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Abstract. In this paper, we analyze a nonconforming finite element method for the
computation of transmission eigenvalues and the corresponding eigenfunctions. The
error estimates of the eigenvalue and eigenfunction approximation are given, respec-
tively. Finally, some numerical examples are provided to validate the theoretical re-
sults.
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1 Introduction

The transmission eigenvalue problem arises in the study of the inverse scattering by in-
homogeneous media. Due to the important applications in the inverse scattering theory,
the transmission eigenvalue problem attracted more and more attention recently [5–7,10–
12, 17, 20]. It not only has the theoretical importance [10], but also can be used to recover
the properties of the scattering material [4, 6, 23] since they can be determined from the
scattering data.

In the past few years, the existence theory and application of transmission eigenvalue
have been developed, some details can be found in the recent survey paper by Cakoni
and Haddar [7]. However, in contrast, the numerical treatment of transmission eigen-
values and the associated interior transmission problem is very limited [1, 11, 14–16, 18,
19, 24, 25]. To the best of the authors’ knowledge, the recent paper by Colton, Monk,
and Sun [11] contains the first numerical study where three finite element methods are
proposed. Sun [24] proposes two iterative methods (bisection and secant). Ji, Sun and
Turner [15] construct a mixed finite element method. The technique is employed in [19]
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to compute the Maxwell’s transmission eigenvalues. Most papers do not discuss the con-
vergence due to the difficulty that the problem is neither elliptic nor self-adjoint. Some
error estimates for the eigenvalues are provided in [8, 24].

In [16], the convergence analysis of the conforming finite element method and the cor-
responding multigrid method have been given for the transmission eigenvalue problem.
The aim of this paper is to give the convergence analysis for the transmission eigenvalue
problem by the nonconforming finite element method.

The rest of this paper is organized as follows. In Section 2, we introduce the trans-
mission eigenvalue problem and derive an equivalent fourth order reformulation. The
nonconforming finite element method and its error estimates are given in Section 3. In
Section 4, three examples are presented to validate the derivative theoretical results. The
last section gives some concluding remarks.

2 Transmission eigenvalue problem

First, we will introduce some notations. Symbols x1.y1, x2&y2 and x3≈y3 mean x1≤C1y1,
x2≥c2y2 and c3x3≤y3≤C3x3, respectively, where C1, c2, c3 and C3 are constants indepen-
dent of the mesh size. C (with or without subscript, uppercase or lowercase) denotes
a generic positive constant which may take different value at its different occurrences
through the paper.

From the physical standpoint, in this paper, we only study the real transmission
eigenvalues corresponding to the scattering of acoustic waves by a bounded simply con-
nected inhomogeneous medium Ω⊂R2. The transmission eigenvalue problem is to find
k∈R, φ,ϕ∈H2(Ω), φ−ϕ∈H2(Ω) such that





∆φ+k2n(x)φ=0 in Ω,

∆ϕ+k2 ϕ=0 in Ω,

φ−ϕ=0 on ∂Ω,

∂φ

∂ν
− ∂ϕ

∂ν
=0 on ∂Ω,

(2.1)

where ν is the unit outward normal to ∂Ω. The index of refraction n(x) satisfies n(x)>α0

a.e. in Ω for some constant α0 >1 or 0<n(x)< α̃0 a.e. in Ω for some constant α̃0 <1. We
call k the transmission eigenvalues if it makes (2.1) has a nontrivial solution.

In order to simplify the notation, we define

V :=H2
0(Ω)=

{
u∈H2(Ω) : u=0 and

∂u

∂ν
=0 on ∂Ω

}
, (2.2)

and denote (u,v) the standard L2(Ω) inner product.
Let u=φ−ϕ∈V. Then we have

(∆+k2)u=−k2
(
n(x)−1

)
φ. (2.3)
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Thus (n(x)−1)−1(∆+k2)u=−k2φ. We apply (∆+k2n(x)) to both sides of this equation
to obtain a fourth order problem

(
∆+k2n(x)

) 1

n(x)−1
(∆+k2)u=0. (2.4)

