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Abstract. This paper is devoted to time domain numerical solutions of two-
dimensional (2D) material interface problems governed by the transverse magnetic
(TM) and transverse electric (TE) Maxwell’s equations with discontinuous electromag-
netic solutions. Due to the discontinuity in wave solutions across the interface, the
usual numerical methods will converge slowly or even fail to converge. This calls for
the development of advanced interface treatments for popular Maxwell solvers. We
will investigate such interface treatments by considering two typical Maxwell solvers
– one based on collocation formulation and another based on Galerkin formulation. To
restore the accuracy reduction of the collocation finite-difference time-domain (FDTD)
algorithm near an interface, the physical jump conditions relating discontinuous wave
solutions on both sides of the interface must be rigorously enforced. For this purpose,
a novel matched interface and boundary (MIB) scheme is proposed in this work, in
which new jump conditions are derived so that the discontinuous and staggered fea-
tures of electric and magnetic field components can be accommodated. The resulting
MIB time-domain (MIBTD) scheme satisfies the jump conditions locally and suppress-
es the staircase approximation errors completely over the Yee lattices. In the discontin-
uous Galerkin time-domain (DGTD) algorithm – a popular Galerkin Maxwell solver, a
proper numerical flux can be designed to accurately capture the jumps in the electro-
magnetic waves across the interface and automatically preserves the discontinuity in
the explicit time integration. The DGTD solution to Maxwell interface problems is ex-
plored in this work, by considering a nodal based high order discontinuous Galerkin
method. In benchmark TM and TE tests with analytical solutions, both MIBTD and
DGTD schemes achieve the second order of accuracy in solving circular interfaces. In
comparison, the numerical convergence of the MIBTD method is slightly more unifor-
m, while the DGTD method is more flexible and robust.
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1 Introduction

When the permittivity and permeability coefficients are discontinuous across a materi-
al interface separating two dielectric media, the electric and magnetic field components
could be discontinuous. Without a proper interface treatment, the time domain numer-
ical solution of Maxwell’s equations that govern the propagation and scattering of elec-
tromagnetic waves in nonhomogeneous media converges slowly or even fails to con-
verge [12]. Because the material interfaces are omnipresent in optical devices, microwave
circuits, antennas, aircraft radar signature, nano/micro electric devices and telecommu-
nication chips, the development of innovative computational methods for dealing with
electromagnetic interface problems with discontinuous solutions has received much at-
tention in recent years. Various different interface strategies have been developed in the
computational electromagnetics (CEM) to cope with the problems caused by the loss of
solution regularity and the complex geometry of the material interface [12].

It is well known that the finite-difference time-domain (FDTD) method based on the
Yee lattice has been a main workhorse of the CEM in the time domain [34], owing to its
simplicity, free of dissipative error and having very low cost per grid node. However, the
standard FDTD algorithm suffers from a large accuracy reduction at a dielectric interface,
due to not only a staircase representation for complex geometry, but also the lack of the
enforcement of solution jumps in the numerical discretization. To overcome this diffi-
culty, several embedded FDTD methods [3, 8, 12, 36, 37, 40, 41, 46] have been successfully
developed to restore the accuracy near a dielectric interface. Computationally, some so-
phisticated interface treatments are conducted near the interface or on a one-dimensional
smaller set of nodes to rigorously impose the jump conditions in the FDTD discretization-
s, while away from the interface, the standard FDTD scheme can be employed. While
maintaining the simplicity and computational efficiency of the Yee scheme [34], the em-
bedded FDTD methods can fully restore second order accuracy, even in case of curved
boundaries and interfaces, by using a simple Cartesian grid. Nevertheless, Maxwell in-
terface problems with continuous wave solutions are normally considered in these em-
bedded FDTD methods. The discontinuous Maxwell interface problem to be attacked in
this work is less well studied in the FDTD literature.

Recently, we have developed a family of finite difference algorithms based on the
matched interface and boundary (MIB) method [42, 47] for solving regular dielectric in-
terface problems [42,43] and dispersive interface problems [29,30,44]. The MIB interface
treatments are quite flexible, through the introduction of fictitious values and an iterative
use of zeroth and first order jump conditions [42, 47]. The MIB modeling is systemati-
cally carried out and can be made to arbitrarily high order in principle in the presence
of straight material interfaces. Orders up to 12 have been achieved numerically for solv-
ing Maxwell’s equations [42]. When dispersive materials are considered, the material
constitutive coefficients are functions of frequency so that the jumps in electromagnetic
fields become time variant across dispersive interfaces. The MIB time-domain (MIBTD)
method [29,30,44] is the only known second order accurate FDTD algorithm for solving



Y. Zhang, D. Nguyen, K. Du, J. Xu and S. Zhao / Adv. Appl. Math. Mech., 8 (2016), pp. 353-385 355

dispersive interface problems, thanks to its capability in modeling time dependent jump
conditions. However, in all previous MIBTD algorithms [29, 42, 44], only simple inter-
face problems with continuous electric and magnetic field components are considered.
The generalization of the existing MIB scheme to treat discontinuous Maxwell interface
problem remains to be unsolved.

Using unstructured grids, the finite element methods (FEMs) are some of the most
flexible methods for solving Maxwell interface problems. The edge element method de-
veloped in 1980s [2, 28, 31, 32] is the most well known FEM in the CEM literature, which
assigns degrees of freedom to the edges of the vector elements so that the edge element
method is free of spurious solutions and is very flexible in imposing boundary condi-
tions at material interfaces. Recently, a variety of finite element time domain (FETD)
methods [9, 18, 33] have been developed for solving Maxwell’s equations in the time
domain. Nevertheless, the classical FETD methods may lead to a high computational
cost since a matrix inversion is required at each time step. The modern approach to
bypass this matrix inversion is using the discontinuous Galerkin time-domain (DGTD)
methods [4–7, 10, 11, 13, 21, 23, 26, 27]. Based on discontinuous basis functions, the DGTD
methods are locally conservative, stable and high-order accurate. In the discontinuous
Galerkin variational formulation, it is quite easy to handle complex geometries, irregu-
lar meshes with hanging nodes and approximations that have polynomials of different
degrees in different elements. These nice properties attribute to the popularity of the
DGTD methods for various applications in the CEM. In particular, the DGTD methods
have achieved a great success in modeling complex materials, such as dispersive me-
dia [14, 15, 17, 19, 24, 25, 35] and metamaterials [20, 22]. It will be of great interests to
investigate the performance of the DGTD methods for solving discontinuous Maxwell
interface problems, because the DGTD methods are by design using discontinuous ap-
proximation functions in different elements. By properly choosing the numerical flux,
the jumps in the electromagnetic waves across the interface can be accurately captured
and well preserved in the DGTD computations.

The goal of this paper is to carry out a comparative study of MIBTD and DGTD meth-
ods for solving Maxwell interface problems, with a particular stress on problems in which
the magnetic and/or electric field components are discontinuous. We will focus on two
types of two-dimensional (2D) systems, i.e., the transverse magnetic (TM) and transverse
electric (TE) Maxwell’s equations. A circular interface will be considered in both systems
with discontinuous constitutive coefficients. Analytical solutions are available so that the
spatial order of accuracy can be numerically evaluated.

For the MIBTD method, a novel formulation of jump conditions will be proposed, so
that the discontinuous and staggered features of electric and magnetic field components
can be accommodated. This facilitates the implementation of the jump conditions in the
FDTD discretization and suppresses the staircase approximation errors completely over
the Yee lattices. The present study represents a considerable progress on the develop-
ment of MIBTD methods for solving Maxwell’s equations, because the proposed MIBTD
method is the first of its kind that can handle discontinuous electromagnetic waves.
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The DGTD method being tested in this work is based on the nodal based discontinu-
ous Galerkin approach, originally proposed by Hesthaven and Warburton [13]. We have
developed our DGTD package fully in C++ environment. It has also been parallelized to
make use of a large number of processors for large-scale simulations. The public software
CUBIT has been used to generate the mesh inside and outside of interface for different
materials. This facilitates to define different material properties in different regions. Sev-
eral different methods to partition the mesh have been developed, so that each processor
will handle nearly the same number of elements and minimal communications can be
achieved to reach good scalability. The present study provides excellent benchmark tests
to validate this new package and more sophisticated algorithms can be easily added on
it.

This paper is organized as follows. The Maxwell’s equations and the interface setting
will be given in Section 2. The proposed MIBTD algorithm will be presented in Section 3.
Section 4 devotes to an introduction of the nodal based DGTD method. The simulation
results of both MIBTD and DGTD approaches will be reported in Section 5. The stabili-
ty, accuracy and efficiency of the algorithms will be examined using several benchmark
examples. Finally, this paper ends with a conclusion.

