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Abstract. Over the past two decades, there have been enormous advances in lat-
tice Boltzmann (LB) numerical simulation and modelling. The lattice Boltzmann
method has become a practical and promising tool for many fluid problems. A
majority of recent studies have relied on numerical computations of isothermal
flows. However, much less efforts have been devoted to complex thermal flows,
such as flows in porous media subjected to external magnetic force, flows with
temperature-dependent properties. In this paper, an overview is made based on
some accomplishments in these numerical endeavours. Along with the paper’s
sections, the state-of-the-art trend and the LBM advances in modelling and in com-
putational aspects for specific classes of problems of major interest will be fully
touched on. Concluding remarks are given and the axis of our future studies will
be traced.
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1 Introduction

Over the past two decades, the lattice Boltzmann method (LBM) has been widely
adopted to solve linear and nonlinear partial differential equations (such as Burger’s
equation, wave equation, Poisson equation etc.) and progressively the method shows
its efficiency, to offer today a powerful tool for simulating fluid flows [1–4]. Unlike the
conventional Computational Fluid Dynamics (CFD) ones based on continuum me-
chanics, the method starts from mesoscopic kinetic equation and statistical physics
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(the Boltzmann equation) and determines the macroscopic quantities (density, veloc-
ity, pressure etc.). In the framework of the LBM, the lattice Boltzmann equation is
time and space-discretized and a set of density distribution functions (corresponding
to fictitious particles that colloid and stream) are stored at each lattice node. The up-
dating mechanism consists of two steps: a streaming along a set of discrete velocities
and a relaxation equivalent to the collision frequency of particles. In the LBM, the
macroscopic quantities are locally computed by using each time step’s density dis-
tribution functions. The pressure derives from the density via an equation of state.
The solution procedure of the method provides many advantages resulting in sim-
pler set of equations (resulting in algebraic operations unlike algebraic equations for
classical CFD methods), parallel computations, easy handling of complex geometries,
easy handling of coupling equations by simply adding force/sink term in discretized
equation.

For instance, the LBM presents the features of simulating classical flows [5–9], flow
with complex geometries [10], multiphase flows [11, 12], multicomponent flows [13],
it overcomes some shortcomings of classical CFD methods (discretization, CFL stabil-
ity condition, · · · ,) and enables us to investigate time-dependent flow transition more
conveniently since its remarkable capability in recording transients of flow develop-
ment. Moreover, previous LB based works almost used Cartesian coordinates system
and focused the interest on steady state flows. Some recent works have attempted the
fully unsteady flow regimes [14, 15] and other coordinate systems [16–19]. However,
a fully LB-understanding of transition thresholds is less considered in the literatures
although the occurring phenomena are of practical interest in industry [20], such as
for crystal growth in low Prandtl number flows. Furthermore, very high temperature
flows such as plasma jets (where all diffusion parameters are temperature dependent),
free jet flows (where special attention is made for boundary condition treatment) and
porous media flows under magnetic force (where the forcing term needs special treat-
ment), are of practical and scientific interest and were not yet (or few) approached
by the LBM at our knowledge. Since these topics are of vital importance in numer-
ous applications, the present work is devoted to review our knowledge for recent
improvement and progress in its modelling and simulation using the LBM.

The present works is organized as follows: the introduction section presents the
basic concept of the LBM and its implementation for thermal flows; the validation sec-
tion provides several investigations of steady and unsteady natural convection flows
with qualitative and quantitative comparisons with previous numerical results. The
last section is devoted to review some recent progress in LB simulation and modelling
of some complex thermal flows, namely low Prandtl number fluid melts flows sub-
ject to symmetry breaking and transition to unsteady regimes, plasma jets flows for
pure gas and gases mixture and flows in porous media subject to external magnetic
force. For the three examples, the focus is put on the advances in LB modelling and
the predictability level in the results rather than to describe the models in detail. Com-
parisons with previous results using classical CFD methods are given in all cases for
model validation.
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2 Method of solution: outlines of LB thermal models

The Boltzmann equation derived from Statistical Physics describes the probability of
existence (in term of distribution function f ) of a particle at the time t in the location ~x
and with a velocity ~v

∂ f
∂t

+~ζ
∂ f
∂~x

+
∂ f
∂~ζ

~F = Ω( f ), (2.1)

where ~F is an external force and the operator Ω( f ) describes the particles interactions
following the collision process. Then the time evolution of the distribution function f
is governed by the advection term ~ζ(∂ f /∂~x), the external force term (∂ f /∂~ζ)~F and the
collision term Ω( f ).

