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Abstract. An inverse problem of identifying inhomogeneity or crack in the workpiece
made of nonlinear magnetic material is investigated. To recover the shape from the
local measurements, a piecewise constant level set algorithm is proposed. By means
of the Lagrangian multiplier method, we derive the first variation w.r.t the piecewise
constant level set function and obtain the descent direction by the adjoint variable
method. Numerical results show the robustness and effectiveness of our algorithm
applied to reconstruct some complex shapes.
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1 Introduction

In many applications, one needs to find out the flaws in materials nondestructively. In-
spired by this, the non-destructive evaluation technique has attracted the eyes of many
researchers during the last decades. As one kind of non-destructive evaluation technique,
eddy current testing technique [1] has been used for flaw detection. In this paper, we in-
tend to design an algorithm to identify the crack or inhomogeneities in the nonlinear
magnetic material like steel from the local measurements of the magnetic induction.

This inverse problem is a problem of shape reconstruction. Similar to general shape
recovery problem, there is no information about the interface of the optimal shape as a
prior, so we need to have a good mechanism to express the shape and track the evolution
of the shape. The level set method was first originally proposed by Osher and Sethian
in [2]. For this method, the interface between two adjacent domains is represented by
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the zero level set of a Lipschitz continuous function. Through the change of this func-
tion, this method can easily handle many types of shape and topological changes, such
as merging, splitting and developing sharp corners. Due to these merits, it has been used
in various areas, such as epitaxial growth [3], inverse problem, optimal design [4], im-
age segmentation [5], structure topology optimization [6] and EIT problem [7]. For the
seek of the numerical stability, the level set function is usually chosen as the signed dis-
tance function, but at most cases, the level set function after each iteration is not be a
signed distance function and is usually re-initialized by solving an ordinary differential
equation [8]. In [9], Cimrák et al. used the level set method to represent the shape of
the inhomogeneity and evolve the shape by minimizing a functional during the iterative
process. In [10, 11], Cimrák also used the level set method for the representation of the
interface to solve some inverse problems in thermal imaging and the nonlinear ferromag-
netic material. As to the initial value of the level set function, it was reported in [12–14]
that the level set method based only on the shape sensitivity may get stuck at shapes
with fewer holes than the optimal geometry in some applications such as structure de-
signs. When one wants to use the level set method to solve the practical problem, he
can reduce the effects of the initial value of the level set function on the final results in the
next two ways. The first way is to choose the shape with enough holes as the initial value.
The second one is to introduce the topological derivative into the level set method to let
the shape create holes in the iterations [14–18]. To find a good initial value of the level set
function, the researchers in [9] proposed the gradient-for-initial approach which is based
on the idea that the domain which can drop the value of the cost functional should be the
air gap. In that approach, the parameter in smeared-out Heaviside function should be set
large enough. The large value of this parameter, however, can cause the oscillation phe-
nomenon. So the parameter in the acquisition of the initial choice of the level set function
and the evolving process of level set function should be set separately

Recently, piecewise constant level set method, which is a variant of level set method,
was proposed by Lie, Lysaker and Tai in [20–22]. To distinguish these two methods, we
call the former one traditional level set method. Unlike the traditional level set method,
the interface between two adjacent sub-domains is represented by the discontinuity of a
piecewise constant level set function. Compared with traditional level set method, piece-
wise constant level set method has at least two advantages. One merit is that it can create
many small holes automatically without the topological derivatives during the iterative
process. Furthermore, it is verified by many numerical examples that the final result is
independent of the initial value of the level set function in many numerical tests. And
the other one is that the piecewise constant level set method need not to re-initialize
the level set function periodically during the evolution process, thus, reduces the com-
putational cost a lot. Since it was proposed, it has been applied in various fields such
as image segmentation, elliptic inverse coefficient identification, optimal shape design,
electrical impedance tomography and positron emission tomography [19]. Lie, Lysaker
and Tai took this method to solve the image segmentation in [20–23] and the elliptic in-
verse problem and interface motion problem in [24, 25]. Wei and Wang used piecewise
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constant level set method to solve structural topology optimization in [26]. Zhu, Liu
and Wu applied the piecewise constant level set method to solve a class of two-phase
shape optimization problems in [27]. Zhang and Cheng proposed a boundary piecewise
constant level set method to deal with the boundary control of eigenvalue optimization
problems in [28]. In this paper, we intend to use the piecewise constant level set method
to represent the shape and recover the exact shape of the crack or the inhomogeneities of
nonlinear magnetic material.