2 Maxwell interface problem

In three dimensions (3D), Maxwell’s equations that govern all macroscopic electromag-
netic phenomena can be given as

∂~D

∂t
=∇× ~H−~J, ∇·~D=ρ, (2.1a)

∂~B

∂t
=−∇×~E, ∇·~B=0, (2.1b)

where ~D(~x,t) and ~B(~x,t) are, respectively, the electric and magnetic flux densities, while
~E(~x,t) and ~H(~x,t) are, respectively, the electric and magnetic field intensities. For simplic-
ity, we consider the case with the electric charge density ρ and the electric current density
~J being zero. Consider linear and isotropic materials with the constitutive relations

~D=ǫ~E, ~B=µ~H, (2.2)

where ǫ and µ are, respectively, the electric permittivity and magnetic permeability. Here,
a nondimensional form of the equations is considered, i.e., ǫ=µ=1 in free space.

In this paper, we will focus on two-dimensional (2D) Maxwell’s systems by assuming
that the structure being considered is invariant in the z-direction and the incident wave is
also uniform in the z-direction. With this assumption, all partial derivatives of the fields
of 3D Maxwell’s equations with respect to z are zero. The resulting 2D equations can be
grouped into two independent sets, i.e., transverse magnetic (TM) mode and transverse



Y. Zhang, D. Nguyen, K. Du, J. Xu and S. Zhao / Adv. Appl. Math. Mech., 8 (2016), pp. 353-385 357

Γ Ω
−

 

Ω
+

 

Figure 1: A curved interface Γ separating two media over the domain Ω.

electric (TE) mode as follows

TMz mode:
∂Ez

∂t
=

1

ǫ

(∂Hy

∂x
− ∂Hx

∂y

)

,
∂Hy

∂t
=

1

µ

∂Ez

∂x
,

∂Hx

∂t
=− 1

µ

∂Ez

∂y
, (2.3a)

TEz mode:
∂Hz

∂t
=

1

µ

(∂Ex

∂y
− ∂Ey

∂x

)

,
∂Ey

∂t
=−1

ǫ

∂Hz

∂x
,

∂Ex

∂t
=

1

ǫ

∂Hz

∂y
, (2.3b)

where [Ex,Ey,Ez]T = ~E and [Hx,Hy,Hz]T = ~H are, respectively, the electric and magnetic
fields components in the corresponding Cartesian directions.

The material interface is omnipresent in electromagnetics, such as coatings used on
the surface of an aircraft for minimizing the radar cross section (RCS) and gaps in di-
electric materials. In the current 2D setting, we will consider a general Maxwell interface
problem as illustrated in Fig. 1. For simplicity, the domain Ω is assumed to be a rectangle
one Ω= [a,b]×[c,d], with proper boundary conditions prescribed for u on ∂Ω. Across a
material interface Γ separating two media Ω− and Ω+, material coefficients ǫ and µ could
be discontinuous. We define the jump of a function u(x,y) at Γ to be [u] :=u+−u−. The
superscript, − or +, denotes the limiting value of function from inside or outside of the
interface. Without the loss of generality, the subdomain Ω+ is assumed to be the air or
vacuum with ǫ+=µ+=1, whereas the inside subdomain Ω− is assigned to be a dielectric
medium.

Across the material interface, the field solutions on both media are physically related
through the jump conditions

~n×(~E+−~E−)=0, ~n·(ǫ+~E+−ǫ−~E−)=0, (2.4a)

~n×(~H+− ~H−)=0, ~n·(µ+ ~H+−µ− ~H−)=0, (2.4b)

where~n is the unit normal vector to the interface, pointing from Ω− to Ω+. These zeroth
order jump conditions suggest that the tangential components of ~E and ~H are continu-
ous, while their normal components could be discontinuous. Combining the zeroth order
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jump conditions (2.4) with Maxwell’s equations (2.3a) and (2.3b), we can derive first or-
der jump conditions describing the regularities in the first derivatives of ~E and ~H [42,43].
Higher order jump conditions can be derived in a similar manner, but become very com-
plicated so that they are usually skipped in the numerical interface treatments [42].

3 Matched interface and boundary (MIB) algorithm

In this section, we propose a novel MIB time-domain (MIBTD) algorithm for solving
the discontinuous Maxwell interface problem. Previously, we have developed several
MIBTD schemes for solving regular dielectric interface problems [42, 43] and dispersive
interface problems [29, 44]. However, the electromagnetic fields are assumed to be con-
tinuous across the interface in these existing studies. We note that for the scalar elliptic
and parabolic interface problems, robust MIB schemes [45, 47] have been constructed to
handle discontinuous solutions. Nevertheless, these discontinuous interface treatments
can not be directly applied to the present Maxwell interface problem, which is of a vector-
ized nature, i.e., different field components will be coupled through the jump conditions.
Moreover, in the Yee mesh, the field components are located in staggered positions. This
introduces additional difficulties for solving Maxwell interface problems.

3.1 Finite difference time domain (FDTD) discretization based on MIB

Without the loss of generality, we will present the new MIBTD algorithm by consider-
ing the TM system (2.3a). The MIBTD method for solving the TE system (2.3b) can be
similarly constructed.

Denote the time increment to be ∆t. Both electric and magnetic components will be
assumed at the same time instant tk = k∆t in the MIBTD algorithm. The classical fourth
order Runge-Kutta scheme will be employed to integrate the TM system (2.3a) from tk to
tk+1. A uniform staggered grid shown in Fig. 2 is used in the MIBTD algorithm. Denote
∆x and ∆y to be the spacing in x and y direction, respectively. To facilitate the following
discussions, we adopt the following notations: Ez

i,j :=Ez(xi,yj,tk), Hx
i,j+ 1

2

:=Hx(xi,yj+ 1
2
,tk)

Hx Hx

Hy

HyEz Ez

Ez Ez

Figure 2: The staggered grid system.
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and H
y

i+ 1
2 ,j

:= Hy(xi+ 1
2
,yj,tk). For nodes away from the interface, the central finite dif-

ference approximations as in the standard FDTD algorithm are employed for the spatial
discretization, e.g.,

∂Hy

∂x

∣

∣

∣

(xi,yj)
≈

H
y

i+ 1
2 ,j
−H

y

i− 1
2 ,j

∆x
. (3.1)

For nodes near Γ, the MIB interface treatment [42, 47] will be carried out to correct
finite difference approximations via rigorously imposing the jump conditions. A univer-
sal rule here is that to approximate function or its derivatives on one side of interface,
one never directly refers to function values from the other side. Instead, fictitious values
form the other side of the interface will be supplied. For example, suppose that Γ cuts
the grid line y=yj in between xi and xi+ 1

2
. We need to determine a fictitious value of Hy

at (xi+ 1
2
,yj). We denote it as f

y

i+ 1
2 ,j

. Then the approximation (3.1) shall be modified to be

∂Hy

∂x

∣

∣

∣

(xi,yj)
≈

f
y

i+ 1
2 ,j
−H

y

i− 1
2 ,j

∆x
. (3.2)

Likewise, if Γ passes the line y=yj in between xi− 1
2

and xi, (3.1) will be changed to

∂Hy

∂x

∣

∣

∣

(xi,yj)
≈

H
y

i+ 1
2 ,j
− f

y

i− 1
2 ,j

∆x
. (3.3)

These corrected approximations maintain the second order of accuracy, provided that
fictitious values are accurately estimated by using the jump conditions (2.4).