The Bhatnagar-Gross-Krook (BGK) model assumes that the distribution function f
relaxes towards the Maxwellian distribution f eq in an average relaxation time τ related
to the time between two particle-collisions

Ω( f ) =
1
τf

( f eq
k − fk), (2.2)

the relaxation time τ controls the rate towards equilibrium from the non-equilibrium
state and the equilibrium distribution function is chosen to be an expansion in the
velocity and to ensure that the conservation laws are obeyed.

Figure 1: The 9-bits LB model and domain boundaries treatment: solid line (known distributions) and
dotted-lines (unknown distributions).

The lattice Boltzmann of the Eq. (2.1) is discretized and assumed valid along spe-
cific directions of linkages (see Fig. 1). Then the discrete Boltzmann equation is re-
placed by its discrete functions fk as

∂ fk

∂t
+ eki

∂ fk

∂xi
+

∂ f eq
k

∂eki
Fi ≈ 1

τf
( f eq

k − fk), (2.3)
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where the indices k and i describe the directions of linkages and the Cartesian coordi-
nates components respectively. The general form of the Boltzmann equation follow-
ing a time and space finite difference discretization and assuming equals the time and
space steps ∆x = ∆t is written as

fk(~x +~ek∆t, t + ∆t) = fk(~x, t) +
∆t
τf

(
f eq
k (~x, t)− fk(~x, t)

)
+ ∆tFk, (2.4)

where

Fk =
~F(~ek − ~u) f eq

k
RT0

,

with R=1 in LB modelling and T0 is determined by the LB model (e.g., T0=1/3 in
D2Q9 or D2Q19 models). This equation is used for numerical simulations and deter-
mines the time evolution of the density distribution function f . The time evolution of
Eq. (2.4) is solved in two steps, i.e., the so-called collision-streaming process

f̃k(~x, t) = fk(~x, t) +
∆t
τf

(
f eq
k (~x, t)− fk(~x, t)

)
+ ∆tFk, (2.5a)

fk(~x +~ek∆t, t + ∆t) = f̃k(~x, t). (2.5b)

The Navier-Stokes equations are second-order nonlinear equations in velocity. There-
fore, the equilibrium distribution function must be expressed in O(u2) form; it also
depends on the type of problem-solving. For a 2D problem flow, with 9-bits model, the
equilibrium distribution function, after some derivation

(
expansion of the Maxwellian

distribution and neglecting terms of O(u2)) is written as

f eq
k = wkρ

[
1 + 3(~ek · ~u) +

9
2
(~ek · ~u)2 − 3

2
(~u · ~u)2

]
, (2.6)

where wk=4/9 for k=0; wk=1/9 for k=1, · · · , 4; wk=1/36 for k=5, · · · , 8, |~ek|=1 along
the axis and |~ek|=

√
2 along the diagonals.

When a thermal flow is considered, the distribution function g for the temperature
fields obeys the same formulation discussed above and its evolution equation (without
heat loss/generation) is

gk(~x +~ek∆t, t + ∆t) = gk(~x, t) +
∆t
τg

(
geq

k (~x, t)− gk(~x, t)
)
. (2.7)

Two thermal models are considered in this study, i.e., the internal energy distribution
model (model I) [8] and the passive scalar model (model II) [21]. For the internal
energy distribution model, the equilibrium distribution (in 9-bits model) is written as:

geq
k = ωkρε

[3
2
(~e2

k − ~u2) + 3
(3

2
~e2

k − 1
)
(~ek · ~u) +

9
2
(~ek · ~u)2

]
. (2.8)
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For the passive scalar approach, the equilibrium part (in 4-bits model) is written as:

geq
k =

1
4

ε
[
1 + 2(~ek · ~u)

]
, (2.9)

where ε ≡ T is the dimensionless temperature field. In a comparison study (not pre-
sented here), we have shown that the two models have the same features in terms of
accuracy and iterations numbers needed for convergence. In general, both the two
approaches recover the energy equation.