The transmission eigenproblem can be stated as: Find (k2 6=0,u)∈R×V such that

( 1

n(x)−1
(∆u+k2u),∆v+k2n(x)v

)
=0, ∀v∈V. (2.5)

Next, we use the idea in [24] to introduce the associated generalized eigenvalue problem.
Let τ= k2 (we also call τ a transmission eigenvalue if k is) and define

Aτ(u,v)=
( 1

n(x)−1
(∆u+τu),(∆v+τv)

)
+τ2

(
u,v

)
, (2.6)

for n(x)≥α0 a.e. in Ω for some constant α0>1, and

Ãτ(u,v)=
( 1

1−n(x)
(∆u+τn(x)u),(∆v+τn(x)v)

)
+τ2

(
n(x)u,v

)

=
( n(x)

1−n(x)
(∆u+τu),(∆v+τv)

)
+
(
∆u,∆v

)
, (2.7)

for 0<n(x)≤ α̃0 a.e. in Ω for some constant α̃0<1. We also define

B(u,v)=
(
∇u,∇v

)
. (2.8)

From (2.5) and (2.6)-(2.7), it is obvious to show that the transmission eigenvalue problem
can be written as: Find (τ,u)∈R×V such that B(u,u)=1 and

Aτ(u,v)=τB(u,v), ∀v∈V, (2.9)

when n(x)≥α0 a.e. in Ω for some constant α0>1, and

Ãτ(u,v)=τB(u,v), ∀v∈V, (2.10)

when 0<n(x)≤ α̃0 a.e. in Ω for some constant α̃0<1.
The bilinear forms Aτ(·,·), Ãτ(·,·) and Bτ(·,·) have the following properties.

Lemma 2.1 (see [7, 24]). The bilinear form B(·,·) is a symmetric and nonnegative bilinear form
on V×V. If

1

n(x)−1
≥γ

a.e. in Ω for some γ>0, the bilinear form Aτ(·,·) is coercive on V×V and if

n(x)

1−n(x)
≥ γ̃

a.e. in Ω for some γ̃>0, the bilinear form Ãτ(·,·) is coercive on V×V.
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Here, we use the idea in [24] to transform the transmission eigenvalue as a fix point
of a nonlinear function. For this aim, we define the following generalized eigenvalue
problem: Find (λ(τ),u)∈R×V such that B(u,u)=1 and

Aτ(u,v)=λ(τ)B(u,v), ∀v∈V, (2.11)

for n(x)≥α0 a.e. in Ω for some constant α0>1, or

Ãτ(u,v)=λ(τ)B(u,v), ∀v∈V, (2.12)

for 0<n(x)≤ α̃0 a.e. in Ω for some constant α̃0<1.
Then λ(τ) is a nonlinear function of τ. Furthermore, from the definitions of Aτ(·,·)

and Ãτ(·,·), λ(τ) is continuous corresponding to τ based on the eigenvalue perturba-
tion theory (c.f. [2, 3]). From (2.9) and (2.10), a transmission eigenvalue is a root of the
following nonlinear function

f (τ) :=λ(τ)−τ. (2.13)

This paper considers the numerical method for (2.13). We refer the readers to [7] about
the existence result.

3 Nonconforming finite element method

In this section, we first introduce the nonconforming finite element method for the trans-
mission eigenvalue problem. Then the results in [24] with the bisection way and the
method in [16] are adopted to give the error estimates of the eigenvalue approximation.
Finally, based on the theory of the nonconforming finite element method for the eigen-
value problem, the error estimates for the eigenfunction approximation are also derived.

3.1 Error estimate of the eigenvalue approximation

For simplicity, we are only concerned with the case (2.9), (2.10) follows similarly. We
denote M(λ(τ)) the following generalized eigenfunction set corresponding to the eigen-
value λ(τ)

M(λ(τ))=
{

v∈V : v is a generalized eigenfunction of (2.11) corresponding to

λ(τ) and B(v,v)=1
}

.