Based on the piecewise constant level set method, we propose a piecewise constan-
t level set algorithm to recover the shape of the nonlinear magnetic material problem.
We introduce the piecewise constant level set function and convert the constrained op-
timization problem into an unconstrained one by the Lagrangian multiplier method. In
the numerical tests, our algorithm relies little on the initial guess of the level set function.
Moreover, our algorithm can reconstruct shape accurately even when the noise level is
high.

The rest of this paper is organized as follows. In Section 2, we introduce the piecewise
constant level method in brief. In Section 3, we introduce the direct problem and the
inverse problem. In Section 4, we describe the deduction of the first variation w.r.t level
set function for the objective functional in the unconstrained optimization problem in
detail. In Section 5, we present numerical results to show the effectiveness and robustness
of piecewise constant level set algorithm.

2 Piecewise constant level set method

We first introduce the piecewise level set method in brief. Suppose that the domain Ω is
the union of some sub-domains Ωi, i=1,2,··· ,m, i.e.,

Ω̄=
m
⋃

i=1

Ωi∪
m
⋃

i=1

∂Ωi,

where ∂Ωi is the boundary of sub-domain Ωi.
If there exists a function φ defined as

φ(x)= i, x∈Ωi, where i=1,2,··· ,m, (2.1)

then the interface between two adjoint sub-domains can be identified by the discontinuity
of the function φ and the characteristic function of the i-th sub-domain Ωi can be written
as

χi=
m

∏
j=1,j 6=i

(φ− j)

(i− j)
. (2.2)

For the traditional level set method proposed in [2], if φ is a level set function, then
the expression of χi contains the Heaviside function H(x), which is defined as below:

H(x)=

{

1, x≥0,
0, x<0.

(2.3)
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Since H(x) is not differentiable at 0, it is often replaced by smooth functions which con-
tain some parameters in [25]. Sometimes the parameters in the replaced smooth functions
can cause difficulties in the result analysis, such as the convergence of the level set φ in [9].
For the piecewise constant level set method, we do not encounter this kind of problems.

If φ is defined as in (2.1), then it holds that

K(φ)=0 in Ω, (2.4)

where the function K is defined as

K(φ)=(φ−1)(φ−2)···(φ−m)=
m

∏
i=1

(φ−i). (2.5)

It should be pointed out that if Eq. (2.4) holds, then every point x∈Ω is in one and only
one sub-domain. In other words, there is no vacuum and overlap between two different
sub-domains.

For any piecewise smooth function f (x) that coincides with fi(x) in Ωi, it can be
written as

f (x)=
m

∑
i=1

fi(x)χi(φ(x)), (2.6)

where φ(x) is defined in (2.1).

3 Direct problem and inverse problem

We first introduce the quasi-linear partial differential equation which will be used in this
paper.