The macroscopic flow properties (density, velocity, temperature) are obtained by
collecting the distribution functions over the discrete velocities at each node site as:

ρ = ∑
k=0,8

fk, (2.10a)

~u =
1
ρ ∑

k=1,8
~ek fk, (2.10b)

T =
1
ρ ∑

k=0,8
gk, (for model I), (2.10c)

T = ∑
k=1,4

gk, (for model II). (2.10d)

Under the small Mach number assumption, these quantities are the solutions of the
conservation equations

∇~u = 0, (2.11a)
∂~u
∂t

+∇(~u · ~u) = −1
ρ
∇p + ν∇S + ~F, (2.11b)

∂T
∂t

+∇ · (~uT) = α∇2T, (2.11c)

where

Sij =
1
2

(∂ui

∂xj
+

∂uj

∂xi

)
,

is the strain rate tensor, which can be computed simply using the non-equilibrium
part of the density distribution function Eq. (2.12), in contrast to velocity derivations
in classical methods

Sij = − 3
2ρτf

∑
k

~eki~ekj
(

fk − f eq
k

)
. (2.12)

Such a form is very useful when implementing turbulence models which will be dis-
cussed in the following sections.
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3 Code validation

This section is devoted to the code validation. The considered problem is a two di-
mensional natural convection in a rectangular geometry of height H and width W
(see Fig. 2). The cavity is filled with air. The flow in the enclosure is governed by
the Navier-Stokes equations under Boussinesq assumption. A horizontal temperature
gradient (Th − Tc) is imposed to the vertical walls and zero flux conditions are applied
to the horizontal walls. The no-slip boundary condition reigns on the cavity walls.
Under the Boussinesq assumption the forcing term of Eq. (2.4) is written as

~Fk = 3wkρβT~g ·~ek,

where β is the thermal expansion coefficient. Two dimensionless parameters are con-
sidered here, i.e., the Prandtl number

Pr =
ν

α
= 0.71,

and the Rayleigh number

Ra =
gβ(Th − Tc)H3

να
.

In the case of a square cavity, H=W, the calculations are presented for 105≤Ra≤106 in
Table 1. The grid sizes are chosen to be 1502 and 2002 for Ra=105 and 106 respectively.
The LBM prediction shows a good agreement with published benchmark solutions
based on traditional CFD methods for the tested range of Ra number. It is well known
that the flow, for Ra>105, shows a stretched boundary layers near isothermal walls
and a temperature stratification at the core of the cavity. Fig. 3 illustrates the dynamic
and thermal structure for Ra=105 and 106. For further details, readers can refer to [5].
It is shown in [5] that the LBM is two-order accuracy in space and that the Nu− Ra
relation-ship agrees well with the established correlations in the literature. One notes

Figure 2: Computational domain and boundary conditions for a natural convection problem.
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Figure 3: Contour-maps of streamlines (above) and isotherms (below) for Ra=105 (left) and Ra=106 (right).

here that Nu is the averaged Nusselt number computed as

Nu =
1

α∆T/H
1

H2

∫ H

0

∫ H

0

[
uT − α

(∂T
∂x

)]
dxdy. (3.1)

As the onset of time-dependent flow in a cavity occurs at earlier Rayleigh num-
bers in Rayleigh-Bénard configuration than in a cavity with adiabatic horizontal walls,
we perform a computation for a Rayleigh-Bénard configuration with aspect ratio
W/H=2. The flow structure changes continuously with time (see [24]) characterizing
the onset of time-dependent flow. The time-history of hot wall Nusselt number and
its energy spectrum are illustrated in Fig. 4. The primary dimensionless frequency for
the LB prediction is close to 15.86, the Finite Volume prediction gives 15.81 (in unit of
H2/α), which confirms the high level of predictability for the LB approach.

Table 1: Comparison of present results with results of references [22,23].

Ra Umax y Vmax x Nu
105 Model I 34.7475 0.8533 68.5756 0.0667 4.4887

Model II 34.7171 0.8533 68.4794 0.0667 4.4926
[22] 34.722 0.855 68.590 0.066 4.519
[23] 34.736 0.855 68.640 0.065 4.523

106 Model I 65.2202 0.8500 220.5421 0.0399 8.7533
Model II 65.2238 0.8500 220.2941 0.0399 8.7639

[22] 64.630 0.850 219.360 0.0379 8.800
[23] 64.775 0.850 220.640 0.0350 8.800
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Figure 4: Time history of hot-wall Nusselt number (a) and its spectra of amplitude frequency (b).

