various choices of Reynolds numbers (e.g., ≥ 3200) and SARs. Our
present results also indicated that using the non-uniform mesh layouts (e.g., using
very dense grids near the boundary walls), the oscillating pressure solutions on the
corners of the sliding wall would be reduced. These results will be reported elsewhere.
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(a) x-z plane at y = 0.5 (b) y-z plane at x = 0.75

(c) Pressure (d) Pressure

Figure 10: Velocity vectors on the x-z plane at y = 0.5 and on the y-z plane at x = 0.75, and pressure
contour plots for Re = 3200 at 1 : 1 : 2 and at T = 110.

Figure 11: Velocity vectors on plane x = 0.5 at various time levels for Re = 5000 at 1 : 1 : 2, (a) t = 18,
(b) t = 20, (c) t = 26, (d) t = 30, (e) t = 35, (f) t = 40.
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Figure 12: Pressure contour plots at various time levels for Re = 5000 at 1 : 1 : 2.
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(a) x-z plane at y = 0.5 (b) y-z plane at x = 0.766

Figure 13: Velocity vectors on the x-z plane at y = 0.5 and on the y-z plane at x = 0.766, and pressure
contour plots for Re = 3200 at 1 : 1 : 3 and at T = 40.
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