This equation is defined as

{

∇·(v(x,|∇A|2)∇A)= J in Ω,
A=0 on ∂Ω,

(3.1)

where Ω⊂R
2 is a bounded domain with C1 boundary, the symbol J denotes a suitable

function defined in Ω and the function v : Ω×R→R is defined as

v(x,s)=

{

v1(s), x∈D,
v2(s), x∈Ω\D,

(3.2)

where D⊂Ω, v1, v2 are two functions determined by the specific practical applications.
Eq. (3.1) can model many industrial and physical applications. When both v1 and v2

are constant functions, it is the elliptic inverse problem in [24]. When v1 and v2 are both
linear ones, it characterizes the electric impendence tomograph problem [29]. Since the
material in this paper is nonlinear magnetic, we use the nonlinear model, which is more
robust and able to reconstruct the shape of the crack or inhomogeneities even when the
linear model is not [9]. In this model, v2 is a nonlinear function.
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Since we need to solve the direct problem in each iteration, we next present the direct
problem in detail. The direct problem is to obtain the quantity A when the variable v,
the domain D and the function J are given. In this paper, our goal is to design a numeri-
cal scheme to identify the crack or the inhomogeneity in the workpiece which is made of
nonlinear magnetic material. In this case, the function J denotes the induced current den-
sity, the quantity A denotes the only nonzero component of the vector potential A which
is perpendicular to the xy-plane. According to the physical knowledge, the magnetic
induction B is

B=
(∂A

∂y
,−

∂A

∂x
,0
)T

. (3.3)

Since A is defined on a subregion of R
2, we obtain

|B|= |∇A|.

After introducing two symbols µ1 and µ2 to denote the magnetic permeability of the air
and the nonlinear magnetic material, we define the functions v1 and v2 as the reciprocal
of the two functions µ1 and µ2, respectively, i.e., v1 = 1/µ1 and v2 = 1/µ2. As to µ2,
due to the nonlinear magnetic property of the material, it depends on |∇A|. Usually, the
function µ2(s) is monotonically increasing on the interval [0,smax] and is monotonically
decreasing on the interval [smax,+∞], where smax is a number determined by the property
of the magnetic nonlinear material.

With the piecewise constant level set method, the function v(x) can be formulated as

v(x)=v1(2−φ)+v2(φ−1). (3.4)

By (3.4), the weak form of the Eq. (3.1) can be written as

∫

Ω
[v1(|∇A|2)(2−φ)+v2(|∇A|2)(φ−1)]∇A·∇ϕdx=

∫

Ω
Jϕdx, ∀ϕ∈W1,2

0 (Ω). (3.5)

The existence and uniqueness of the solution to the Eq. (3.5), have been proved in [30,
31]. To ensure the existence and uniqueness of the solution to Eq. (3.5), we adopted the
assumptions in [9] which are listed as below:

A1 The function vi is non-decreasing;

A2 lims→0vi(s)=vmin >0;

A3 lims→∞ vi(s)=vmax >0 and define v(s)=vmax for s=∞;

A4 vi is differentiable with well-defined derivatives v′i satisfying

v′min ≤v′i ≤v′max,

where i=1,2.
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In order to let the function µ2 satisfy the non-decreasing property in the assumption
A1, we set the function J large enough. As to the solution to Eq. (3.1), we consider it as
the solution to the following nonlinear operator equation

G(A)= J,

where G is an operator defined in the space W1,2
0 (Ω) and takes values in W1,2

0 (Ω). To
solve this nonlinear operator equation, we first choose an initial guess A0 of A, and use
the Newton-Raphson algorithm to update A, i.e.,

Ai+1=Ai−[DG(Ai)]
−1(G(Ai)− J),

where i=1,2,··· .
Now we introduce the inverse problem. When v1 and v2 are given, the inverse prob-

lem is to reconstruct the actual shape of D from the measurement data M of magnetic
induction in a given subset Γ⊂Ω. Under the framework of the piecewise constant lev-
el set method, the problem is to find a piecewise constant function φ to approximate the
exact level set function which can represent the actual composition of the workpiece (dur-
ing the iterative process, the level set function φ may be not a piecewise constant one). In
order to distinguish these two functions, we denote by φexact the exact level set function
here and afterward. For our work, Γ=Ω.

