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Abstract. Fourier transform is applied to remove the time-dependent variable in
the diffusion equation. Under non-harmonic initial conditions this gives rise to a
non-homogeneous Helmholtz equation, which is solved by the method of funda-
mental solutions and the method of particular solutions. The particular solution of
Helmholtz equation is available as shown in [4, 15]. The approximate solution in
frequency domain is then inverted numerically using the inverse Fourier transform
algorithm. Complex frequencies are used in order to avoid aliasing phenomena and
to allow the computation of the static response. Two numerical examples are given
to illustrate the effectiveness of the proposed approach for solving 2-D diffusion
equations.
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1 Introduction

Over the past four decades researchers have proposed a variety of numerical tech-
niques to solve heat transfer problems. The Finite Element Method (FEM) and the
Finite Difference Method (FDM) are well-established techniques that have often been
implemented to solve these types of problems. However, they require the discretiza-
tion of the full domain, which leads to problems that can be tedious and computation-
ally costly, particularly for unbounded or high dimensional irregular domains. Differ-
ent numerical techniques, such as the Boundary Element Method (BEM), have been
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developed to alleviate these computational difficulties by reducing the discretization
of the problem domain to the material interfaces. However, the BEM requires the prior
knowledge of fundamental solutions, and it leads to integrations along boundary el-
ements that may be singular or even hyper-singular. Furthermore, the discretization
of a three-dimensional surface is still not an easy task. More recently, attention has
been focused on the development of meshless methods which require neither domain
nor boundary discretization. Among these methods, the method of fundamental solu-
tions (MFS) has emerged as an effective boundary-only meshless method for solving
homogeneous equations [7,9,11]. Coupled with radial basis functions (RBFs), the MFS
can be extended to solve nonhomogeneous equations, nonlinear equations, and time-
dependent problems [5–7, 10–12].

Most of the techniques that have been implemented to solve transient heat trans-
fer problems use time marching schemes [1, 3, 14, 17, 20], or Laplace transforms [5, 18,
19, 21]. The Laplace transform technique replaces the time dependence by a trans-
form variable. However, the numerical inverse Laplace transform is ill-posed, which
means that small truncation errors are magnified in the numerical inversion process.
Despite the progress in numerical inversion techniques of the Laplace transfrom in
recent years, the difficulty remains. The purpose of this paper is to apply the Fourier
transform to remove the time dependent variable. As a result, the given heat transfer
problem is reduced to a nonhomogeneous Helmholtz equation, which can be solved
using the boundary meshless method mentioned above. The method of particular
solution is implemented to solve nonhomogeneous Helmholtz equation in the fre-
quency domain. In this process, the derivation of close form particular solution is cru-
cial and is not an easy task. A particular solution for Helmholtz-type equations was
originally proposed by Chen and Rashed [4] using thin plate splines and later gener-
alized to polyharmonic splines by Muleshkov et al. [15]. The homogeneous solution
is obtained by the standard MFS. Finally, time solutions are obtained by applying an
inverse Fourier transform algorithm. To avoid aliasing phenomena, complex frequen-
cies are introduced into the problem which also allows the computation of the static
response. The effect of the presence of these complex frequencies is removed in the
time domain by using an exponential window to rescale the response.

In Section 2 we first define the two-dimensional heat transfer problems and de-
scribe how to convert it to Helmholtz equation using Fourier transform. In Section
3, we briefly explain how to obtain the particular solution using thin plate splines.
In Section 4, the MFS for solving the homogeneous solutions is described. In Sec-
tion 5, we give a brief account of how the time solutions are obtained using inverse
Fourier transform. In Section 6, the proposed technique is verified by solving two dif-
ferent heat transfer problems in a rectangular domain for which analytical solutions
are known. We first consider constant initial conditions in the full domain and the
verification procedure is performed in the time domain, while the second problem as-
sumes a non-constant temperature distribution in the full inner domain. For this latter
case, other than time domain comparisons against explicit results, verifications of the
responses in the frequency domain are also presented.
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2 Fourier transform to remove the time variable

Let Ω be a bounded domain in R2 with boundary

S = S1 ∪ S2, S1 ∩ S2 = ∅.