3.2 Interface jump conditions in a local coordinate

Since jump conditions (2.4) are physically defined in terms of normal and tangential di-
rections, we first derive jump conditions in a local coordinate. Consider a point P(xo,yo)
located on the interface Γ. We define a local coordinate system (~n,~τ) at P, see Fig. 3. Any
nearby point (x,y) will have local coordinate values

n=cosθx+sinθy, τ=−sinθx+cosθy, (3.4)

� 

Γ 

Ω− 

Ω  

� 

� 

� 

Figure 3: Local normal and tangential coordinate of a point on the interface Γ.
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where 0≤ θ<2π is the angle between the positive x-direction and the normal vector~n at
P. It it also worthwhile mentioning the derivative operators on this local coordinate

∂

∂n
=cosθ

∂

∂x
+sinθ

∂

∂y
,

∂

∂τ
=−sinθ

∂

∂x
+cosθ

∂

∂y
. (3.5)

On the local grid system, jump conditions (2.4) give us the following zeroth order jump
conditions

[Ez]=0, [Eτ]=0, [ǫEn]=0, [Hz]=0, [Hτ]=0, [µHn]=0. (3.6)

First order jump conditions of all fields can be implied based on the zeroth order condi-
tions (3.6) and Maxwell’s equations [29,30,42]. For the Ez component, one jump condition
can be derived by taking the derivative with respect to the tangent direction of the first
equation in (3.6)

[∂Ez

∂τ

]

=0. (3.7)

To seek for another jump condition of this field, we rewrite the second equation of (2.3a)
in local coordinate and then apply the jump operators on it to obtain

[ 1

µ

∂Ez

∂n

]

=
[∂Hτ

∂t

]

=0, (3.8)

where we make use of the fact [Hτ ]=0. Concerning the jump conditions of the magnetic
component, one takes the derivative with respect to τ of the two last conditions in (3.6)
to achieve

[∂Hτ

∂τ

]

=0,
[∂(µHn)

∂τ

]

=0. (3.9)

Another jump condition of magnetic field can be derived by employing the divergence
free law

∇·(µH)=
∂(µHn)

∂n
+

∂(µHτ)

∂τ
+

∂(µHz)

∂z
=0. (3.10)

In the TM mode, all of the fields are uniform along the z-direction. Therefore, their
derivatives with respect to z can be omitted. Consequently, Eq. (3.10) becomes in a sim-
pler form

∂(µHn)

∂n
+

∂(µHτ)

∂τ
=0. (3.11)

We take jump values on both hand sides of Eq. (3.11)

[∂(µHτ)

∂τ

]

+
[∂(µHn)

∂n

]

=0. (3.12)
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One multiplies the first equation of (2.3a) by µ and then takes jump operators on it to give
rise to the last jump condition of H field

[∂(µHτ)

∂n

]

−
[∂(µHn)

∂τ

]

=
[∂(µǫEz)

∂t

]

. (3.13)

We note that the condition (3.13) is a new condition which has never been used in the
previous MIBTD schemes. In its present form, (3.13) contains a time dependent part.
Nevertheless, we will show later that this term can be estimated based on known Hx and
Hy values at time tk.

3.3 Interface jump conditions in the Cartesian coordinate

Since all the FDTD spatial discretization is conducted in the Cartesian directions, we need
to transform the jump conditions in the local coordinate into the Cartesian ones. More-
over, a key idea in the MIB interface treatment is to decompose the 2D jump conditions so
that they can be imposed in a 1D manner [43,47]. We will consider such decompositions,
while taking care of the coordinate transformations.

We first consider the zeroth order jump conditions for Cartesian field components.
For Ez, we simply have

E+
z −E−

z =0. (3.14)

In order to derive the jump conditions for Hx and Hy, one can use coordinate transforma-
tion mentioned in (3.4) to translate the zeroth order jump conditions [Hτ ]=0 and [µHn]=0
into

0=[Hτ]=−sinθH+
x +cosθH+

y +sinθH−
x −cosθH−

y , (3.15a)

0=[µHn]=cosθµ+H+
x +sinθµ+H+

y −cosθµ−H−
x −sinθµ−H−

y . (3.15b)

Because our incident waves propagate from the positive side, H−
x will be eliminated from

(3.15a) and (3.15b) to obtain

C+
x H+

x +C+
y H+

y −C−
x H−

y =0, (3.16)

in which

C+
x =(µ+−µ−)cosθsinθ, C+

y =sin2 θµ++cos2θµ− and C−
y =µ−.

Similarly, the new jump condition will be derived by canceling H−
y from (3.15a) and

(3.15b)
D+

x H+
x +D+

y H+
y −D−

x H−
x =0, (3.17)

where

D+
x =sin2 θµ−+cos2θµ+, D+

y =(µ+−µ−)sinθcosθ and D−
x =µ−.
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Following the implementation given in the Appendix A, we can attain the following
first order jump conditions for Ez

A+
x

(∂Ez

∂x

)+
+A+

y

(∂Ez

∂y

)+
−A−

x

(∂Ez

∂x

)−
=0, (3.18a)

B+
x

(∂Ez

∂x

)+
+B+

y

(∂Ez

∂y

)+
−B−

y

(∂Ez

∂y

)−
=0, (3.18b)

with the coefficients given in Appendix A. We note that the zeroth jump condition (3.14)
and two first order jump conditions (3.18a) and (3.18b) for Ez are in the standard form,
as discussed in the classical MIB scheme [47]. Moreover, these conditions only involves
Ez field over integer grid nodes (xi,yj) on the Yee lattice (see Fig. 2). Therefore, the MIB
modeling of Ez can be simply handled by the classical MIB scheme [47].

The situation for Hx and Hy becomes much more complicated. To attain the first order
jump conditions for Hx and Hy, we again employ the coordinate transformations defined
in (3.4) and (3.5). For the condition (3.13), we have

[∂(µHy)

∂x

]

−
[∂(µHx)

∂y

]

=
[∂(µǫEz)

∂t

]

=(µ+ǫ+−µ−ǫ−)
∂E+

z

∂t

=
µ+ǫ+−µ−ǫ−

ǫ+

{(∂Hy

∂x

)+
−
(∂Hx

∂y

)+}

. (3.19)

Here we have utilized the equation [Ez]=0 and the TM Maxwell’s equations to simplify
the right hand side. The non-homogeneous term indeed becomes time independent, as
we mentioned above. As discussed in Appendix B, we finally end up with four first order
jump conditions for magnetic components

C+
xy

(∂Hx

∂y

)+
+C+

yx

(∂Hy

∂x

)+
+C+

yy

(∂Hy

∂y

)+
=C−

yx

(∂Hy

∂x

)−
, (3.20a)

D+
xx

(∂Hx

∂x

)+
+D+

xy

(∂Hx

∂y

)+
+D+

yx

(∂Hy

∂x

)+
=D−

xx

(∂Hx

∂x

)−
, (3.20b)

Ĉ+
xy

(∂Hx

∂y

)+
+Ĉ+

yx

(∂Hy

∂x

)+
+Ĉ+

yy

(∂Hy

∂y

)+
= Ĉ−

yy

(∂Hy

∂y

)−
, (3.20c)

D̂+
xx

(∂Hx

∂x

)+
+D̂+

xy

(∂Hx

∂y

)+
+D̂+

yx

(∂Hy

∂x

)+
= D̂−

xy

(∂Hx

∂y

)−
, (3.20d)

with the coefficients given in Appendix B.
We note that jump conditions for Hx and Hy are mixed together in these equations.

This is a feature not seeing in scalar elliptic and parabolic interface problems [45, 47].
A novel MIB scheme has to be developed to address this issue. In the proposed MIB
scheme for the TM equation, jump conditions (3.16), (3.17), (3.20a) and (3.20b) are used for
correcting the derivatives of magnetic fields along the x direction, while jump conditions
(3.16), (3.17), (3.20c) and (3.20d) are applied for seeking fictitious values of magnetic fields
in the y direction. The jump conditions for the TE mode can be similarly derived.
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3.4 Jump conditions implementation

In this subsection, we discuss how to implement the jump conditions derived above in
the MIB scheme to determine the necessary fictitious values for the FDTD discretization.
To save the space, only MIB treatment for the TM mode is illustrated here. For the Ez

component of the TM mode, the jump conditions are standard, so that the classical MIB
scheme [47] can be simply applied. A new MIB scheme is proposed to treat Hx and Hy in
this subsection.

The essence of the MIB scheme is to impose jump conditions in a 1D manner. Thus,
the MIB treatments in x and y directions are essentially the same. It is sufficient to discuss
the MIB treatment of Hx and Hy along the x direction in the present study. The modeling
along the y direction can be similarly carried out. For the x direction, a group of jump
conditions including Eqs. (3.16), (3.17), (3.20a) and (3.20b), will be studied. As in other
Cartesian grid methods, in the MIB scheme, grid points are classified as irregular grid
points if the standard finite approximation refers to a node from the other side of the
interface. Otherwise they will be classified as regular grid points. For every irregular
point, a fictitious value needs to be calculated through enforcing jump conditions.

A particular local grid topology is shown in Fig. 4. Here, we consider an interface
point (xo,yo) on the interface Γ. In the vicinity of (xo,yo), the nodes (xi−1/2,yj) and
(xi+1/2,yj) are the irregular grid points for Hy. We suppose that both (xi−1/2,yj) and
(xi,yj) belong to Ω− and (xi+1/2,yj) belongs to Ω+. See Fig. 4. Following the notation

defined above, we demonstrate how to determine four fictitious values f
y
i−1/2,j, f

y
i+1/2,j,

f x
i,j and f x

i+1,j for the present situation.