When the level set function φ and the data M on Γ are given, we use the following
functional

F1(φ)=
1

2

∫

Γ
|∇A(φ)−M|2dx (3.6)

to measure the misfit between φ and φexact, where M=(−B2,B1)
T with B1 and B2 being

the x-axis and y-axis component of B. Obviously, the smaller the value of F1 is, the more
close the level set φ is to φexact. Thus the inverse problem is converted into the following
optimization problem

min
φ

F1(φ) subject to K(φ)=0, (3.7)

where K(φ) is defined in (2.5).

4 Algorithm

In this section, we will introduce our piecewise constant level set algorithm for this in-
verse problem.

We first give the deduction of the gradient of F1. Introducing two symbols DF1 and
δhg to denote the gradient of F1 and the Gâteaux of g with respect to φ in the direction h,
we give the deduction of δhF1. According to the definition, it can be expressed as

δhF1= lim
ǫ→0

F1(φ+ǫh)−F1(φ)

ǫ
=

∫

Γ
∇δh A·(∇A−M)dx, (4.1)
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where ∇δh A will be given below.
Differentiating both sides of Eq. (3.5) with respect to φ, we obtain the following sen-

sitivity equation

∫

Ω
δh[v(x,|∇A|2)]∇A·∇ϕdx+

∫

Ω
v(x,|∇A|2)∇δh A·∇ϕdx=0. (4.2)

Since A is completely determined by the level set function φ when J, v1 and v2 are given,
from (3.4), the integral part of the first term in (4.2) can be sorted as

δh[v(x,|∇A|2)]=(v2(|∇A|2)−v1(|∇A|2))h

+(2−φ)δh[v1(|∇A|2)]+(φ−1)δh[v2(|∇A|2)]

=(v2(|∇A|2)−v1(|∇A|2))h

+2((2−φ)v′1(|∇A|2)+(φ−1)v′2(|∇A|2))∇A·∇δh A. (4.3)

Substitute (4.3) into (4.2) and simplify the equation, the sensitivity equation (4.2) can be
written as

∫

Ω
(v2(|∇A|2)−v1(|∇A|2))h∇A·∇ϕdx

=−
∫

Ω
2((2−φ)v′1(|∇A|2)+(φ−1)v′2(|∇A|2))∇A·∇δh A∇A·∇ϕdx

−
∫

Ω
v(x,|∇A|2)∇δh A·∇ϕdx. (4.4)

As to the computation of ∇δh A, it could be deduced by the adjoint variable method
which was used in many problems [32–37]. Specifically, we take the following steps to
avoid the direct computation of ∇δh A.

Firstly, we determine the solution to the following equation which we will denote p
afterward

∫

Ω
2((2−φ)v′1(|∇A|2)+(φ−1)v′2(|∇A|2))∇p·∇A∇A·∇ψdx

+
∫

Ω
v(x,|∇A|2)∇p·∇ψdx=

∫

Γ
∇δh A·(∇A−M)dx. (4.5)

Secondly, by letting the test function for the variable ψ and φ in (4.4) and (4.5) being p
and δh A, respectively, we can get the following equation

−
∫

Ω
(v2(|∇A|2)−v1(|∇A|2))h∇A·∇ψdx=

∫

Γ
∇δh A·(∇A−M)dx. (4.6)

By comparing Eq. (4.1) with Eq. (4.6), we obtain

δhF1=−
∫

Ω
(v2(|∇A|2)−v1(|∇A|2))h∇A·∇pdx. (4.7)
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After deriving the formula of δhF1, we simply obtain DF1 by simply projecting (v2(|∇A|2)−

v1(|∇A|2))∇A·∇p onto the finite element space W1,2
0 (Ω) by solving the following equa-

tion

−
∫

Ω
(v2(|∇A|2)−v1(|∇A|2))∇A·∇pϕdx=

∫

Ω
DF1ϕdx. (4.8)

In the numerical tests, it often comes out that the level set function φ can not approximate
φexact correctly at the boundary of Ω. To approximate the function φexact more accurately,
we introduce a Tikhonov stabilizing term

∫

Ω
|∇φ|2dx, then the constrained optimization

problem (3.7) becomes
min

φ
F subject to K(φ)=0, (4.9)

where F=F1+α
∫

Ω
|∇φ|2dx and the coefficient α is a positive real number.

