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Abstract. In the present work concentrated on the two-dimensional problem of gener-
alized thermoelasticity for a fiber-reinforced anisotropic thick plate under initial stress.
Using generalized thermoelasticity theory with fractional order heat conduction, the
problem has been solved by a normal mode analysis. The effect of hydrostatic initial
stresses and fractional order parameter is shown graphically on the distributions of
the temperature, displacement and thermal stress components. It is found from the
graphs that the initial stress and the fractional parameter significantly influences the
varieties of field amounts.
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1 Introduction

In the recent, consideration has been given to the problems of generation and propagation
of elastic waves in an anisotropic elastic solids or layers of various configurations as
the propagation of elastic waves in anisotropic media is fundamentally not the same as
their propagation in isotropic media. The data obtained from such study is essential to
seismologists and geophysicists to find the location of the earthquakes and additionally
their energy, mechanism etc. and thereby gives vsignificant knowledge into the global
tectonics. Accessible data recommends that the layered media, crystals and different
materials, for example, fiber reinforced materials, fluid saturated porous materials etc.
exhibits anisotropy. Some hard and soft rocks underneath the earth surface show the
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reinforcement properties, i.e., the diverse components goes about as a single anisotropic
unit. These rocks when come in the method of seismic waves do influence their spread
and such seismic signals are always influenced by the elastic properties of the media
through which they travel.

The mechanical behavior of many fibre-reinforced composite materials is sufficiently
shown by the theory of linear elasticity for transversely isotropic materials, with the fa-
vored direction coinciding with the fibre direction. In such composites the fibres are
usually arranged in parallel straight lines. Nonetheless, different designs are utilized.
An illustration is that of circumferential reinforcement, for which the fibres are arranged
in concentric circles, giving strength and stiffness in the tangential (or hoop) direction.
Fibre-reinforced composites are utilized as a part of an assortment of structures because
of their low weight and high strength. A continuum model is utilized to clarify the me-
chanical properties of such materials. On account of an elastic solid reinforced by a series
of parallel fibres it is usual to assume transverse isotropy. In the linear case, the related
constitutive relations, relating infinitesimal stress and strain components, have five mate-
rials constants. The investigation of stress and deformation of fibre-reinforced composite
materials has been an imperative subject of solid mechanics for most recent three decades.

The idea of presenting a continuous self reinforcement at each point of elastic solids
was given by Belfied et al. [1]. Verma and Rana [2] applied this model to the rotation
of a tube. Sengupta and Nath [3] investigated a problem of the surface waves in fiber-
reinforced anisotropic elastic media. Hashin and Rosen [4] gave the elastic moduli for
fiber-reinforced materials. The problem of reflection of plane waves at the free surface of
a fiber-reinforced elastic half-space was discussed by Singh and Singh [5]. Singh [6] dis-
cussed the wave propagation in an incompressible transversely isotropic fibre-reinforced
elastic media. Singh [7] studied the effects of anisotropy on reflection coefficients of plane
waves in fibre-reinforced thermoelastic solid. Kumar and Gupta [8] investigated a source
problem in fibre-reinforced anisotropic generalized thermoelastic solid under acoustic
fluid layer. Ailawalia and Budhiraja [9] discussed the the effect of hydrostatic initial stress
on fibre-reinforced generalized thermoelastic medium. Abbas and Abd-Alla [10] studied
the effect of initial stress on a fiberreinforced anisotropic thermoelastic thick plate. Kumar
anf Gupta [11] investigated with the propagation of waves in the layer of an anisotropic
fibre reinforced thermoelastic solid. Abouelregala and Zenkour [12] studied the effect of
rotation on the general model of the equations of the generalized thermoelasticity with
fractional order for a homogeneous isotropic elastic half-space solid, whose surface is
subjected to a Mode-I crack problem. Abouelregala and Zenkour, [13] investigated the
generalized thermoelasticity problem for an infinite fiber-reinforced thick plate under
initial stress.