For this purpose, we discretize four jump conditions (3.16), (3.17), (3.20a) and (3.20b)
by following the universal rule of MIB scheme, i.e., never referring to function values on

Ω
−

 Ω  
Γ 

j

j-1

j-2

j+1

j+2

i i+1 i+2i-1

(xo,yo) 

Figure 4: Illustration of the MIB grid partition. Filled circles: grid nodes for Hy; Fill triangles: nodes for Hx;
Open circles: fictitious nodes for Hy; Open triangle: fictitious nodes for Hx; Open squares: auxiliary nodes for

Hy and Hx; Square: interface node (xo,yo).
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both hand sides for a single derivative approximation

C+
x

(

w̃+
0,i f x
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i+1,j+w̃+
0,i+2Hx
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+C+
y
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2

f
y

i− 1
2 ,j
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2

H
y
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2 ,j
+w+

0,i+ 3
2

H
y

i+ 3
2 ,j

)

=C−
y

(

w−
0,i− 3

2

H
y

i− 3
2 ,j
+w−

0,i− 1
2

H
y

i− 1
2 ,j
+w−

0,i+ 1
2

f
y

i+ 1
2 ,j

)

, (3.21a)

D+
x

(

w̃+
0,i f x

i,j+w̃+
0,i+1Hx

i+1,j+w̃+
0,i+2Hx

i+2,j

)

+D+
y

(

w+
0,i− 1

2

f
y

i− 1
2 ,j
+w+

0,i+ 1
2

H
y

i+ 1
2 ,j
+w+

0,i+ 3
2

H
y

i+ 3
2 ,j

)

=D−
x

(

w̃−
0,i−1Hx

i−1,j+w̃−
0,iH

x
i,j+w̃−

0,i+1 f x
i+1,j

)

, (3.21b)
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=C−
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2
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2

f
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, (3.21c)

D+
xx

(

w̃+
1,i f x

i,j+w̃+
1,i+1Hx

i+1,j+w̃+
1,i+2Hx

i+2,j

)

+D+
xy

(∂Hx

∂y

)+∣
∣

∣

xo,yo

+D+
yx

(

w+
1,i− 1

2

f
y

i− 1
2 ,j
+w+

1,i+ 1
2

H
y

i+ 1
2 ,j
+w+

1,i+ 3
2

H
y

i+ 3
2 ,j
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=D−
xx

(

w̃−
1,i−1Hx

i−1,j+w̃−
1,iH

x
i,j+w̃−

1,i+1 f x
i+1,j

)

, (3.21d)

where w−
l,k and w+

l,k are one-sided finite difference weights, respectively, for left and right
subdomains. Here the subscript l represents the interpolation (l = 0) and the first order
derivative approximation (l=1) and k is for grid index. The finite difference weights w−

l,k

and w+
l,k are for Hy, while the weights w̃−

l,k and w̃+
l,k are for Hx, since Hx and Hy are on

different locations in the Yee mesh.
Only x derivatives are discretized in Eqs. (3.21a)-(3.21d), whereas three y derivatives

at the interface point (xo,yo) remain unsolved. In order to approximate (∂Hy/∂y)+ at
(xo,yo), we introduce three auxiliary points (xo,yo), (xo,yj+1) and (xo,yj+2) on the positive
side

(∂Hy

∂y

)+∣
∣

∣

xo,yo

≈ p+1,j(H
y
o,j)

++p+1,jH
y
o,j+1+p+1,j+2H

y
o,j+2. (3.22)

We note that (H
y
o,j)

+, H
y
o,j+1 and H

y
o,j+2 are evaluated on non-grid nodes. Therefore,

they should be calculated by further interpolations. The grid nodes (xi−1/2,yj+1),
(xi+1/2,yj+1), (xi+3/2,yj+1) and (xi−3/2,yj+2), (xi−1/2,yj+2), (xi+1/2,yj+2) are chosen to ap-

proximate H
y
o,j+1 and H

y
o,j+2 respectively. See Fig. 4. For evaluating (H

y
o,j)

+, one can refer

it to the related grid nodes by using the following equation

(H
y
o,j)

+=−C+
x

C+
y
(Hx

o,j)
++

C−
y

C+
y
(H

y
o,j)

−

=−C+
x

C+
y
(w̃+

0,i f x
i,j+w̃+

0,i+1Hx
i+1,j+w̃+

0,i+2Hx
i+2,j)
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+
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y
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y
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2
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0,i− 1
2

H
y

i− 1
2 ,j
+w−

0,i+ 1
2

f
y
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2 ,j

)

. (3.23)

Since (∂Hx/∂y)+ is evaluated on the interface point (xo,yo), it can be discretized in the
same manner as the approximation of (∂Hy/∂y)+

(∂Hx

∂y

)+∣
∣

∣

xo,yo

= p̃+1,j(Hx
o,j)

++ p̃+
1,j+ 1

2

Hx
o,j+ 1

2
+ p̃+

1,j+ 3
2

Hx
o,j+ 3

2
. (3.24)

Similarly, grid nodes (xi,yj+1/2), (xi+1,yj+1/2), (xi+2,yj+1/2) and (xi−1,yj+3/2), (xi,yj+3/2),
(xi+1,yj+3/2) are chosen to interpolate Hx

o,j+1/2 and Hx
o,j+3/2, respectively. See Fig. 4. Dis-

cretization of (Hx
o,j)

+ is achieved by adopting the following relation

(Hx
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+=−
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y
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y
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+
D−

x

D+
x

(

w̃−
0,i−1Hx

i−1,j+w̃−
0,iH

x
i,j+w̃−

0,i+1 f x
i+1,j

)

. (3.25)

By combining equations from (3.21a) to (3.25) together, we obtain a system of equations
which can be equivalently transferred into the following matrix form

W·F=C·U. (3.26)

The coefficients of this matrix equation are given in Appendix C. Then the fictitious val-
ues F are determined as the follows

F=W−1 ·C·U. (3.27)

Formulation (3.27) shows that fictitious values F = [ f
y
i−1/2,j, f

y
i+1/2,j, f x

i,j, f x
i+1,j]

⊤ are linear

combinations of the function values in U. In other words, they are determined by using
12 nearby Hx and Hy values. It is noted that the coefficients of fictitious values, i.e.,
W−1 ·C, only need to be generated once at the beginning. Then they can be re-used in all
the subsequent time steps [42].

4 Discontinuous Galerkin algorithm

In this section, we will give a brief introduction to the DGTD method for solving
Maxwell’s equations in a 2D domain using triangle element. This domain is consisted
with heterogeneous materials in different regions. For time integration, we adopt the
low-storage five-stage fourth-order explicit Runge-Kutta (LSERK) scheme [13]. For spa-
tial discretization, we will first introduce nodal triangle element and then DG method for
Maxwell’s equations. The detailed information can be found in related references [12,13].
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4.1 The nodal triangle element

Suppose 2D domain Ω ⊂ R2 has been discretized to ΩK with boundary ∂Ω. Here ΩK

consists of K nonoverlapping triangles, i.e.,

Ω≈ΩK =∪kDk. (4.1)

In each element, Dk, the unknown solutions can be expressed as

q(~x,t)≈qN(~x,t)=
Np

∑
j=0

q(~xj,t)Lj(~x)=
Np

∑
j=0

q̂j(t)ϕj(~x), (4.2)

where q(~xj,t) is the solution at Np grid points in triangles, ~xj ∈ Dk and Lj(~x) is the 2D
Lagrange polynomial on Np grid points. Here Np is related to polynomial order P by

Np=
(P+1)(P+2)

2
. (4.3)

Here ϕj(~x) is the orthogonal polynomial bases on triangle and q̂j is the spectral coeffi-
cients for ϕj. In our previous research [38], a modal base on quadrilateral has been used
and in another research [39], the nodal base has been used.

In Fig. 5, we define a mapping, Ψ(~r), from standard straight-sided triangle to arbitrary
triangle as

~x=− r+s

2
~v1+

r+1

2
~v2+

s+1

2
~v3=Ψ(~r), (4.4)

where the standard triangle is defined as

I={~r=(r,s)|(r,s)≥−1; r+s≤0}. (4.5)

The nodal bases for P=4 are shown in Fig. 6, while P=1 will be used to match the FDTD
method in the numerical experiments. In order to construct the nodal bases Lj, we make
use of the orthogonal bases ϕj through following relations

~u=V~̂u, VT L(~r)= ϕ̃(~r), Vij= ϕj(~ri), (4.6)

Figure 5: Triangle transformation.
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Y

X

Z

Figure 6: Nodal bases on triangle, P=4.

where u is any function expressed on triangle and V is the Vandermonde matrix defined
in above.

ϕij(~r)=
√

2Pi(a)P
(2i+1,0)
j (b)(1−b)i, a=2

1+r

1−s
−1, b= s, (4.7)

and P
α,β
n (x) is the n-th order Jacobi polynomial. Using above relation, derivatives and

integration can be realized accurately on triangle.