4 Numerical results and discussions

4.1 Transitions thresholds for low Prandtl number flows in enclosures

Phase change is of major interest in crystal growth processes. Low Prandtl flows in
cavities subjected to temperature gradients fall into these categories. Thus, there have
been many efforts to understand the occurring phenomena in such flows, since a high
control permits high quality pure crystals in one side and stable dynamic solutions
permits qualifying the critical operating parameters of crystal growth in other side.
Therefore, the investigation of stability for these types’ flows is of great importance for
practical applications. In this part we consider two situations with symmetry break-
ing for low Prandtl number flowing in enclosures. In these two cases the routes to
unsteadiness are investigated using the thermal LB model I. The present results are ex-
pressed in terms of Grashof number (Gr=Ra/Pr) for the seeking of comparison with
previous ones. The reference scales for length, time, velocity and pressure are respec-
tively H, H2/α, α/H and ρ(α/H)2 and the dimensionless temperature is written as

θ =
T − Tc

Th − Tc
.

For the classical vertical Bridgman cavity, the simplified model is depicted in Fig. 5, the
Prandtl number is chosen to be 0.01 and the resolution is taken 200× 200. The onset of
the flow results from the Rayleigh-Bénard configuration. For low values of Gr number,
the flow is a steady symmetric structure (SS) characterized by two counter-rotating
cells. With the increase of Gr, the thermal transfer is enhanced and the flow becomes
slightly asymmetric (SAS) for Gr=2.5 105, where the stream-function magnitude is
close to 0.3786. However, its value for Gr=3 105, is of 0.3517, then the stream-function
magnitude reaches its maximum in this Grashof number range. This critical value is
located at about Grc≈2.75 105 and indicates a change in the flow pattern characterized
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Figure 5: Simplified vertical Bridgman configuration with fixed interface.

by a typical symmetry breaking in the melt flow structure (see Fig. 5). This behaviour
confirmed by the 2D Spectral results [25] where transition threshold is identified be-
tween 2.5 105 and 3 105 and 3D FV ones [26]. A comparative table recapitulates each
result gathered to the used method (see Table 2).

With more increase of Grashof number, the flow becomes steady and absolutely
asymmetric (SAS). Moreover, we observe the growth progressively of the left roll and
the reduction of the right one. For Gr=6 105, the flow structure is completely domi-
nated by one roll slightly distorted by the presence of two small left-vortices and the
two-linked right-vortices.

The two-linked right-vortices are reduced for Gr about 106 and the flow remains
steady dominated by one cell formed by perfect circles centred at the cavity centre
until Gr=17 105. However, the up-right vortices disappear since Gr=14 105 mark-
ing a new flow regime in the too-next Grashof numbers. Two others tested values of
Gr (17.5 105, 17.75 105) give a time-dependent state. The stream-function magnitude
decreases much and the flow becomes periodic (P1) for Gr=17.9 105, with a dimen-
sionless frequency fc=7.033 which agrees well with the FV results ( fc=6.67) obtained
by [27], the transition thresholds of the two results are close to the Spectral and 3D
Finites Volumes ones.

For the horizontal Bridgman cavity, the resolution is taken 400× 100 in a shallow
configuration with aspect ratio A=4 (see Fig. 7). The cavity is filled with Gallium of

Table 2: Thresholds transitions in vertical Bridgman growth for Pr=0.01.

Symmetric Transition Transition
Method Gr = 2 105 SS-SAS SAS-P1

ψmax Gr Gr( fc)
Spectral [25] - 2.5-3 105 20 105

FV (3D) [26] - 3 105 -
FV (2D) [27] 0.290 3.50 105 17.5 105 (6.670)

LBM (2D) [33] 0.308 2.75 105 17.9 105 (7.033)
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Figure 6: Threshold transition diagram for the vertical Bridgman model.

Figure 7: Simplified horizontal Bridgman configuration with fixed interface.

Prandtl number 0.015. The simplified model considers a fixed interface maintaining
at constant temperature as for former established benchmarks.

For Gr=5000, the flow is a one convective clock-wise rotating cell. A transition
occurs at a critical value of Gr≈32000 and the flow structure is a three counter-rotating
cells. The present results are gathered to previous solutions [28–32] in Table 3 and the
bifurcations diagram defined by the plot of maximum stream-function magnitude vs
the Grashof number is established (see Fig. 8). In the vicinity of the critical point the
Grashof number is increased uniformly (by a step of 250). For Gr=32250, the flow
exhibits a three cells structure. However, for Gr=32500 a new transition characterized
by two-cell structure is identified. The regime remains steady again with two rolls
until Gr=33330. For Gr=40000, a change in the cells-shape is observed near isothermal
walls, the stream-function magnitude increases considerably and no time dependency
is remarked. This behaviour defines a new branch with two cells in the flow patterns
which have been investigated in [27].