Similar to the deduction of DF1, the gradient DF of F is calculated by solving the
following equation

∫

Ω
(v2(|∇A|2)−v1(|∇A|2))∇A·∇pϕdx+2α

∫

Ω
∇φ·∇pϕdx=

∫

Ω
DFϕdx. (4.10)

In this paper, we use the Lagrangian multiplier method to convert the problem (4.9) into
the following unconstrained optimization problem

L(φ)=F(φ)+
∫

Ω
l1(x)K(φ)dx, (4.11)

where l1 is the Lagrangian multiplier, a l2-integrable function defined on the domain Ω.
According to the general theory of optimization, the level set function φ that we seek

is the saddle point of the functional L(φ), that is,

∂L

∂φ
=

∂F

∂φ
+l1(2φ−3)=0,

∂L

∂l1
=K(φ)=0. (4.12)

By multiplying two sides of Eqs. (2.4) by (2φ−3) and making use of the constraint (φ−
1)(φ−2)=0, we get the formula to update the multiplier

l1=−(2φ−3)
∂F

∂φ
. (4.13)

Substituting (4.13) into (4.12), we have

∂L

∂φ
=−4(φ−1)(φ−2)

∂F

∂φ
. (4.14)

We introduce the artificial time variable t and update the level set function φ accord-
ing to the following scheme







∂φ

∂t
=−

∂L

∂φ
in Ω×R+,

φ(x,t)=φ0(x) in Ω,

(4.15)
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until the level set function φ satisfy ∂φ/∂t=0.

To discretize (4.15), we use the forward Euler scheme

φk+1=φk−∆tk
∂L

∂φ

∣

∣

∣

φ=φk

, k=0,1,2,··· . (4.16)

During the iteration process, for the seek of numerical stability, we let the time step ∆tk

satisfy the Courant-Friedrichs-Lewy condition

∆tk =σh
/

max
x∈Ω

∣

∣

∣

∂L

∂φ
(φk)

∣

∣

∣
, (4.17)

where σ∈ (0,1) and h is mesh size.

We now give the choice of φ0 and the projection used in the iteration process. We let φ0

be a function whose value at every point is neither 1 nor 2, or let φ0 be a constant function
and the constant is a number between 1 and 2 (1 and 2 are excluded). Considering the
fact that the value of the final φ at every point x∈D should be either 1 or 2, we project φ
in the following way:

P{1,2}φ=







1, φ<1,
2, φ>2,
φ(x), otherwise,

(4.18)

after updating φ by (4.16) at each step.

From Eq. (4.14), the gradient ∂L/∂φ is equal to 0 when the value of φ is either 1 or 2.
This sometimes causes the iterative process unable to start or proceed, thus we exclude 1
and 2 from being the candidates of the constant for φ0. In order to avoid this phenomenon
in the iteration process, we count the number N of the points at which the function φ take
1 or 2 after projecting the level set function φ by P1,2. If the number N is equal to NT which
denotes the number of the total points, we stop and exit the iterative process.

In our numerical tests, there is no such case that the iteration process stops for the
reason that N=NT . Considering the fact that F1 becomes smaller as the iteration proceeds,
we introduce a variable osci to denote the times that the F1 oscillates and exit the iterative
process when osci reaches a given number.

Now we will present the piecewise constant level set algorithm (PCLSA).

Remark 4.1. After exiting the iterative process, the value of the level set function φ at
every point x ∈ Ω usually doesn’t satisfy the constraint (φ−1)(φ−2) = 0. To make φ
satisfy the constraint, we project φ as below:

Pu(φ)=

{

1, φ≤1.5,
2, φ>1.5,

(4.19)

after exiting the iteration process.
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Algorithm 1. PCLSA.