4.2 DG Method for Maxwell’s equation

Let us define some notations for the DG. We refer to the interior side of the element by a
superscript ”-” and to the opposite side by a superscript ”+”. Then we have the average
as

{{u}}= u−+u+

2
, {{~u}}= ~u−+~u+

2
, (4.8)

where u can be both a scalar and a vector. Similarly, we define the jumps along a normal,
~n, as

[[u]]=~n−u−+~n+u+, [[~u]]=~n− ·~u−+~n+ ·~u+. (4.9)

As shown above, {{·}} and [[·]] have different forms when dealing with a scalar or a
vector.

Let us express Maxwell’s equations, Eqs. (2.1a) and (2.1b), in conservation form

Q
∂~q

∂t
+∇·~F(~q)=~S, (4.10)

where the material matrix, Q(~x), the state vector, ~q and the flux, ~F(~q), are

Q(~x)=

[

ǫ 0
0 µ

]

, ~q=

[

~E
~H

]

, ~Fi(~q)=

[ −ei× ~H

ei×~E

]

,



368 Y. Zhang, D. Nguyen, K. Du, J. Xu and S. Zhao / Adv. Appl. Math. Mech., 8 (2016), pp. 353-385

with ~F(~q) = [F1(~q),F2(~q),F3(~q)]T. Here ei signifies the three Cartesian unit vectors and
~S=[SE,SH]T represents body forces, e.g., currents and terms introduced by the scattered
field formulation, Eqs. (2.1a) and (2.1b).

Suppose unknown solutions can be expressed as (4.2), we require that Eq. (4.10) be
satisfied as

∫

D

(

Q
∂~qN

∂t
+∇·~FN−~SN

)

Li(~x)dx=
∮

∂D
τ(~x)Li(~x)~n·(~FN−~F∗

N)dx. (4.11)

Usually τ(~x)=1.0 and ~FN can be expressed as

~n·~FN =

[

−~n× ~HN

~n×~EN

]

.

4.2.1 DG numerical flux

The numerical flux is deduced from Rankine-Hugoniot condition. Suppose the eigen-
values of Q−1∇·F are c±, which are corresponding to the speeds of two characteristics
waves. These two waves are moving in opposite directions and the states separated by
them are ~q−,~q∗,~q+. Then we have

c+Q+(~q+−~q∗)=~n·~F(~q+)−~n·~F(~q∗), (4.12a)

−c−Q−(~q∗−~q−)=~n·~F(~q∗)−~n·~F(~q−). (4.12b)

From Eqs. (4.12a) and (4.12b), the numerical flux for the DG can be deduced as

~n·~FN(~q
∗)=















1

2{{Z}} (−~n×{{Z~H}}+~n×~n×[~E]),

1

2{{Y}} (~n×{{Z~E}}+~n×~n×[~H]).
(4.13)

Since the numerical fluxes for the electric and magnetic fields have following forms re-
spectively,

~n·(~FN−~F∗
N)=

[

−~n×(~HN− ~H∗
N)

~n×(~EN−~E∗
N)

]

,

it can be arrived at

−(~n× ~HN−(~n× ~H)∗N)=− 1

2{{Z}}~n×(Z+[~HN ]−α~n×[~E]N), (4.14a)

(~n×~E−(~n×~E)∗)=
1

2{{Y}}~n×(Y+[~EN ]+α~n× ~HN), (4.14b)
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where α= 0 corresponds to central flux and α= 1 corresponds to upwind flux. Also we
have [~EN ]=~E−−~E+, [~HN ]= ~H−−~H+. The local impedance, Z± and conductance, Y± are

Z±=
1

Y± =

√

µ±

ǫ±
, (4.15a)

Z̄=Z++Z−=
1

Ȳ
=

1

Y++Y− , (4.15b)

Z̄=2{{Z}}= Ȳ=2{{Y}}. (4.15c)

Now returning to the semidiscrete scheme, Eq. (4.11), we have an element wise expres-
sion for the electric field components

N

∑
j=0

(

Mǫ
ij

dEj

dt
−~Sij×Hj−MijS

E
j

)

=∑
l

Fil

(

− 1

{{Z}}l
~n×[Z+

l [Hl ]−α~n×[El]]
)

, (4.16a)

N

∑
j=0

(

Mǫ
ij

dHj

dt
−~Sij×Ej−MijS

H
j

)

=∑
l

Fil

( 1

{{Y}}l
~n×[Y+

l [El ]+α~n×[Hl ]]
)

. (4.16b)

Here we have

Mǫ
ij=(Li(~x),ǫ(~x)Lj(~x))D, M

µ
ij =(Li(~x),µ(~x)Lj(~x))D, (4.17)

as the material-scaled mass matrices and

Mij=(Li(~x),Lj(~x))D, S
µ
ij=(Sx

ij,S
y
ij,S

z
ij)=(Li(~x),∇Lj(~x))D, (4.18)

represent the local mass and stiffness matrices. Note that in the special case where ǫ and
µ are element-wise constant, we recover (Mǫ,Mµ)=(ǫM,µM).

Expressing Eqs. (4.16a) and (4.16b) in fully explicit form yield

d~EN

dt
=(Mǫ)−1S× ~HN+(Mǫ)−1MSE

+(Mǫ)−1F
(

− 1

{{Z}}l
~n×[Z+

l [HN ]−α~n×[EN ]]
)
∣

∣

∣

∂D
, (4.19a)

d~HN

dt
=−(Mµ)−1S×~EN+(Mµ)−1MSH

+(Mµ)−1F
( 1

{{Y}}~n×[Y+[EN ]+α~n×[HN ]]
)
∣

∣

∣

∂D
. (4.19b)

Following above, in 2D case, we have the numerical flux term ~F∗ in following form

n̂·(~F−~F∗)=
1

2











Ȳ−1(nynx[H
y
N ]−n2

y[H
x
N ]+ny[Ez

N ]),

Ȳ−1(n2
x[H

y
N ]−nxny[Hx

N ]−nx[Ez
N ]),

Z̄−1(−Z+(nx[H
y
N ]−ny[Hx

N ])+[Ez
N ]),
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where ~H=(Hx,Hy) and we use the notation

[q]=q−−q+=~n·[[q]]. (4.20)

The semi-discrete scheme are

dHx
h

dt
=−DyEz

h+
1

2JM

∫

∂Dk
(Ȳ−1(nynx[H

y
N ]−n2

y[H
x
N ]+ny[E

z
N ]))l(x)dx, (4.21a)

dH
y
h

dt
=DxEz

h+
1

2JM

∫

∂Dk
(Ȳ−1(n2

x[H
y
N ]−nxny[H

x
N ]−nx[E

z
N ]))l(x)dx, (4.21b)

dEz
h

dt
=DxH

y
h−DyHx

h +
1

2JM

∫

∂Dk
(Z̄−1(−Z+(nx[H

y
N ]−ny[H

x
N ])+[Ez

N ]))l(x)dx. (4.21c)

More details about the nodal based DGTD can be found in [13].

4.3 Parallel implementation

In order to handle large scale simulations, parallel computation is necessary. Due to
decoupling of mass matrix for different elements, the DGTD has advantages of easy par-
allelization and relatively good scalability. The only communication is the exchange of
numerical fluxes over element boundaries at each step. Specific arrays and mappings
have been created to store the values on the opposite of each edge. MPI functions have
been used for communication between processors. The mesh is created by using the soft-
ware CUBIT. With the CUBIT, several million tetrahedron elements can be generated on a
desktop computer. Several routines for the mesh partitioning have also been developed.
The simplest one just evenly distributes the elements by its global id to all processors.
A more meaningful approach is dividing the domain evenly according to the location in
the domain. The publicly available software packages METIS and PARMETIS have also
been used for mesh partition. In order to output data efficiently, specific parallel I/O rou-
tines have been developed in the computation. The TECPLOT software has been used
for visualizing the results.

5 Experimental results

In this section, we examine the performance of the MIBTD and DGTD methods for solv-
ing discontinuous Maxwell interface problems. The stability, accuracy and convergence
of two algorithms will be investigated, by considering circular interface problems in both
TM and TE modes. For simplicity, a square domain Ω = [−1,1]×[−1,1] is used in all
tests. Analytical solutions are available to exactly verify numerical errors. For simplicity,
the exact solutions will also be utilized for generating the initial solutions and boundary
conditions in our computations. In both MIBTD and DGTD methods, the initial time and
stopping time will be assigned to be t= 0 and t= T respectively. The time increment is
denoted as ∆t=T/Nt , with Nt being the number of time steps.
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In the MIBTD algorithm, a uniform Yee mesh is employed, in which the spacing in
both x and y directions are the same, i.e., ∆x=∆y. For simplicity, we denote h=∆x=∆y.
Since Ω is a square domain, the grid numbers in both x and y directions are also the same
and are denoted as N=Nx =Ny for the on-grid component, i.e., the Ez component in the
TM mode and the Hz component in the TE mode. Denoting uh(xi,yj,T) as the numerical
approximation to a field component u(x,y,T) at time T, we use the following measures
to estimate L∞ and L2 errors of the MIBTD method

L∞= max
i,j=1,···,N

|u(xi,yj,T)−uh(xi,yj,T)|,

L2=

√

√

√

√

1

N2

N

∑
i=1

N

∑
j=1

|u(xi,yj,T)−uh(xi,yj,T)|2.

