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Abstract. In this article, we consider the numerical solution for Poisson’s equation in
axisymmetric geometry. When the boundary condition and source term are axisym-
metric, the problem reduces to solving Poisson’s equation in cylindrical coordinates in
the two-dimensional (r,z) region of the original three-dimensional domain S. Hence,
the original boundary value problem is reduced to a two-dimensional one. To make
use of the Mechanical quadrature method (MQM), it is necessary to calculate a partic-
ular solution, which can be subtracted off, so that MQM can be used to solve the re-
sulting Laplace problem, which possesses high accuracy order O(h3

max) and low com-
puting complexities. Moreover, the multivariate asymptotic error expansion of MQM
accompanied with O(h3

i ) for all mesh widths hi is got. Hence, once discrete equations
with coarse meshes are solved in parallel, the higher accuracy order of numerical ap-
proximations can be at least O(h5

max) by the splitting extrapolation algorithm (SEA).
Meanwhile, a posteriori asymptotic error estimate is derived, which can be used to
construct self-adaptive algorithms. The numerical examples support our theoretical
analysis.
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1 Introduction

The Poisson equation is a basic equation for many areas of science and engineering, such
as electrostatic and gravitational potential theories, astronomy, optics, fluid dynamics,
steady-state heat flow and computer graphics [1–5]. There were many numerical models
for solving the 2D and 3D Poisson equation [6–10]. Finite element methods (FEM) was
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proposed to solving the axisymmetric Poisson equation on polygonal domains [26]. In
this paper, we consider the numerical solution of the axisymmetric Poisson’s equation

{

∆u(P)= f (P), P∈V,

u(P)= g(P), P∈S,
(1.1)

where V is an axisymmetric bounded domain of space ℜ3, and formed by rotating a two-
dimensional bounded region Ω with the boundary Γ=∪d

m=1Γm ∈ℜ2, around the z-axis,
called a generatrix line of V, and S is the surface of V. The function f (P) is a smooth
source term that is axisymmetric, and the boundary condition is also axisymmetric.

When we get a particular solution up(P) of (1.1). Let v(P)= u(P)−up(P), and v(P)
satisfies the boundary value problem

{

∆v(P)=0, P∈V,

v(P)= g(P)−up(P), P∈S.
(1.2)

By the potential theory, the solutions of (1.2) can be represented as a single-layer potential

v(Q)=
∫

S
G(Q,P)ρ(P)dsP, Q∈V, (1.3)

where G(Q,P) is the foundation solution of three-dimensional Laplace’s equation. ρ(P)
is the solution of the following equation

v(Q)=
∫

S
G(Q,P)ρ(P)dsP, Q∈S. (1.4)

Let
P=(rP,0,zP) and Q=(rQ cosθ,rQ sinθ,zQ).

Then integrating G(Q,P) over θ, we get the axisymmetric fundamental solution

GA(Q,P)=
K(k)

πR
, (1.5)

where K(k) is the complete elliptic integral of the first kind,

k2 =
4rPrQ

R2
, R=[(rP+rQ)

2+(zP−zQ)
2]1/2. (1.6)

Especially, when rP =0, we have the following result

GA(Q,P)=
1

2(r2
Q+(zQ−zP)2)1/2

. (1.7)

Lemma 1.1. (1) When rP>0, GA(Q,P) has logarithmic singularity; (2) When rP=0, GA(Q,P)
has Cauchy singularity.