Initialize φ0 as a suitable function, F1,−1=10000, osci=0 and N=0, Compute NT. For k=0,1,2,···,

Step 1 Use φk to update v : vk(x) = v1,k(2−φk)+v2,k(φk−1) and obtain Ak and ∇Ak by solving
Eq. (3.5) with the Newton-Raphson method.

Step 2 Compute F1,k by (3.6). let osci :=osci+1 if F1,k>F1,k−1. If osci is equal to the predetermined
value, exit the iterative process; Otherwise, go to Step 3.

Step 3 Solve the Eq. (4.10) to compute the gradient of F1 according to φk and ∇Ak, and update
(∂L/∂φ)|φk.

Step 4 Set ∆tk by (4.17) and use the scheme (4.16) to update the level set function φ.

Step 5 Project φ by (4.18). Check the projected φ and obtain N. Exit the iterative process if N=NT.
Or else, set k :=k+1 and φk =φ, go to Step 1.

5 Numerical results

In this section, four examples are solved by Algorithm 1 (PCLSA). The workpiece we
studied in the numerical tests is made of the hard steel and possibly contains the crack
which is filled with the air. The magnetic permeability of air is close to 1, i.e., µ1 = 1, so
v1 = 1. For the function v2, which is relevant to the magnetic permeability of the hard
steel, is defined as

v2(s)=d1+
c1sb1

ab1
1 +sb1

,

where the concrete values for the four variables in v2 are set the same as [9]:

a1=0.5, b1=4, c1=3, d1=0.2.

For all examples, the domain Ω = [−0.5,0.5]×[−0.5,0.5] and all the numerical tests are
run on the PC with Intel Core 2 Duo 2.10GHz processor and 2GB RAM by the software
Matlab 2010b. When solving the Eqs. (3.5) and (4.10), we divide the domain Ω into some
rectangles with the size hx =hy =h=1/dim, where dim is the number of rectangles in the
x-direction. For the measurement data M, we generate it in the following steps: we first
find a level set function φexact to represent the shape of D accurately, then solve Eq. (3.5)
with the Newton-Raphson algorithm to obtain the solution Aexact, finally assign ∇Aexact

to M. In order to see the closeness of the function φ to φexact, we call the built-in ”contour”
command in Matlab to plot the interface between two sub-domains after the test. For
the command ”contour”, we set the parameter for the number of the contour line as 1
and choose the red-solid-line and the blue-dotted-line to denote the interface between
two sub-domains represented by φexact and φ, respectively. In the figures that depict the
evolution of the level set function, the red part and the blue part represent the hard steel
and the air, respectively. In the figures that depict the evolution of the level set function,
the red part and the blue part represent the hard steel and the air, respectively. In some
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figures, the shapes of some graphics don’t look like shapes they should be. For instance,
the shape of the circle in Example 5.1 is more like an octagon. In order to measure the
misfit between the computed φ and φexact precisely, we count the number of the points
where two functions take different values.

In this section, we do two groups of numerical tests to show the effectiveness and
robustness of PCLSA. The first group of tests are based on the measurement data M

without noise. In order to show the flexibility of the choice of the initial guess of φ, we set
the function φ as some different initial values and observe the final shapes. The second
group of tests are based on the measurements data M with a certain level of noise. As
to the robustness of PCLSA, our algorithm can reconstruct the shape precisely when the
noise level is up to 15%, which is superior to the algorithm in [9].

Example 5.1. In this example, We use the same configuration as in [9]. The exact shape
of the domain D is a circle with the center (0.2,0.15) and the radius 0.1. And the induced
current density J is defined as follows:

J(x,y)=







J1, y>0.4,
−J1, y<−0.4,
0, otherwise,

(5.1)

where J1 =500. This choice of J describes the case that the workpiece is wrapped by the
wires.

For this test, we set dim= 50, σ= 0.9 and α= 0.001. The initial value of the level set
function is chosen as φ0 = 1.5 and the upper bound of osci is 10. The iterative process
stops after 304 steps. We present the results in Fig. 1.