We also need the operator Tτ : H1(Ω)→V

Aτ(Tτ f ,v)=B( f ,v), ∀ f ∈H1(Ω), (3.1)

which is compact and self-adjoint because of the compact embedding of V into H1(Ω).
We rewite the eigenvalue problem (2.11) as

λ(τ)Tτuτ =uτ. (3.2)
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So µ=1/λ(τ) is an eigenvalue of Tτ with the eigenfunction uτ.
We assume Th a shape regular mesh over Ω with mesh size h. Based on the mesh

Th, we define a nonconforming finite element space Vh (for example, the Morley element
discussed in this paper) such that Vh 6⊂V. The degrees of freedom of the Morley element
are the function values at the vertices of the mesh Th and the normal derivatives at the
midpoints on the edges of Th. The nonconforming finite element space of Morley can be
defined as follows:

Vh=
{

v∈L2(Ω) : v|K ∈P2, v and ∂νv are continuous at vertices and

the midpoints of edges, and vanish on the boundary ∂Ω, ∀K∈Th

}
,

where P2 denotes the polynomial space of degree less than or equal to two.
In order to analyze the error estimate of the eigenfunction approximation by the non-

conforming finite element method, we define the following norm

‖v‖h :=
(

∑
K∈Th

‖∇2v‖2
0,K

) 1
2
.

It is well known that the ‖·‖h is a norm in the space V+Vh and ‖v‖h = ‖v‖V when v∈V
(cf. [21]).

Now we can define the following discrete version of the eigenvalue problem (2.9) as:
Find (τh,uh)∈R×Vh such that B(uh,uh)=1 and

Aτh,h(uh,vh)=τhBh(uh,vh), ∀vh ∈Vh, (3.3)

where we assume n(x) is a constant function and

Aτh,h(uh,vh) := ∑
K∈Th

∫

K

1

n(x)−1
(∇2uh∇2vh−2τh∇uh∇vh)dK+τ2

h

( n(x)

n(x)−1
uh,vh

)
, (3.4a)

Bh(uh,vh)= ∑
K∈Th

∫

K
∇uh∇vhdK. (3.4b)

To analyze the error estimates by the nonconforming finite element method, similarly
to [16], we follow the same idea in [24] to find the roots of a discrete version of (2.13):
Find (λh(τ),ûh)∈R×Vh such that Bh(ûh,ûh)=1 and

Aτ,h(ûh,vh)=λh(τ)Bh(ûh,vh), ∀vh ∈Vh. (3.5)

We also need the discrete operator Tτ,h : H1(Ω)→Vh

Aτ,h(Tτ,h f ,v)=Bh( f ,v), ∀v∈Vh, (3.6)

which is a compact self-adjoint operator due to the fact that any discrete operator is com-
pact [22] and (3.5) can be rewritten as

λh(τ)Tτ,hûh = ûh. (3.7)
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Since Tτ relates to a lower order perturbed biharmonic operator, the eigenfunction in
M(λ) satisfies

‖u‖2+γ <∞ for u∈M(λ), (3.8)

here γ (0<γ≤1) is the regular parameter which depends on the maximal interior angle
of the boundary ∂Ω and γ=1 for the convex domain [13].

We have the following error estimate by the standard theory of the nonconforming
finite element method for the eigenvalue problem (c.f. [2, 3, 21]).

Lemma 3.1. Assume n(x) satisfies the conditions of Lemma 2.1 and (λh(τ),ûh) is a solution to
(3.5). Then there exists a solution of the exact eigenvalue problem (2.11) satisfying the following
error estimate

|λh(τ)−λ(τ)|.h2γ . (3.9)

The eigenvalue τh in (3.3) is a root of the following equation

fh(τ) :=λh(τ)−τ. (3.10)

The following result shows that the roots of (3.10) approach the roots of (2.13) well if
the mesh is fine enough.

Theorem 3.1. Under the conditions of Lemma 3.2 in [24], assume τh is a solution of (3.3) ap-
proximating the exact eigenvalue τ of (2.11). Then for small enough h, we have the following
error estimate

|τ−τh|.h2γ . (3.11)

Proof. Based on Lemma 3.2 in [24], we have f ′h(τ)<−C<0 with C>0 for small enough
h. From Lemma 3.1, we have

| f (τ)− fh(τ)|.h2γ,

on an interval [a−h2γ/C,b+h2γ/C] with 0< a < b. Then from Lemma 3.3 in [24] with
λ(τ)=τ, (3.11) is obtained.