Further details of the two cases can be found in [32]. One can conclude that LBM

Table 3: Symmetry breaking, Hopf point estimated with various methods, A=4 and Pr=0.015.

FDM Spectral FEM FVM Spectral LBM
Method [28] [29] [30, 31] [32] [32] [33]

Mesh 121× 41 40× 30 66× 24 60× 24 200× 100 400× 100
Gr 32500-33500 33300 33002 32500-33500 32996 32000
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Figure 8: Bifurcation diagram for the horizontal Bridgman model (fixed interface) for Pr=0.015.

results are in excellent agreement with those in previous works and LBM can predict
accurately the threshold of transition in horizontal and vertical Bridgman growth as
the traditional methods in CFD.

4.2 Porous media flows in enclosures under external magnetic force

This section will offer a general idea devoted to explore an extended thermal lattice
Boltzmann model simulating flows under complex conditions (configuration, external
forces, · · · ,). The results of the numerical examples demonstrate the potential of the
LBM to deal with this kind of problems.

The LBM has been successfully applied to simulation of porous media flows [34].
The force due to the presence of porous media as well as the other external forces is
taken into account by introducing an added term into the Navier-Stokes equations.
Thanks to its simplicity, the forcing terms, which are linear or non-linear can be sim-
ply appended to the Boltzmann equation collision term. Moreover, the macroscopic
velocity can be deduced by a simple quadratic form (see [34]). In the case of natural
convection flow in porous media subjected to external magnetic force, the external
force term becomes more complex. It includes porous media effects (linear and non-
linear drag terms), the gravitational force and the magnetic force,

Fi = εgiβ(Tc − T)− ε ν

κ
ui − εFε

√
uiui

κ
ui + εσ

[
(Bjuj)Bi − B2ui

]
, i = 1, 2, (4.1)

where ε is the medium porosity, κ is the medium permeability, Fε is a geometric pa-
rameter; σ is the fluid electric conductivity and B is the magnetic field magnitude.

As mentioned in [35], the forcing term in LBE can take different forms and all forms
give similar results. In the following, we’ll keep the same form which is given above.
The cavity inclination and the magnetic field direction are controlled respectively by



598 R. Djebali, H. Sammouda and M. El Ganaoui / Adv. Appl. Math. Mech., 5 (2010), pp. 587-608

Figure 9: Schematic illustration of natural convection problem for fluid flowing into inclined porous media
and subjected to inclined magnetic field.

the angles ϕ and φ (see Fig. 9). Hence,

~g = g
(

cos(ϕ), sin(ϕ)
)
, ~B = B

(
cos(φ), sin(φ)

)
,

see [34] and [36] for further details. The boundary conditions are the same as the
configuration of Fig. 2. The flow is monitored by the Rayleigh number, the Darcy
number, the medium porosity and the Hartman number. The Prandtl number is kept
0.71. The thermal model II indicated above is used here. The steady state convergence
is accelerated by using the procedure used in [37]. The kinetic viscosity is taken 0.01,
0.007 and 0.003 for Ra∼O(103)-O(104), O(105)-O(106) andO(107) respectively. In all
the computations, we use the lattice sizes 50× 50, 75× 75, 100× 100, 125× 125 and
150× 150 for the Rayleigh numbers 103, 104, 105, 106 and 107 (respectively).

The LBM is firstly applied to solve two test problems, namely a free fluid flow
subjected to vertical uniform magnetic field, i.e.,

~B = −|B|~y,

and a porous media flow. For both problems ϕ=0. For the first case, the results are
gathered to the Pulicani’s ones using the ADI method (see Table 4). The two methods
show a good agreement for low Grashof numbers and low Hartman numbers. With
the increase of these two parameters, a considerable deviation is remarked. A test
result is made by using the Finite Volume method to check the justness of the LB

Table 4: Comparison of the average Nusselt number at the hot wall Nu0 with Ref. [36] for Pr=0.733 in the
presence of magnetic field († denotes our results).

Ha 10 50 100
Gr LBM† FVM† ADI LBM† FVM† ADI LBM† FVM† ADI

2.104 2.2780 2.2976 2.2234 1.0900 1.1154 1.0856 1.0177 1.0113 1.0110
2.105 5.0518 4.9865 4.8053 3.0784 3.2901 2.8442 1.4866 1.6430 1.4317
2.106 9.8852 9,7904 8.6463 8.9326 9.0563 7.5825 6.7142 7.2416 5.5415
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Table 5: Comparison of the average Nusselt number with Ref. [34] for Pr=1.