In the DGTD method, the triangle mesh is generated by the software CUBIT. For
simplicity, we will also denote the spacing of the DGTD discretization as h, which is
the value being specified by the user in the CUBIT to generate a mesh automatically.
The length of triangular edges on the domain boundary will be determined by this h
value. The total number of elements is denoted as Ns. Unless specified otherwise, the
polynomial order of nodal bases is chosen as P=1 to match the MIBTD method. The L∞

and L2 errors of the DGTD method are computed as

L∞=max|uk(x,y,T)−uk
h(x,y,T)|, k∈ [0,K−1], (5.1a)

L2=

√

∑k

∫

Dk
(uk(x,y,T)−uk

h(x,y,T))2ds

|Ω| . (5.1b)

5.1 Transverse magnetic mode

Consider a dielectric cylinder embedded in the free space. By setting the center of the
cylinder at (0,0), we denote the radius to be r0. We assign ǫ1 = µ1 = 1 to be the relative
parameters of vacuum while ǫ2 and µ2 are the relative dielectric parameters of the cylin-
der. The transverse magnetic (TM) electromagnetic wave is scattered by a time-harmonic
incident plane unit wavelength wave of the form [3, 30]

Einc
z = e−i(k1x+ωt), (5.2)

where k1 =ω
√

µ1ǫ1 is the propagation constant in the free-space medium and ω is the
angular frequency. Then the exact solution for such incident waves is computed by using
the summed-series technique [1, 3] as the follows

Ez(x,y,t)=Ez(r,θ,t)=e−iωt



















∞

∑
n=−∞

An Jn(k2r)einθ , r≤ r0,

∞

∑
n=−∞

(i−n Jn(k1r)+BnH
(2)
n (k1r))einθ , r> r0,

(5.3)
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where (r,θ) is the polar coordinate at (x,y), k2 =ω
√

µ2ǫ2 is the propagation constant for

the dielectric cylinder, Jn and H
(2)
n represent, respectively, the nth order Bessel function

of the first kind and the Hankel function of the second kind and the wave amplitude
coefficients equal to

An= i−n (k1/µ1)J′n(k1r0)H
(2)
n (k1r0)−(k1/µ1)H

(2)′
n (k1r0)Jn(k1r0)

(k2/µ2)J′n(k2r0)H
(2)
n (k1r0)−(k1/µ1)H

(2)′
n (k1r0)Jn(k2r0)

, (5.4a)

Bn= i−n (k1/µ1)J′n(k1r0)Jn(k2r0)−(k2/µ2)J′n(k2r0)Jn(k1r0)

(k2/µ2)J′n(k2r0)H
(2)
n (k1r0)−(k1/µ1)H

(2)′
n (k1r0)Jn(k2r0)

. (5.4b)

Then the radial component and angular component of the total magnetic field are given
as

Hr(r,θ,t)= e−iωt



















−i

ωµ2r

∞

∑
n=−∞

inAn Jn(k2r)einθ , r≤ r0,

−i

ωµ1r

∞

∑
n=−∞

in(i−n Jn(k1r)+BnH
(2)
n (k1r))einθ , r> r0,

(5.5a)

Hθ(r,θ,t)= e−iωt



















ik2

ωµ2

∞

∑
n=−∞

An J′n(k2r)einθ , r≤ r0,

ik1

ωµ1

∞

∑
n=−∞

(i−n J′n(k1r)+BnH
(2)′
n (k1r))einθ , r> r0.

(5.5b)

By using the coordinate transformation, exact solutions for Hx and Hy are determined as
the follows

Hx =cosθHr−sinθHθ , Hy =sinθHr+cosθHθ . (5.6)

In the following tests, we assign the radius of the cylinder to be r0 =0.4 and angular
frequency to be ω=2π. Two cases will be studied. In the first case, we take ǫ2 =10 and
µ2=1. Since µ1=µ2, we have that all three components Ez, Hx and Hy being continuous.
In the second case, we choose ǫ2 = µ2 = 10. Then the magnetic components Hx and Hy

are discontinuous across the interface Γ, while Ez is still continuous. We note that the
Bessel functions are singular at the origin (0,0). To avoid possible numerical problems,
we need to make sure that the origin is not sampled in our grids for the MIBTD and
DGTD methods. For the MIBTD method, this can be done by choosing the mesh size N
as an even integer, whereas a similar constrain can be implemented in the DGTD method
too.

We first study the stability of the MIBTD and DGTD methods with a large enough
stopping time T=10. It is well known that the Courant-Friedrichs-Lewy (CFL) stability
condition for the FDTD algorithm can be expressed as [42]

∆t≤Cm
h

vmax

√
d

, (5.7)
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Table 1: Critical CFL number of the MIBTD algorithm for the TM mode.

N h
Case 1: (ǫ2,µ2)=(10,1) Case 2: (ǫ2,µ2)=(10,10)
Critical Nt Cm Critical Nt Cm

20 1.05E-1 101 1.3302 99 1.3571
40 5.13E-2 197 1.3999 195 1.4142
80 2.53E-2 396 1.4106 394 1.4178

160 1.26E-2 825 1.3628 816 1.3778
320 6.27E-3 1654 1.3638 1956 1.1532

where d=2 is the dimension number and the maximum velocity of the propagating wave
is defined as

vmax=max
{ 1√

µ1ǫ1
,

1√
µ2ǫ2

}

.

Since we have µ1=ǫ1=1 in both cases, the maximum velocity is fixed to be vmax=1. The
value of the CFL constant Cm is determined by both the spatial and temporal discretiza-
tions. The procedure to numerically identify this CFL constant has been detailed in [30].
Essentially, we need to search for a critical number of time steps, Nt, which just remains
stable. The numerically detected CFL value Cm and critical Nt of the MIBTD algorith-
m are reported in Table 1. For the smooth problem, i.e., Case 1, Cm goes to a number
around 1.36 as h approaches zero. The CFL number Cm takes a smaller number when the
solutions are discontinuous in Case 2.

For the DGTD method, the stability condition is known to be [12]

∆t≤Cd ·min{√ǫµ|χ|−1} (5.8)

with
√

ǫµ reflecting the modified local speed of light due to materials and

χ=
|∇ξ|
∆ξ

+
|∇η|
∆η

+
|∇ζ|
∆ζ

. (5.9)

Here |·| refers to the absolute value of each and of the vector components, i.e., |∇ξ|=
[|ξx |,|ξy|,|ξz|]T . Hence, χ provides a measure of the local grid distortion as a consequence
of the mapping, Ψ, of I into D and (∆ξ,∆η,∆ζ) measures the axial distance separating
neighboring nodal points in I. In Table 2, the critical Nt and the CFL number Cd of the
DGTD algorithm are reported. Unlike the MIBTD method, the CFL number of the DGTD
method is the same for both Case 1 and Case 2, when the same triangular mesh is used.
Thus, only one set of data is shown in Table 2. It is seen that Cd goes to around 1.15 when
h goes to zero. This asymptotic value is very close to that of the MIBTD method in Case
2, but the DGTD method usually needs a larger critical Nt.

We next investigate the accuracy of MIBTD and DGTD methods with a stopping time
T=1. For both MIBTD and DGTD methods, we choose Cm =Cd=0.7 to ensure stability.
For each grid, the ∆t values can be correspondingly determined. The results of MIBTD
and DGTD methods are reported, respectively, in the Table 3 and Table 4. Here only the
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Table 2: Critical CFL number of the DGTD algorithm for both TM and TE modes.

Ns h̄ Critical Nt Cd

886 1.00E-1 305 1.045
3506 5.00E-2 650 1.107

13884 2.50E-2 1281 1.114
54708 1.25E-2 2557 1.138

220396 6.25E-3 5085 1.152

Table 3: Numerical convergence test of the MIBTD algorithm for the TM mode.