The following transient heat transfer by conduction in a homogeneous and isotropic
body can be modeled by

1
K

∂T
∂t

= ∇2T(x, y, t) + g(x, y, t), (x, y) ∈ Ω, t > 0, (2.1)

with boundary conditions

T(x, y, t) = f1(x, y, t), (x, y) ∈ S1, t > 0, (2.2a)
∂T(x, y, t)

∂n
= f2(x, y, t), (x, y) ∈ S2, t > 0, (2.2b)

and initial condition
T(x, y, 0) = T0(x, y), (x, y) ∈ Ω, (2.3)

where

∇2 =
∂2

∂x2 +
∂2

∂y2 ,

t is the time, T(x, y, t) is the temperature, T0(x, y) is initial condition, K=k/ρc is the
thermal diffusivity, k is the thermal conductivity, ρ is the density, c is the specific heat,
and f1(x, y, t) and f2(x, y, t) are given boundary conditions.

To solve this problem we convert the problem from the time domain to the fre-
quency domain, by applying the Fourier transform with respect to t in (2.1). Using the
Fourier transform with respect to t, Ft[T(x, y, t)], we have

T̂(x, y, ω) = Ft
[
T(x, y, t)

]
=

∫ ∞

0
T(x, y, t)eiωtdt, (2.4)

where ω is the Fourier spectral parameter or frequency. By standard procedure of
integration by parts, we obtain

(∇2 + λ2)T̂(x, y, ω) = −T0(x, y)
K

+ ĝ(x, y, ω), (x, y) ∈ Ω, (2.5a)

T̂(x, y, ω) = T̂D(x, y, ω), (x, y) ∈ S1, (2.5b)

∂T̂(x, y, ω)

∂n
= T̂N(x, y, ω), (x, y) ∈ S2, (2.5c)

where

λ =

√
− iω

K
, ĝ(x, y, ω) = Ft[g(x, y, t)],

T̂D(x, y, ω) = Ft[ f1(x, y, t)], T̂N(x, y, ω) = Ft[ f2(x, y, t)].
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Eqs. (2.5a)-(2.5c) can be solved using the method of particular solutions (MPS), which
is a well-known technique for solving ordinary and partial differential equations. Let
us define

T̂(x, y, ω) = T̂p(x, y, ω) + T̂h(x, y, ω), (2.6)

where T̂p(x, y, ω) is a particular solution that satisfies the equation

(∇2 + λ2)T̂p(x, y, ω) = −T0(x, y)
K

+ ĝ(x, y, ω), (2.7)

but does not necessarily satisfy the boundary conditions. Therefore, T̂h(x, y, ω) satis-
fies the homogeneous equation,

(∇2 + λ2)T̂h(x, y, ω) = 0, (x, y) ∈ Ω, (2.8a)

T̂h(x, y, ω) = T̂D(x, y, ω)− T̂p(x, y, ω), (x, y) ∈ S1, (2.8b)

∂T̂h(x, y, ω)

∂n
= T̂N(x, y, ω)−

∂T̂p(x, y, ω)

∂n
, (x, y) ∈ S2. (2.8c)

Thus, once the particular solution is known, the homogeneous equation (2.8a)-(2.8c)
can be solved using various types of boundary methods such as the boundary inte-
gral equation method (BIE), the boundary element method (BEM) [20], or the method
of fundamental solutions (MFS) [7, 9, 11]. To obtain a mesh free method, the MFS is
employed for solving (2.8a)-(2.8c). We would like to note that the evaluation of par-
ticular solution is critical to the accuracy of the overall solution. The approximation
error introduced in (2.8b)-(2.8c) could be magnified during the computational process
for solving homogeneous solution.

Once T̂(x, y, ω) in frequency domain has been determined, the final solution
T(x, y, t) in the time domain can be obtained using inverse Fourier transform which is
defined as follows

T(x, y, t) = F−1
t

[
T̂(x, y, ω)

]
=

1
2π

∫ ∞

−∞
T̂(x, y, ω)e−iωtdω.

The solution of this integral is obtained after discretization. The resulting inverse dis-
crete Fourier transformation corresponds to the addition of sources at time intervals
of T=2π/∆ω (where ∆ω is the frequency increment).