ε = 0.4 ε = 0.6
Da Ra Present [34] Present [34]

10−4 105 1.066 1.067 1.072 1.071
106 2.595 2.550 2.711 2.725
107 7.816 7.810 8.532 8.183

10−2 103 1.008 1.010 1.013 1.015
104 1.360 1.408 1.491 1.530
105 2.989 2.983 3.435 3.555

results. The FV results show an excellent agreement with the LB ones. The deviation
of the ADI method may be attributed to the coarser grid size used.

For the fluid flowing in porous media, a comparison is done based on the averaged
Nusselt number within the cavity for different Rayleigh numbers, Darcy numbers and
medium porosities. A good agreement is obtained compared with previous works (see
Table 5).

It is worth pointing out that from the two benchmarks established by evaluating
the heat transfer rate (average Nusselt number), the present LBM (model II) can be effi-
ciently used for simulation of flows for various combinations of these parameters. The
effects of the variations of the Rayleigh number and the cavity inclination are investi-
gated with setting φ=0◦, Ha=50, ε=0.4 and Da=10−2. As shown in Fig. 10, increasing
the Rayleigh number or the cavity inclination affects strongly the dynamic and ther-
mal field’s structures in the presence of the external magnetic force in the porous me-
dia. For ϕ=0◦, increasing the buoyancy force (Ra) enhances the convective currents
dumped (or suppressed) by the magnetic force effect for low Rayleigh numbers. The
isotherms become stretched near the isothermal walls and equally spaced at the cavity
core. For ϕ=90◦, the flow pattern becomes more complex due to the Rayleigh-Bénard
phenomenon. Furthermore, for ϕ=90◦, a pair and two pairs counter-rotating cells are
formed for (respectively) Ra=105 and 106, compared with free fluid flow in enclosures.

The effects of the Darcy number and the medium porosity are also examined for
Ra=105, ϕ=0◦, Ha=50 and φ=0◦. The flow structure is for all a single counter clock-
wise rotating cell. As for the previous investigation, the effects of the Darcy number
and the medium porosity are significant. By decreasing the Darcy number (logarith-
mically), the infiltration velocity in the medium decreases considerably, the thermal
behavior tends to take a conductive mode signature. The presence of the magnetic
field results in decreasing the heat transfer compared with the case of flow in porous
media without external force and forming in somewhat a diagonal-acting region as
shown in Fig. 11. At the same time, increasing the medium porosity enhances slightly
the convective currents near the insulated walls firstly resulting in a small rotation
of the isotherms and diagonally-extended elliptic cell at the core and secondly with a
tendency to have the well-known horizontal stratified thermal structure.

The study of the effects of varying the Hartmann number and the magnetic field
inclination (taking Ra=105, ϕ=0◦, Da=10−2 and ε=0.4) show that: (i) increasing the
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Figure 10: Contour maps of isotherms and iso-streamfunction for Pr=1, Da=10−2, ε=0.4, Ha=50 and
φ=0◦.

Figure 11: Contour maps of isotherms and iso-streamfunction for Ra=105, ϕ=0◦, Pr=1, Ha=50 and φ=0◦.
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Figure 12: Contour maps of isotherms and iso-streamfunction for Ra=105, ϕ=0◦, Pr=1, Da=10−2 and
ε=0.4.

Hartmann number changes considerably the flow and thermal behaviors, (ii) the dy-
namic structure is indifferent to the variation of magnetic field inclination but it ex-
presses a major dependency for high Hartman number. For Ha=100, when the mag-
netic field is applied in ”x+” direction the central eddy is extended in the vertical
direction (see Fig. 12); when the magnetic field is applied diagonally, the dynamic
structure becomes more extended diagonally; and when the magnetic field is applied
in the ”y+” direction, the dynamic central eddy becomes extended horizontally and
two small vortices appear in the core region. However, the thermal structure (iii)
it seems to be indifferent to the magnetic field inclination for this Hartman number
range. For Ha=10, the buoyancy force dominates the magnetic force and the isotherms
show a near-horizontal-stratification. With more increase of the Hartman number, the
isotherms become equally spaced yielding to a diagonal thermal stratification.