N h
Case 1: (ǫ2,µ2)=(10,1) Case 2: (ǫ2,µ2)=(10,10)

L∞ error Order L2 error Order L∞ error Order L2 error Order
20 1.05E-1 9.63E-1 1.89E-1 3.20E-0 6.23E-1
40 5.13E-2 2.67E-1 1.85 5.32E-2 1.83 3.62E-0 -0.18 4.77E-1 0.39
80 2.53E-2 6.71E-2 1.99 1.34E-2 1.99 1.82E-0 0.99 1.90E-1 1.33

160 1.26E-2 1.67E-2 2.00 3.30E-3 2.02 5.73E-1 1.67 5.17E-2 1.88
320 6.27E-3 4.20E-3 1.99 8.24E-4 2.00 1.50E-1 1.94 1.31E-2 1.98

Table 4: Numerical convergence test of the DGTD algorithm for the TM mode.

Ns h
Case 1: (ǫ2,µ2)=(10,1) Case 2: (ǫ2,µ2)=(10,10)

L∞ error Order L2 error Order L∞ error Order L2 error Order
886 1.00E-1 4.93E-1 1.30E-1 3.99E-0 7.32E-1
3506 5.00E-2 1.22E-1 2.02 2.83E-2 2.20 4.22E-0 -0.08 4.18E-1 0.81

13884 2.50E-2 2.84E-2 2.10 6.70E-3 2.08 1.07E-0 1.98 1.15E-1 1.86
54708 1.25E-2 9.07E-3 1.65 1.52E-3 2.14 2.51E-1 2.09 2.58E-2 2.16

220396 6.25E-3 2.36E-3 1.94 4.09E-4 1.89 6.66E-2 1.91 6.32E-3 2.03

errors in the Ez component are listed in both L∞ and L2 norms. The numerical errors of
all three components Ez, Hy and Hx are plotted in Fig. 7. Successive mesh refinements
are considered, so that we can calculate the numerical orders after each refinement. It can
be seen from tables and figures that the DGTD method are usually slightly more accu-
rate than the MIBTD method. Both MIBTD and DGTD methods deliver a second order
convergence in these studies, except when grids are too coarse in beginning refinements
of the Case 2. This is because the wavenumber k2 is too large with ǫ2 = µ2 = 10. When
one refines the mesh, the DGTD starts to converge, while the MIBTD follows in a later
refinement. Overall, once the convergence takes place, the convergence rate of the MIBT-
D method is slightly more uniform than the DGTD method, especially in terms of the L∞

norm.

The MIBTD algorithm is by design a second order scheme, while the DGTD algorithm
has the potential to deliver a higher order of accuracy. We have explored this by consid-
ering the polynomial order of nodal bases being P=2 in the DGTD computations of the
present TM test problems. The accuracies and convergence rates of the DGTD algorithm
for the Ez component is reported in Table 5. Here only the TM Case 1 is shown, since the
results of the other case are similarly. In comparing the present results with the previous
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Figure 7: Numerical convergence tests for the TM mode. (a) MIBTD scheme, Case 1 (ǫ2,µ2)= (10,1); (b)
MIBTD scheme, Case 2 (ǫ2,µ2) = (10,10); (c) DGTD scheme, Case 1 (ǫ2,µ2) = (10,1); (d) DGTD scheme,
Case 2 (ǫ2,µ2)=(10,10).

ones based on P=1, it is found that the DGTD method with P=2 indeed yields more ac-
curate solutions. However, the convergence rates in both L2 and L∞ norms do not reach
the third order, even though they are slightly over the second order. In other words, the
optimal convergence is not achieved in the present DGTD computations with P= 2. As
noted in [16], in which a DG method is applied to solve the elliptic interface problem,
the essential reason for the order reduction of the DG method is due to the geometrical
approximation of curved interfaces by regular triangular elements. Superparametric el-
ements are utilized in [16] to recover the optimal convergences of the DG method. The
implementation of such superparametric elements in the present nodal based DG method
is of great interests and will be explored in the future.

Table 5: Numerical convergence test of the DGTD algorithm with P=2 for the TM mode.

Ne h
Case 1: (ǫ2,µ2)=(10,1)

L∞ error Order L2 error Order
234 2.00E-1 4.59E-1 1.03E-1
886 1.00E-1 1.79E-1 1.83 1.77E-2 2.54

3506 5.00E-2 3.85E-2 2.22 3.80E-2 2.22
13884 2.50E-2 5.99E-3 2.68 9.87E-4 1.94
54708 1.25E-2 1.27E-3 2.24 2.49E-4 1.99
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Table 6: The execution time in seconds for TM Case 1 with different CPUs (1, 4, 16 and 64).

1 CPU 4 CPUs 16 CPUs 64 CPUs
Time Time Efficiency Time Efficiency Time Efficiency

7320.55 1665.555 1.098 448.22 0.929 191.37 0.585

The DGTD method is implemented in a parallel environment. To illustrate the CPU
time acceleration, we consider the Case 1 of the TM mode with h=0.025. The efficiency
gain in using 4, 16 and 64 processors is reported in Table 6. Even though the efficiency
becomes smaller when the number of processors increases, the CPU time indeed becomes
significantly shorter in the parallel computing.

5.2 Transverse electric mode

We next consider the transverse electric (TE) mode. The same circular interface and di-
electric coefficients as in the TM mode are employed for the TE mode. The incident plane
wave is assumed for Hz

Hinc
z = e−i(k1x+ωt). (5.10)

By using the summed-series technique [1,3] again, the exact solution for Hz field is given
as the follows

Hz(x,y,t)=Hz(r,θ,t)=e−iωt



















∞

∑
n=−∞

Cn Jn(k2r)einθ , r≤ r0,

∞

∑
n=−∞

(i−n Jn(k1r)+DnH
(2)
n (k1r))einθ , r> r0,

(5.11)

with the wave amplitude coefficients

Cn= i−n (k1/ǫ1) J′n (k1r0)H
(2)
n (k1r0)−(k1/ǫ1)H

(2)′
n (k1r0) Jn (k1r0)

(k2/ǫ2) J′n (k2r0)H
(2)
n (k1r0)−(k1/ǫ1)H

(2)′
n (k1r0) Jn (k2r0)

, (5.12a)

Dn= i−n (k1/ǫ1) J′n (k1r0) Jn (k2r0)−(k2/ǫ2) J′n (k2r0) Jn (k1r0)

(k2/ǫ2) J′n (k2r0)H
(2)
n (k1r0)−(k1/ǫ1)H

(2)′
n (k1r0) Jn (k2r0)

. (5.12b)

Then the radial component and angular component of the total electric field are given as

Er(r,θ,t)= e−iωt



















i

ωǫ2r

∞

∑
n=−∞

inCn Jn(k2r)einθ , r≤ r0,

i

ωǫ1r

∞

∑
n=−∞

in(i−n Jn(k1r)+DnH
(2)
n (k1r))einθ , r> r0,

(5.13a)

Eθ(r,θ,t)= e−iωt



















−ik2

ωǫ2

∞

∑
n=−∞

Cn J′n(k2r)einθ , r≤ r0,

−ik1

ωǫ1

∞

∑
n=−∞

(i−n J′n(k1r)+DnH
(2)′
n (k1r))einθ , r> r0.

(5.13b)
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Table 7: Critical CFL number of the MIBTD algorithm for the TE mode.

N h
Case 1: (ǫ2,µ2)=(10,1) Case 2: (ǫ2,µ2)=(10,10)
Critical Nt C Critical Nt C

20 1.05E-1 112 1.1956 99 1.3571
40 5.13E-2 206 1.3387 195 1.4142
80 2.53E-2 418 1.3364 394 1.4178

160 1.26E-2 904 1.2437 816 1.3778
320 6.27E-3 1826 1.2346 1956 1.1532

Table 8: Numerical convergence test of the MIBTD algorithm for the TE mode.

N h
Case 1: (ǫ2,µ2)=(10,1) Case 2: (ǫ2,µ2)=(10,10)

L∞ error Order L2 error Order L∞ error Order L2 error Order

20 1.05E-1 2.73E-0 4.16E-1 3.20E-0 6.23E-1
40 5.13E-2 1.07E-0 1.35 1.29E-1 1.60 3.62E-0 -0.18 4.77E-1 0.39
80 2.53E-2 3.14E-1 1.77 3.32E-2 1.96 1.82E-0 0.99 1.90E-1 1.33
160 1.26E-2 7.84E-2 2.00 8.30E-3 2.00 5.73E-1 1.67 5.17E-2 1.88
320 6.27E-2 2.05E-2 1.94 2.10E-3 1.98 1.50E-1 1.94 1.31E-2 1.98

Table 9: Numerical convergence test of the DGTD algorithm for the TE mode.