The contamination of the response by the periodic virtual sources (i.e., aliasing
phenomena) is avoided by setting frequency increments small enough to guarantee
that the dynamic contribution of the response arrives within the time interval T. This
is further helped by introducing complex frequencies with a small imaginary part of
the form ωc=ω − iη (with η=0.7∆ω), which shifts the frequency axis slightly down-
wards in the complex plane. When the time responses are finally evaluated, the effect
of using complex frequencies must be taken into account by rescaling the responses
with an exponential factor eηt.
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In essence, the solution involves: (1) finding the response within the frequency
domain defined by the forward Fourier transform of the excitation source, with a fre-
quency increment that defines the time window, for complex frequencies in the range
from 0.0Hz up to frequencies where the response is negligible; in heat diffusion phe-
nomena the contribution to the response decreases rapidly as the frequency increases;
(2) performing a standard inverse discrete Fourier transformation into the time do-
main; and (3) removing the effect of the complex frequencies by means of an exponen-
tial factor (or window). This computational advantage is achieved at the expense of
having to evaluate accurately the responses at each frequency step, since interpolation
schemes cannot be used in this method.

3 The particular solution using thin plate splines

Before obtaining the homogeneous solution in (2.8a)-(2.8c), we need to obtain a par-
ticular solution in (2.7). The derivation of particular solution for Helmholtz equation
plays a critical role in the process of boundary-only meshless methods. Traditionally,
due to the difficulty of obtaining particular solutions, the Laplace operator has been
largely used as the main differential operator while other terms of the governed differ-
ential operator were moved to the right hand side of the equation and treated as part
of the forcing term [16]. For instance, the Helmholtz equation in (2.7) is reformulated
as

∇2T̂p(x, y, ω) = −λ2T̂p(x, y, ω)− T0(x, y)
K

+ ĝ(x, y, ω). (3.1)

The dual reciprocity boundary elememnt method (DRBEM) [16] is suitable for such
a purpose. When using the Laplace operator in (3.1) instead of the Helmholtz op-
erator in (2.7) as a whole for the evaluation of particular solutions, some informa-
tion in the governing equation may be lost and the forcing terms −λ2T̂p(x, y, ω) −
T0(x, y)/K + ĝ(x, y, ω) in (3.1) become more difficult to approximate by radial basis
functions. It is desirable to approximate the particular solution directly from (2.7) us-
ing the Helmholtz operator. Due to the fact that we can find the closed-form approxi-
mate particular solution for Helmholtz-type equations [4,15], significant improvement
for solving various types of differential equations has been reported [5, 7, 11, 12].

We give a brief review on how to obtain a closed-form particular solution for
Helmholtz equation (2.7). First, the nonhomogeneous term −T0(x, y)/K + ĝ(x, y, ω)
in (2.7) is approximated by a linear combination of radial basis functions, in particular
thin plate splines; i.e.,

−T0(x, y)
K

+ ĝ(x, y, ω) ≃ F(x, y) =
N

∑
i=1

αir2
i log ri + a + bx + cy, (3.2)

with the further constraints
N

∑
i=1

αi =
N

∑
i=1

αix =
N

∑
i=1

αiy = 0, (3.3)
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where
ri =

√
(x − xi)2 + (y − yi)2,

and {(xi, yi)}N
i=1 are the interpolation points scattered in the domain. The polynomial

terms of (3.2) and constraints in (3.3) are added to ensure that
−

T0(xj, yj)

K
+ ĝ(xj, yj, ω) = F(xj, yj), 1 ≤ j ≤ N,

N

∑
i=1

αi =
N

∑
i=1

αixj =
N

∑
i=1

αiyj = 0, 1 ≤ j ≤ N,
(3.4)

is uniquely solvable [8]. Radial basis functions are very effective tool in high dimen-
sional surface interpolation. By the collocation method, a system of N + 3 linear equa-
tions can be formulated and solved. Once the αi, a, b and c are obtained, we have

(∇2+λ2)T̂p(x, y, ω) =
N

∑
i=1

αir2
i log ri + a + bx + cy, (3.5)

where T̂p(x, y, ω) is an ”approximate” particular solution. The closed form T̂p(x, y, ω)
is available as follows [4, 15]

T̂p(x, y, ω) =
N

∑
i=1

αiΦ(r) +
a

λ2 +
bx
λ2 +

cy
λ2 , (3.6)

where

Φ(r) =


2

λ4

[
πY0(λr)− 2 log r

]
+

r2 log r
λ2 − 4

λ4 , r > 0,

− 2
λ4

[
γ + log

(λ

2

)]
− 4

λ4 , r = 0,
(3.7)

where γ≃0.5772156649015328 is the Euler’s constant and Y0 is the Bessel function of
the second kind with order zero.