4.3 Axisymmetric plasma jet flows

This part deals with the investigation of plasma jets using an axisymmetric LB thermal
model. Plasma jets have been very successful in many applications (such as spraying,
cutting, welding, · · · ,). The excellent choice of high performance plasma gases and
spraying materials has been the subject of several experimental and numerical efforts.
An excellent choice will be the response of efficient numerical studies and the results of
experimental tests. Plasma jets are a high temperature flows (>8000K). Therefore, all



602 R. Djebali, H. Sammouda and M. El Ganaoui / Adv. Appl. Math. Mech., 5 (2010), pp. 587-608

Figure 13: Computational domain.

diffusion parameters involved in conservation equations are temperature dependent.
In the following we present a plasma jet investigation in an axisymmetric LBM (Jian’s
model [38]). In the context of our knowledge, it is the first intend to tackle this field
by using the LBM. Further reading on solution procedure, the model implementation
and assumptions may be found in [39,40]. The thermal model II will be adopted here.

A half plan is considered as a computational domain for the axisymmetric plasma
jet. The graph is mapped in Fig. 13. The plasma gas used is the argon issuing into
argon surrounding. OA (=R=4mm) is the torch radius, AB (=11*OA) is the anode
thickness considered to be isothermal solid boundary (u=0, T=Tmin), BC is a free
boundary (∂Φ/∂y=0, Φ=u or T), OD (=L=100mm) is the axisymmetric axis and CD
will be decided afterwards. The domain is a 97× 201 lattice nodes.

The inlet profiles at the edge OA are expressed as




uin = umax

{
1−

( y
R

)3}
,

Tin =
(
Tmax − Tmin

)[
1−

( y
R

)4]
+ Tmin,

(4.2)

where

umax = 520m/s, Tmax = 13500K and Tmin = 700K.

One way is used to account for the temperature dependent parameters. One obtains
the same value when adimensionalizing a quantity Φ in LB space and the Physical
(real) space as

ΦLB

LB−scale
=

ΦPh

Ph−scale
, (4.3)

which leads to
ΦLB = ΦPh

LB−scale
Ph−scale

. (4.4)

The plasma jet is laminar in its core but turbulent in its fringes due to the high field
gradients (200 K/mm and 10 m/s/mm). In LBM-LES modelling of turbulence, only
the collision relaxation time is locally readjusted, by adding the eddy viscosity vt to
the molecular one as:

τf tot = 3νtot + 0.5 = 3(ν + νt) + 0.5 = 3
[
ν + (Csmag∆)2|Sij|

]
+ 0.5, (4.5)
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where Csmag is the Smagorinsky constant, ∆ is filter width (=1) and |Sij| is the strain
rate tensor defined in Eq. (2.12). Eq. (4.5) yields to a quadratic equation in τf tot that
leads to

τf tot(x, t) =
1
2

{
τf +

[
τ2

f
+ 18

(Csmag∆)2|Qij|
ρ(x, t)

] 1
2
}

, (4.6)

where
Qij = ∑

k
ekiekj( fk − f eq

k ) and |Qij| =
√

2QijQij.

Similarly for the thermal field, the relaxation time is readjusted by using the new ther-
mal diffusivity as:

αtot =
τg tot − 0.5

2
= α + αt = α +

υt

Prt
, (4.7)

where Prt is the turbulent Prandtl number usually taken between 0.3 and 1.
First of all, a validation analysis based on free jet is done. Therefore, the boundary

CD is considered as a free boundary. The present LB results based on the centreline
axial-velocity (Fig. 14) and temperature (Fig. 15) are compared with Pfender’s numer-
ical and experimental results [41] and the results of the Jets & Poudres ones [42] for
specified jet conditions (see [39]).

One can remark that the axial temperature gradient near the inlet (interval 0-25
mm) is close to 220 K/mm then close to 200 K/mm observed experimentally (counter
136 K/mm and 152 K/mm for Jet & Poudres and Pfender results respectively) and
the velocity gradient is close to 8.8 (m/s)/mm (counter 10.48 (m/s)/mm and 9.48
(m/s)/mm for Jet & Poudres and Pfender results respectively), which agree well with
former experimental and numerical observations as noted here-above. It is also clear
that our results go well with Jet & Poudres ones. The disparity between the two results
in the potential core of the plasma jet (hot zone) is probably due to the fact that ramps
are used in Jet & Poudres code for the inlet temperature and velocity profiles instead

Figure 14: Centerline-axial velocity distribution
simulated on a LBGK D2Q9 lattice with Csmag =
0.18 and Prt = 0.3 in comparison with referenced
results.