3.2 Error estimate of the eigenfunction approximation

In this subsection, we will give the convergence analysis of the eigenfunction approxima-
tion. Here, we set τh to be the approximation of the exact eigenvalue τ defined by (2.9),
i.e., λ(τ)=τ.

An auxiliary eigenvalue problem is constructed first: Find (λ̃,ũ) ∈R×V such that
B(ũ,ũ)=1 and

Aτh
(ũ,v)= λ̃B(ũ,v), ∀v∈V. (3.12)
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Correspondingly, a solution operator Tτh
: H1(Ω)→V can be defined as

Aτh
(Tτh

f ,v)=B( f ,v), ∀v∈V. (3.13)

Then (3.12) can be rewritten as

λ̃Tτh
ũ= ũ. (3.14)

From Theorem 3.1, we know τh→τ and Tτh
→Tτ in the operator norm as h→0.

Lemma 3.2. Assume eigenvalues τ and τh have the error estimate (3.11). The two operators Tτ

and Tτh
have the following estimate

‖Tτ−Tτh
‖V . |τ−τh|.h2γ, (3.15)

where ‖·‖V means the operator norm on V→V.

Proof. The proof uses the same idea of Lemma 3.3 in [16].

To estimate ‖u−ũ‖V , we denote by Γ a circle in the complex plane centered at 1/τ
such that no other eigenvalues of Tτ lie inside and define Rz(Tτ)= (z−Tτ)−1, Rz(Tτh

)=
(z−Tτh

)−1. The spectral projection operator is defined as

Eτ =
1

2πi

∫

Γ
Rz(Tτ)dz. (3.16)

The operator Eτ is a projection onto the space of generalized eigenvectors associated with
1/τ and Tτ, i.e., R(Eτ)= N((1/τ−Tτ)α), where R denotes the range and α is the ascent
of τ. For h sufficiently small, the spectral projection

Eτh
=

1

2πi

∫

Γ
Rz(Tτh

)dz, (3.17)

exists, Eτh
is the spectral projection [3] associated with Tτh

and the eigenvalues of Tτh

inside Γ, Eτh
→Eτ in norm and dimR(Eτh

)=dimR(Eτ).
Assume M and N are two subsets of V. We define the distance between M and N as

δ(M,N)=max(δ̂(M,N), δ̂(N,M)), where δ̂(M,N)= sup
v∈M, ‖v‖h=1

inf
χ∈N

‖v−χ‖h .

Lemma 3.3. The two finite dimensional spaces R(Eτ) and R(Eτh
) satisfy

δ(R(Eτ),R(Eτh
)).‖(Tτ−Tτh

)|R(Eτ)‖V , (3.18)

for small enough h, where (Tτ−Tτh
)|R(Eτ) means the restriction of Tτ−Tτh

onto R(Eτ).

Proof. The proof is similar to Theorem 7.1 in [3] and Lemma 3.4 in [16], we ignore the
detail here.
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We can get the following result by the standard theory of operator perturbation.

Lemma 3.4. Assume eigenvalues τ and τh have the error estimate (3.11). The eigenpair approx-
imation (τ,u) of (2.9) and (λ̃,ũ) of (3.12) satisfy

‖u−ũ‖V .h2γ, (3.19a)

|τ−λ̃|.h2γ. (3.19b)

Proof. We can get the following estimate by Lemmas 3.2 and 3.3

δ(R(Eτ),R(Eτh
)).h2γ. (3.20)

Combining this estimate with the theory in [3], the desired estimates (3.19a) and (3.19b)
can be obtained.

Based on (3.19a)-(3.19b) and the triangle inequality, we can get the following error
estimates of the eigenpair approximation (τh,uh).

Theorem 3.2. Under the conditions of Lemma 3.2 in [24], assume τh is a solution of (3.3) by the
Morley element approximating the exact eigenvalue τ of (2.9). Then for small enough h, we have
the following error estimates

‖uh−u‖h.hγ, (3.21a)

‖uh−u‖1.h2γ, (3.21b)

|τ−τh|.h2γ. (3.21c)

Proof. From Theorem 3.1, we have the error estimate (3.21c). Actually, the discrete eigen-
value problem (3.3) is the discretization of the linear eigenvalue problem (3.12) by the
nonconforming finite element method.