4 The MFS for Helmholtz equation

Using the MFS we approximate the homogeneous solution by placing M source points
{(tj, sj)}M

j=1 on a fictitious boundary outside the domain to avoid singularities of the
fundamental solutions. For details, we refer reader to some recent review papers in
the MFS [7,9,11]. The approximate homogeneous solution of (2.8a)-(2.8c), T̂h to T̂h can
be represented as a linear combination of fundamental solutions

T̂h(x, y, ω) =
M

∑
j=1

ajG(x, y, tj, sj, ω), (4.1)
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where

G(x, y, tj, sj, ω) =
−i
4k

H0

(√−iω
K

r
)

, (4.2)

in which

r =
√
(x − tj)2 + (y − sj)2,

and H0 are Hankel functions of the second kind with order zero. Since (4.1) satisfies
the governing equation, we need only to fit the boundary conditions in (2.8b) and
(2.8c). As we shall see, the solution procedure is straightforward.

Once the source points have been chosen, the coefficients {aj}M
j=1 can be obtained

by satisfying the boundary conditions along the physical boundary S. In the colloca-
tion method, we choose the number of source points on the fictitious boundary and
the number of collocation points on the boundary S to be equal. Let {(xi, yi)}M1

i=1 be
the collocation points on S1 and {(xi, yi)}M

i=M1+1 the points on S2. In general, the col-
location points {(xj, yj)}M

j=1 are uniformly distributed on the physical boundary. By
substituting (4.1) into (2.8b) and (2.8c), we have

T̂D(xi, yi, ω)− T̂p(xi, yi, ω) =
M

∑
j=1

ajG(xi, yi, tj, sj, ω), 1 ≤ i ≤ M1, (4.3a)

T̂N(xi, yi, ω)−
∂T̂p(xi, yi, ω)

∂n
=

M

∑
j=1

aj
∂G(xi, yi, tj, sj, ω)

∂n
, M1 + 1 ≤ i ≤ M. (4.3b)

The final system of M Eqs. (4.3a)-(4.3b) can be solved by Gaussian elimination or other
linear solvers.

Once the {aj}M
j=1 are found, T̂h can be evaluated from (4.1) at any point in the

domain. Thus, an approximation solution T̂ (x, y, ω) to T̂(x, y, ω) in the frequency
domain can be obtained as follows

T̂ (x, y, ω) = T̂h(x, y, ω) + T̂p(x, y, ω). (4.4)

5 Responses in the time domain

The heat responses in the time domain are computed by applying inverse Fourier
transforms in the frequency domain. Aliasing phenomena are prevented by the use of
complex frequencies of the form ωc=ω − iη (with η=0.7∆ω, and ∆ω being the fre-
quency step). The constant η cannot be made arbitrarily large, since this leads to
serious failure of numerical precision (see Kausel and Roësset [13]). The required
static response can be computed when the frequency is zero, since the use of com-
plex frequencies leads to arguments of the Hankel function other than zero (ωc=−iη
for 0.0Hz).
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6 Verification of the solution

To verify the accuracy of the formulation described above, we consider the diffusion
equation in (2.1) without a source term, i.e.,

g(x, y, t) = 0,

in a finite rectangular domain

Ω =
{
(x, y) : −a ≤ x ≤ a, −b ≤ y ≤ b

}
,

in which nonzero initial temperatures are prescribed inside the domain, maintaining
the boundaries at zero temperature. Here, we choose a=b=0.2m.

The thermal properties of the homogeneous medium are k=63.9 W/mC, ρ=7832.0
kg/m3 and c=434.0 J/kgC, which defines a thermal diffusivity of K=1.88 ×
10−5m2s−1.

Two initial temperature distributions were considered, for which exact solutions
are known. We first consider a unit initial temperature distribution T0(x, y)=1.0◦C for
(x, y) ∈ Ω\∂Ω. Note that there is a jump in the temperature distribution in the initial
stage. The analytical temperature distribution is given by Carslaw and Jaeger [2]:

T(x, y, t) =
16
π2

∞

∑
n=0

∞

∑
m=0

Ln,m cos
(2n + 1)πx

2a
cos

(2m + 1)πy
2b

exp(−Dn,mt), (6.1)

where

Ln,m =
(−1)n+m

(2n + 1)(2m + 1)
and Dn,m =

kπ2

4

[ (2n + 1)2

a2 +
(2m + 1)2

b2

]
.