In Fig. 1(a), the red solid line and the blue dotted line coincide, that is to say, PCLSA
can identify the shape of the air gap completely. In this test, the two functions, φ and
φexact, take the same value at every point x ∈ Ω. Fig. 1(b) shows the change of F1 with
respect to the number of iterations. From Fig. 1(b), we can see that the value of F1 first
becomes smaller, but doesn’t become smaller any more after 300 steps. So it is reasonable
for us to choose osci= 10. Fig. 1(c) to Fig. 1(f) show the evolution of the function φ and
the interface. During the iterative process, the values of φ at the points of Ω develop
towards to our expectation except four corner points. As the increase of the number of
iterations, the values of φ at these four points first become small, which is away from
our expectation, but becomes large after some steps. In Fig. 2, the values of the level set
function φ at the four corner points and some points at the boundary of Ω are 1 instead
of 2. By comparing with the picture of φ after 300 steps (see Fig. 1(f) and Fig. 2), we can
see that it’s the effects of the regularization to let the values of φ at four points become
large.

Example 5.2. In this example, the shape of the air gap in the workpiece is non-convex,
which is more like a shrimp. The current density function J is defined as (5.1) with the
constant J1 equal to 500. This numerical test describes the case that the workpiece is all
wrapped with the wires.
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Figure 1: Numerical results for Example 5.1. (a) The final reconstruction of φ. (b) The change of the value of
F1 vs. the number of iterations. (c)-(f) The evolution of φ and the interface.
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Figure 2: The figure of computed φ without regularization.
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In this test, we set some variables as follows:

dim=40, α=0.001, σ=0.9.

The initial guess of φ and the upper bound of osci are chosen as φ0 =1.5 and 15, respec-
tively. The iterative process stops after 212 iterations. We present the numerical results in
Fig. 3.

In Fig. 3(a), the red solid line coincides with the blue dotted one. And the number of
the points where φ and φexact take different values is 0. That is, the algorithm can identify
the shape of D accurately. Fig. 3(b) depicts the change of F1 with respect to the number
of iterations. In Fig. 3(b), unlike Example 5.1, the value of F1 is below 10−11 after some
oscillations. Before exiting the iterative process, the times that the value of F oscillates do
not exceed 15, so it’s reasonable to choose the upper bound of osci to be 15. Fig. 3(c) to
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Figure 3: Numerical results for Example 5.2. (a) The final reconstruction of φ. (b) The change of the value of
F1 vs. the number of iterations. (c)-(f) to show the evolution of φ and the interface.
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Figure 4: The figure of φ without regularization.

Fig. 3(f) describe the evolution of φ and the interface. Similar to the evolution of the level
set function φ in the Example 5.1, as the increase of the number of iterations, the values
of φ at four corners first become smaller then start to increase to 2. In Fig. 4, the values of
φ at four points of Ω are 1. Thus we can conclude that it is the effects of the regularization
to pull the values of φ at these points back to 2.

Example 5.3. In this example, in order to test the ability of identifying the crack that is
disconnected, we let the crack be the union of two circles and an ellipse. The current
density function is chosen as J=500.

In this test, the variables are chosen as follows:

dim=50, α=0.001, σ=0.9.

The initial value of the level set function and the upper bound of osci are φ0=1.5 and 10,
separately. The iterative process stops after 306 steps. We present the numerical results
in Fig. 5.

In Fig. 5(a), the interfaces between steel and air, represented by the red solid line and
the blue dotted line, coincide. And the number of the points which φ and φexact take
different values is 0. Fig. 5(b) depicts the change of F1 with respect to the number of
iterations. In Fig. 5(b), the value of F1 first decreases and then oscillates in the last few
steps. So it is reasonable for us to choose 10 as the upper bound of osci. Fig. 5(c) to Fig. 5(f)
describe the evolution of φ and the interface. As the increase of the number of iterations,
the values of φ at four corners first become smaller then start to increase to 2. In Fig. 6,
the values of φ at four points of Ω are 1. Thus we can conclude that it is the effects of the
regularization term to pull the values of φ at these points to 2.