By the standard theory [3, 21], we can get the following estimates

‖ũ−uh‖h.hγ, (3.22a)

‖ũ−uh‖1.h2γ, (3.22b)

|λ̃−τh|.h2γ. (3.22c)

From Lemma 3.4, the following estimates hold

‖u−ũ‖V .h2γ, (3.23a)

|τ−λ̃|.h2γ. (3.23b)

The combination of (3.22a)-(3.22c) and (3.23a)-(3.23b) leads to the desired results (3.21a)-
(3.21b) and the proof is completed.
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4 Numerical results

In this section, we solve the eigenvalue problem (2.9) on the unit square Ω = (0,1)×
(0,1) and the L-shape domain Ω=(−1,1)×(−1,1)\[0,1)×(−1,0] by the Morley element
method, respectively. For the unit square, as predicted in Theorem 3.2, the convergence
order of the eigenvalue approximation is two, i.e.,

|τ−τh|.h2, (4.1)

since γ=1 in (3.8).

In order to check the convergence behavior of the nonconforming finite element
method, we produce a sequence of finite element spaces which are constructed by us-
ing the Morley element on triangular mesh. In all the examples, we use triangular mesh
with h=1/4 as the initial meshes and then we refine this mesh with the regular way (con-
necting the midpoints of each edge) to investigate the convergence behavior. The fines
mesh is h=1/64.

4.1 Unit square with n=16

First, we give the numerical results of the Morley element on the unit square with the
index of refraction n=16.

The first four eigenvalues (kh =
√

τh) on the finest mesh are (1.879314, 2.443571,
2.443572, 2.865203) which are consistent with the results in [15, 16]. Fig. 1 presents the
error estimates of the numerical approximation for the first four eigenvalues. From Fig. 1,
we know that the Morley element can obtain the theoretically predicted second conver-
gence order.
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Figure 1: Error estimates for unit square with n=16.
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4.2 Unit square with n=8+x1−x2

In the second example, we also consider the eigenvalue problem on the unit square Ω=
(0,1)×(0,1). Here, the index of refraction is chosen to be a function n(x)=8+x1−x2.

The first four eigenvalue approximations (kh =
√

τh) on the finest mesh are (2.823589,
3.538882, 3.539337, 4.117087) and Fig. 2 gives the numerical errors for the first four eigen-
values. Fig. 2 also shows that the Morley element method does obtain the theoretically
predicted second convergence order.
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Figure 2: Error estimates for unit square with n=8+x1−x2.

4.3 L-shape domain with n=16

Here we study the Morley element on the L-shape domain with n= 16. Since Ω has a
reentrant corner, eigenfunctions with singularities are expected. The convergence order
for the eigenvalue approximation may be less than 2 by the Morley element which is the
order predicted by the theory for regular eigenfunctions.

We still give the first four eigenvalues on the finest mesh: (1.474002, 1.569339,
1.704406, 1.782807). Fig. 3 gives the numerical errors for the first four eigenvalues. As we
have expected, the convergence order shown in Fig. 3 is only 1.5 for the first eigenvalue
which is less than 2. Similarly to the elliptic eigenvalue problem, the second, third and
fourth eigenvalues have better accuracy than the first one.

5 Concluding remarks

In this paper, we use the Morley element method to solve the transmission eigenvalue
problem. The corresponding convergence analysis is given for the eigenvalue and eigen-
function approximation. Finally, three numerical examples are presented to confirm the



102 X. Ji, Y. X. Xi and H. H. Xie / Adv. Appl. Math. Mech., 9 (2017), pp. 92-103

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

Mesh size: h

R
el

at
iv

e 
E

rr
or

Convergence rates for lquare (n=16)

 

 

1st eigenvalue
2nd eigenvalue
3rd eigenvalue
4th eigenvalue
slope=1.5
slope=2

Figure 3: Error estimates for L-shape domain with n=16.

theoretical convergence order. The analysis used in this paper can also be extended to
other nonconforming finite element methods for the transmission eigenvalue problem
(e.g., [9, 26]).
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