In the second example, we consider the initial temperature distribution as follows

T0(x, y) = cos
( π

2a
x
)

cos
( π

2b
y
)

, (x, y) ∈ Ω. (6.2)

The exact frequency responses are given by

T(x, y, ω) = T0(x, y)
{

K
[(π

2

)2( 1
a2 +

1
b2

)]
+ iω

}−1

, (6.3)

and the time domain solution is

T(x, y, t) = T0(x, y) exp
[
− K

(π

2

)2( 1
a2 +

1
b2

)
t
]
. (6.4)

Using the proposed formulation, the solutions in time domain were obtained after the
computation of the responses in the frequency domain in the range [0, 2048× 10−3]Hz
with an increment of 25 × 10−5Hz, which defines a time window of T=4000s.
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6.1 The case T0(x, y) =1.0◦C

The heat responses were calculated on a line of receivers crossing the rectangular do-
main at y=0.0m and at a receiver placed at (0.15, 0.15)m. Fig. 1 illustrates the positions
of these receivers.

As T0(x, y) is constant, the particular solution T̂p(x, y, ω) was obtained using only
one internal point, as shown in Fig. 1. This is due to the fact that constant function
can be fitted precisely with one point. As a result, T0(x, y) can be approximated per-
fectly using the augmented polynomial terms of thin plate splines in (3.2) which can
reproduce the constant and linear functions. In this case, no approximation error is
expected; i.e.,

T̂p(x, y, ω) = T(x, y, ω).

The homogeneous solution T̂h(x, y, ω) is obtained using the MFS with 400 source
points uniformly distributed on a square, at a distance of 0.05m from the boundary,
as shown in the layout in Fig. 1. The same number of collocation points that are uni-
formly distributed on the boundary is used.

Fig. 2 shows the temperature values obtained at different times (t = 0, 125, 250, 500,
750, 1000, 1500s), for the line of receivers equally spaced at 0.01m, placed at y=0.0m
(see Fig. 1). The solid lines represent the solution given by the Eq. (6.1) while the
circles identify the response provided by the proposed formulation. These results are
very similar and in good agreement. As time evolves the temperatures drop very fast
in the domain in order to establish equilibrium with the boundary conditions (null
temperatures).

Fig. 3 presents the temperature curves on five different receivers. It displays the
exact and numerical solutions in the time domain. The numerical responses are rep-
resented by different symbols. Each symbol identifies a specific receiver (coordinates

Figure 1: Geometry of the problem. Source, internal points and positions of receivers for the case
T0(x, y) =1.0◦C.
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Figure 2: Exact and numerical solutions for T0(x, y) =1.0◦C. Heat responses for a horizontal line of receivers
(placed at y = 0m) at t = 0, 125, 500,750, 1000, 1250 and 1500s.
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Figure 3: Analytical versus numerical transient solutions on five receivers for T0(x, y) =1.0◦C.

are given in the legend).
Notice that, at t=0.0s, the numerical solutions do not coincide with the exact solu-

tions due to the fact that the T(x, y, t) obtained from a Fourier transform is discontin-
uous at this instant.

6.2 The case T0(x, y) = cos( π
2a x) cos( π

2b y)

In this case, the distribution of the initial temperature is more complicated and thus
more internal points are required to interpolate the initial condition using thin plate
splines interpolation scheme. We choose 120 internal points to perfom such an in-
terpolation (see Fig. 4). It has been observed that the convergence of the interpolation
function used in the definition of the particular solution depends on the distribution of
the intepolation points, in particular at higher frequencies. As the frequency increases
the distance between the internal points and the boundary needs to be increased, as
illustrated in Fig. 4 for two different frequencies ω=0.0Hz (left) and 0.0125Hz (right).

The homogeneous solution was calculated using 400 source points evenly dis-
tributed at a distance of 0.05m around the boundary. The same number of collocation
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Figure 4: Geometry of the problem. Source and internal points at ω = 0.0Hz (left) and at ω = 1.25 ×
10−2Hz (right) for the case T0(x, y) = cos( π

2a x) cos( π
2b y).

points are also evenly distributed on the physical boundary.
The numerical results in the frequency domain, which is obtained using the

proposed formulation, were compared with the explicit solutions given in (6.3).
We select five receivers at the position R1=(0, 0)m, R2=(0.05, 0)m, R3=(0.1, 0)m,
R4=(0.15, 0)m and R5=(0.15, 0.15)m. Analytical and numerical solutions in the fre-
quency domain at these five receivers are shown in Figs. 5-7 in the frequency range
[0, 5.0× 10−3]Hz. This verification shows good agreement between the numerical val-
ues (marks) and the explicit responses (solid lines).