Compared with the algorithm in [9], PCLSA takes much less steps, but reconstructs
a more accurate shape. In [9], it takes 574 iteration steps to stop the algorithm. In our
PCLSA, we only need half of that iterations, that is, totally 307 iterations to stop the algo-
rithm. Moreover, with more iterations in [9] the final reconstruction shape still deviates a
lot from the exact shape. In our final result (see Fig. 5), however, there is no deviations at
all.Thus PCLSA performs better than the algorithm in [9] for this example.
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Figure 5: Numerical results for Example 5.3. (a) The final reconstruction of φ. (b) The change of the value of
F1 vs. the number of iterations. (c)-(f) to show the evolution of φ and the interface.

In order to show the flexibility of the initial guess of φ, we assign different values to
φ0 and compare the final results. we set φ0 to be different constants, that is, 1.2, 1.4, 1.7,
1.9, respectively, and present the final results in Fig. 7. For these four different values
of φ0, the interfaces represented by φ and φexact coincide and the number of the points
where φ and φexact take different value is 0. This indicates that our algorithm can identify
the shape exactly. Furthermore, we choose a more general function as the initial value of
φ and also observe the final interface. The general function is φ(x)= 1+rand(x) where
rand(x) can produce pseudo-random values between 0 and 1. We present the numerical
results in Fig. 8, where the interfaces represented by φ and φexact coincide.

From the above observation, PCLSA relies little on the initial value of the level set
function. Thus, we need not to put too much attentions on the initial guess of φ in our
PCLSA for the nonlinear electromagnetism recovery problems.
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Figure 6: The figure of φ without regularization.
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(a) The final result for φ0 =1.2
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(b) The final result for φ0=1.4
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(c) The final result for φ0 =1.7
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Figure 7: The final recovery interfaces of different values of φ0.

Example 5.4. To test the robustness of PCLSA, we use the measurement data of M with
a certain level of noise. For this test, we use the same case in Example 5.2 except that the
measurement data of M is polluted by the certain level of noise, 5%, 10%, 15% and 20%.

In this test, dim= 50. We set φ0 = 1.5, the upper bound of osci to be 10, α= 0.1 and
σ = 0.9. For different noise level cases, the final results are shown in Fig. 9. When the
noise level is under 15%, the PCLSA reconstructs the shape of D completely. That is,
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(b) The final result for Case 2

Figure 8: The final recovery interfaces of two cases of rand initial guesses: φ0(x)=1+rand(x).
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(a) The final result for 5% noise
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(b) The final result for 10% noise
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(c) The final result for 15% noise
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Figure 9: The final recovery interfaces of different noise levels in Example 5.4.

in our numerical test, the two functions φ and φexact take the same value at every point
x∈Ω. But when the noise level is up to 20%, though the interface between the steel and air
represented by φ is recovered, there are some flaws at the interface between D and Ω\D
(some blue points). For the range of σ, the interval 0.6∼ 0.9 is shown by our numerical
tests to be not a bad choice.
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However, σ affects the iteration steps in our PCLSA. The larger σ is, the less steps the
algorithm takes. But at high noise level, the reconstructed shape is better when the value
of σ is smaller.

6 Conclusions

In this paper, we propose a piecewise constant level set algorithm for the nonlinear elec-
tromagnetism inverse problem. In our numeric test, our PCLSA do not rely on the initial
guess of the level set function φ, and can reconstruct the shape of Ω exactly even when the
noise level is high. Our PCSLA is quite effective and robust to solve a kind of nonlinear
inverse problems.
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[36] I. CIMRÂK AND V. MELICHER, Determination of precession and dissipation parameters in the

micromagnetism, J. Comput. Appl. Math., 234 (2010), pp. 2239–2249.
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