Figure 15: Centerline-temperature distribution
simulated on a LBGK D2Q9 lattice with Csmag =
0.18 and Prt = 0.3 in comparison with referenced
results.
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Figure 16: Axial-velocity distributions for Jets &
Poudres code (below) and LBGK (above), outer-
line 20 m/s and 40 m/s for interval.

Figure 17: Temperature distributions for Jets &
Poudres code (below) and LBGK (above) with
1000K for outer-line and interval.

of ours parabolic ones. After that, in the plasma jet core, the profiles become Gaussian
and the two curves go together.

Figs. 16 and 17 present the isotherms and iso-axial velocities of our results and
those of Jets & Poudres. It is clear from LB results that the temperature distribution
is more expanded than the axial-velocity one and it shares this characteristic with the
Finite-Difference (Jet & Poudres) results. One can also say that Jets & Poudres jet is
more expanded and that our results are consistent with the most previous predicted
results [43] where the jet width does not exceed at all 10 mm for the temperature
and velocity distributions. This behaviour, for LB results, is in good agreement with
experimental plasma-jet characteristics because plasma jet is more extended, however
Jet & Poudres results are more representative for flame jet which is more expanded.

Fig. 18 shows the radial temperature distributions at different distances from the
nozzle exit. The Gaussian profile holds for all the cross sections. The maximum ax-
ial temperature decreases with increasing the axial distance and Gaussian profile be-
comes more flattened.

With more increase of the maximum inlet velocity, results in a considerable transla-
tion of the velocity fringes and a small translation of the isotherms ones. An important
issue in plasma jets modelling is to take account for the target (substrate) as a fixed
boundary condition. Consequently, the flow and thermal structures will change. The
idea is very intuitive for a good (real) prediction of dynamic and thermal history of
in-flight particles. The work-piece may have several inclinations with plasma jet axe.
The impinging angle is one of several parameters controlling the manner in which a
molten or semi-molten particle flattens and solidifies. We just consider here the case of
plasma jet impinging normally on the work-piece. The non-slip boundary condition
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Figure 18: Radial temperature distribution for different cross sections simulated on a LBGK.

and low temperature are retained in our treatment. The target stands 100 mm away
from the torch exit. Results are depicted in Figs. 19 and 20.

Distributions in Figs. 19 and 20 are in good agreement with the literature re-
sults [43]. The temperature and the axial velocity distributions are flatten locally at
the down stream near the work piece. The centreline fields’ profiles undergo ma-
jor variations. The deformation of the jet near work-piece will affect appreciably the
sprayed particles trajectories and heating history and particularly its incidence.

Through this pure argon test case, the LBM is found to be able to describe effi-
ciently the plasma jet behaviour. However, in plasma spraying it is of great importance
to choose the appropriate plasma gas for the spraying material. Then, the mixture
gases are used when looking for some jet properties that depend on the volume rates.
The LBM has been used in [40] to simulate a mixture of gases, namely the N2-Ar62.5%
vol. The LB results are compared with the Jets & Poudres and GENMIX [42] ones for
the same characteristics discussed above for pure argon plasma. A good agreement is
found with the two codes using different turbulence models.

Figure 19: Axial-velocity distribution for a jet
impinging normally on the substrate, outer-line
20 m/s and 40 m/s for interval.

Figure 20: Temperature distribution for a jet im-
pinging normally on the substrate with 1000 K for
outer-line and interval.
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5 Conclusions

The paper reviews some critical advances in the lattice Boltzmann modelling and sim-
ulations for complex thermal flows. It illustrates the developments based on selected
application examples. These examples are not only tested cases for the LBM approach
but they also form a large number of problems of major interest in industry. On the
basis of these LBM numerical studies, the following conclusions can be drawn:

1. The computed results demonstrate that LBM has a good ability to captivate flow bifurcation
thresholds. Particularly cavities exhibiting bifurcation sequences are considered and the results
are consistent with prior observations,

2. The lattice Boltzmann method exhibits an excellent flexibility to deal with complex flows and
shows a high degree of predictability compared with traditional method in CFD,

3. The simplicity and accuracy of the method are at the head of its exceptional advantages. It is
important to describe accurately the complex fluid flow and interface deformations in a realistic
configuration (3D without simplified models) for the first two cases studies. For the plasma
jet case study, a good representation of the plasma jet physics results in a good interaction
between plasma and in-flight particles (dynamic and heat transfers) and consequently a good
agreement with measured results. These fields will be the subjects of our future works.
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