Ne h
Case 1: (ǫ2,µ2)=(10,1) Case 2: (ǫ2,µ2)=(10,10)

L∞ error Order L2 error Order L∞ error Order L2 error Order

886 1.00E-1 2.08E-0 2.59E-1 3.99E-0 7.32E-1
3506 5.00E-1 4.26E-1 2.29 5.09E-2 2.35 4.22E-0 -0.08 4.17E-1 0.81

13884 2.50E-2 1.15E-1 1.90 1.12E-2 2.18 1.07E-1 1.98 1.15E-1 1.86
54708 1.25E-2 3.16E-2 1.86 3.10E-3 1.85 2.51E-1 2.09 2.58E-2 2.16
220396 6.25E-3 8.75E-3 1.85 7.43E-4 2.06 6.66E-2 1.91 6.32E-3 2.03

By using the coordinate transformation, exact solutions for Ex and Ey are determined as
the follows

Ex =cosθEr−sinθEθ , Ey=sinθEr+cosθEθ . (5.14)

The physical parameters of the present TE mode are chosen as in the TM mode, i.e.,
r0 =0.4 and ω=2π. We also study two cases. For the first case, we also have ǫ2 =10 and
µ2=1. Nevertheless, unlike the TM mode, the present Maxwell interface problem is dis-
continuous. In particular, both Ex and Ey are discontinuous, while Hz is still continuous.
For the second case, we also choose ǫ2 =µ2=10. It is interesting to note that the present
TE case is actually identical to the second case of the TM mode, by simply exchanging
(Hz,Ex,Ey) with (Ez,Hx,Hy).

We start by checking the stability of the MIBTD and DGTD methods. The stability
conditions of the DGTD method remain unchanged for the TE mode, see Table 2. For the
MIBTD method, the critical CFL numbers based on a stopping time T= 10 are reported
in Table 7. Comparing with the TM results, the CFL numbers become slightly smaller in
the Case 1. For the Case 2, the CFL numbers are actually identical, because the physical
problem is essentially the same.
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Figure 8: Numerical convergence tests for the TE mode. (a) MIBTD scheme, Case 1 (ǫ2,µ2) = (10,1); (b)
MIBTD scheme, Case 2 (ǫ2,µ2) = (10,10); (c) DGTD scheme, Case 1 (ǫ2,µ2) = (10,1); (d) DGTD scheme,
Case 2 (ǫ2,µ2)=(10,10).

By taking T=1 and Cm =Cd=0.7, the L2 and L∞ errors in the Hz component of both
methods are given in Table 8 and Table 9, respectively. For a visual comparison, we plot
all numerical errors of all components consisting of Hz, Ey and Ex in Fig. 8. For the MIBTD
method, the convergence begins only when a sufficiently fine mesh is used, due to the
impact of discontinuous solution and large wavenumber. The second order convergence
is achieved on fine meshes. Moreover, the MIBTD results for Case 2 are identical to
those of TM mode Case 2, due to the problem equivalence. For the DGTD method, the
convergence takes place at an earlier stage. But the DGTD results for Case 2 are different
from those of TM mode Case 2. Moreover, the convergence rate of the DGTD method is
slightly less uniform than that of the MIBTD method, especially in terms of L∞ norm in
the Case 1. In summary, given the difficulty level of this discontinuous Maxwell interface
problem, it is encouraging to see that both methods yield second order of accuracy.

6 Conclusions

In this paper, a comparative study of two time domain Maxwell solvers is conducted.
The focus of this work is on the electromagnetic interface problems with discontinuous
electric and/or magnetic field components, for which the conventional solvers without
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special material interface treatments suffer a serious accuracy reduction near the inter-
faces. Circular interface problems with analytical solutions for both TM and TE modes
are employed in this paper to benchmark the performance of a collocation approach, i.e.,
the MIBTD method and a Galerkin approach, i.e., the DGTD method. In the collocation
approach, a novel MIB interface scheme is proposed for solving discontinuous Maxwell
interface problems, in which a proper handling of discontinuous and staggered field com-
ponents is offered. The physical jump conditions describing the regularity changes in
wave solutions across the interface are rigorously enforced in the MIBTD scheme so that
the accuracy is restored. In the Galerkin approach, the jumps of solutions across the
interface are captured via a proper numerical flux, which then can be preserved in the
time integration. This enables the DGTD method to accurately resolve the discontinuous
Maxwell interface problems. Numerical experiments are carried out to investigate the
stability, accuracy and convergence of both MIBTD and DGTD methods.

In comparison, it is interesting to note that each Maxwell solver has its own strength
and weakness.

• Based on Runge-Kutta time stepping schemes, both methods are conditionally sta-
ble with similar CFL numbers. The stability constraint of the DGTD method is
more uniform, while that of the MIBTD method changes slightly for the TM and TE
modes and when different dielectric coefficients are used.

• Built on a parallel computing environment, the present DGTD method is surely
faster than the MIBTD method.

• Both MIBTD and DGTD methods achieve a second order of convergence in nu-
merical tests. Based on a similarly mesh spacing, the DGTD method is slightly
more accurate than the MIBTD method, especially when a high wavenumber is in-
volved, while the convergence rate of the MIBTD method is slightly more uniform,
especially in terms of the L∞ norm.

• The DGTD algorithm is very robust, in the sense that a very minor change is need-
ed when it is applied to solve TM mode or TE mode and an interface problem with
discontinuous or continuous solutions. On the contrary, a significant change in the
MIBTD method is required in these scenarios. In particular, in the existing MITBD
methods, the electromagnetic fields are assumed to be continuous so that the pre-
vious methods simply cannot tackle the present discontinuous Maxwell interface
problem. A novel MIB scheme with a considerable improvement is thus developed
in this work.

Appendix A: Jump condition construction for the electric field

For seeking the first order jump conditions of all fields in the Cartesian grid, one can use
first derivative operator in (3.5). Then the first order jump conditions of Ez component in
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the Cartesian grid arise as follows

0=
[ 1

µ

∂Ez

∂n

]

=cosθ
1

µ+

( ∂Ez

∂x
v
)+

+sinθ
1

µ+

(∂Ez

∂y

)+
−cosθ

1

µ−

( ∂Ez

∂x

)−
−sinθ

1

µ−

(∂Ez

∂y

)−
, (A.1a)

0=
[ ∂Ez

∂τ

]

=−sinθ
( ∂Ez

∂x

)+
+cosθ

( ∂Ez

∂y

)+
+sinθ

( ∂Ez

∂x

)−
−cosθ

( ∂Ez

∂y

)−
. (A.1b)

If the extrapolation is conducted from the positive side, one will cancel (∂Ez/∂y)− from
(A.1a) and (A.1b) to achieve (3.18a), where the coefficients are given as

A+
x =

1

µ+
cosθ+

1

µ− tanθsinθ, A+
y =

1

µ+
sinθ− 1

µ− sinθ, A−
x =

1

µ− cosθ+
1

µ− tanθsinθ,

B+
x =

( 1

µ+ − 1

µ−

)

cosθ, B+
y =

1

µ− cosθcotθ+
1

µ+ sinθ, B−
y =

1

µ−

(

cosθcotθ+sinθ
)

.

Another first order jump condition for Ez (3.18b) can be derived by canceling (∂Ez/∂x)−

from (A.1a) and (A.1b).

Appendix B: Jump condition construction for the magnetic fields

To construct the first order jump conditions for the magnetic fields, we again apply the
operator in (3.5) to conditions (3.9) and (3.12) to get

0=
[∂(µHn)

∂n

]

+
[∂(µHτ)

∂τ

]

=
[∂(µHx)

∂x

]

+
[∂(µHy)
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]

, (B.2a)
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, (B.2b)
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+cosθsinθ
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]

. (B.2c)

By solving four equations (3.19), (B.2a), (B.2b) and (B.2c), we attain four simplified jump
conditions
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, (B.3a)
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where

C0=
µ+ǫ+−µ−ǫ−

ǫ+
.

Now note that term [∂(µHτ)/∂τ] remains unknown, but can be further simplified as
follows

[∂(µHτ)

∂τ

]

=(µ+−µ−)
(∂Hτ

∂τ

)+
+µ−

[∂Hτ
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. (B.4)

Note that [∂Hτ/∂τ]=0. So it is dropped out in the derivation.

Since µ is a piecewise constant across the interface, Eq. (3.11) can be deduced to an-
other equation

∂Hx

∂x
=−∂Hy

∂y
, (B.5)

for either positive or negative side, but not the both sides. One combines (B.3a), (B.4)
and (B.5) to achieve (3.20a). Another three jump conditions (3.20b), (3.20c) and (3.20d)
for these components can be obtained in the same manner. The coefficients involved in
these four equations are given as
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Appendix C: MIB matrix coefficients

The entries involved in the matrix equation (3.26) are given as follows.
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