The application of an inverse Fourier transform in the frequency domain allows the
solution in the time domain to be obtained. Fig. 8 presents the results of temperature
curves at these five receivers. The calculations were performed over the frequency
range [0, 2048× 10−3]Hz, prescribing a frequency increment of 25× 10−5Hz. Fig. 8 also
shows the temperatures calculated using Eq. (6.4), which are represented by marks.
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Figure 5: Analytical and numerical solutions in the frequency domain at R1 = (0, 0)m (left) and R2 =
(0.05, 0)m (right).
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Figure 6: Analytical and numerical solutions in the frequency domain at R3 = (0.1, 0)m (left) and R4 =
(0.15, 0)m (right).
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Figure 7: Analytical and numerical time solutions
in the frequency domain at R5 = (0.15, 0.15)m.
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Figure 8: Analytical and numerical transient so-
lutions at five receivers for the case T0(x, y) =
cos( π

2a x) cos( π
2b y).

The numerical and analytical results in time domain are also in good agreement.
Once again, at t=0.0s, the numerical solutions are positioned at half the ampli-

tude of the exact time values due to the fact that the Fourier transform of T(x, y, t) is
discontinuous at this instant.

7 Conclusions

In this paper we have demonstrated how the solution of diffusion equations with
nonzero initial conditions can be computed using Fourier transform which temporar-
ily removes the time-dependent variable. This leads to a nonhomogeneous Helmholtz
equation. The MFS coupled with the method of particular solution were employed to
solve the nonhomogeneous Helmholtz equation. A particular solution for Helmholtz
equation using thin plate splines is available, see [4, 15]. The main distinction of this
paper with previous works [5, 21] is the employment of Fourier transform instead of
Laplace transform to remove the time-dependent variable. As a result, instead of solv-
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ing modified Helmholtz equation, we have to deal with Helmholtz equation which
involves a complex fundamental solution.

We would like to remark that a similar solution process can be extended to solv-
ing a large class of time-dependent problems such as wave equations, convection-
diffusion equations, and various types of nonlinear differential equations.
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[13] E. KAUSEL AND J. M. ROËSSET, Frequency domain analysis of undamped systems, J. Eng.
Mech., 118(4) (1992), pp. 721–734.



A. Tadeu, C. S. Chen, J. António and N. Simões / Adv. Appl. Math. Mech., 3 (2011), pp. 572-585 585

[14] D. LESNIC, L. ELLIOT AND D. B. INGHAM, Treatment of singularities in time-dependent
problems using the boundary element method, Eng. Anal. Bound. Elem., 16 (1995), pp. 65–70.

[15] A. S. MULESHKOV, M. A. GOLBERG AND C. S. CHEN, Particular solutions of Helmholtz-
type operators using higher order polyharmonic splines, Comput. Mech., 23 (1999), pp. 411–
419.

[16] P. W. PARTRIDGE, C. A. BREBBIA AND L. C. WROBEL, The Dual Reciprocity Boundary
Element Method, Computational Mechanics Publications, Southampton, Boston, 1992.

[17] R. P. SHAW, Integral equation approach to diffusion, Int. J. Heat. Mass. Trans., 17(6) (1974),
pp. 693–699.

[18] A. SUTRADHAR, G. H. PAULINO AND L. J. GRAY, Transient heat conduction in homogeneous
and non-homogeneous materials by the Laplace transform Galerkin boundary element method,
Eng. Anal. Bound. Elem., 26(2) (2002), pp. 119–132.

[19] A. SUTRADHAR AND G. H. PAULINO, The simple boundary element method for transient heat
conduction in functionally graded materials, Comput. Methods. Appl. Mech. Eng., 193(42-
44) (2004), pp. 4511–4539.

[20] L. C. WROBEL AND C. A. BREBBIA, A formulation of the boundary element method for ax-
isymmetric transient heat conduction, Int. J. Heat. Mass. Trans., 24 (1981), pp. 843–850.

[21] S. ZHU, P. SATRAVAHA AND X. LU, Solving linear diffusion equations with the dual reci-
procity method in Laplace space, Eng. Anal. Bound. Elem., 13 (1994), pp. 1–10.