The theory to include the effect of temperature change, known as the theory of ther-
moelasticity, has also been well established. According to the theory, the temperature
field is coupled with the elastic strain field. In thermoelasticity, classical heat transfer,
Fourier’s conduction equation is extensively used in many engineering applications. The
classical theory of thermoelasticity Nowacki, [14, 15] rests upon the hypothesis of the



724 A. E. Abouelregal / Adv. Appl. Math. Mech., 9 (2017), pp. 722-741

Fourier law of heat conduction, in which the temperature distribution is governed by
a parabolic-type partial differential equation. Consequently, the theory predicts that a
thermal signal is felt instantaneously everywhere in a body. This implies that an infi-
nite speed of propagation of the thermal signal, which is impractical from the physical
point of view, particularly for short-time. Thus, the use of Fourier’s equation may result
in discrepancies under some special conditions, such as low-temperature heat transfer,
highfrequency or ultrahigh heat flux heat transfer, and so on.

In the classical dynamical coupled theory of thermoelasticity, the thermal and me-
chanical waves propagate with an infinite velocity, which is not physically admissible.
Lord and Shulman [16] introduced a theory of generalized thermoelasticity with one re-
laxation time for an isotropic body. In this theory, a modified law of heat conduction
including both the heat flux and its time derivatives replaces the conventional Fourier’s
law. The heat equation associated with this theory is hyperbolic and hence eliminates the
paradox of infinite speeds of propagation inherent in both coupled and uncoupled theo-
ries of thermoelasticity. Green and Lindsay [17] (referred to as the GL theory) extended
the coupled theory of thermoelasticity by introducing the thermal relaxation times in the
constitutive equations. These theories eliminates the paradox of infinite velocity of heat
propagation, are the generalized theories of thermoelasticity. The theory of thermoelas-
ticity without energy dissipation is another generalized theory and was formulated by
Green and Naghdi [18]. It includes the thermal displacement gradient among its inde-
pendent constitutive variables, and differs from the previous theories in that it does not
accommodate dissipation of thermal energy [19].

Fractional calculus is a natural extension of the classical mathematics. In fact, since
the foundation of the differential calculus the generalization of the concept of derivative
and integral to a non-integer order has been the subject of distinct approaches. Due to this
reason there are several definitions [20–22] which are proved to be equivalent. Fractional
calculus has been applied in many fields, ranging from statistical physics, chemistry to
biological sciences and economics. In recent years, there has been a great deal of interest
in fractional differential equations. Several definitions of the fractional derivative have
been proposed. The history and classic transform rules of this subject are well covered in
the monograph by Podlubny [23].

During recent years, fractional calculus has also been introduced in the field of ther-
moelasticity. Povstenko [24] has constructed a quasi-static uncoupled thermoelasticity
model based on the heat conduction equation with a fractional order time derivative. He
used the Caputo fractional derivative and obtained the stress components corresponding
to the fundamental solution of a Cauchy problem for the fractional order heat conduction
equation in both the one-dimensional and two-dimensional cases. In 2010, a new theory
of generalized thermoelasticity in the context of a new consideration of heat conduction
with a fractional order has been proposed by Youssef [25]. In the same year, Sherief et
al. [26] has constructed another model in generalized thermoelasticity theory by using
fractional time derivatives. Abouelregal [27] used the generalized thermoelasticity the-
ory that, based on a fractional order model, to solve a one-dimensional boundary value
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problem of a semi-infinite piezoelectric medium.
The development of initial stresses in the medium is due to many reasons, for exam-

ple, resulting from differences of temperature, process of quenching, shot pinning and
cold working, slow process of creep, differential external forces, gravity variations, etc.
The earth is assumed to be under high initial stresses. It is, therefore, of much interest to
study the influence of these stresses on the propagation of stress waves. Biot [28] showed
the acoustic propagation under initial stress, which is fundamentally different from that
under a stress-free state. He has obtained the velocities of longitudinal and transverse
waves along the coordinates axis only.

The wave propagation in solids under initial stresses has been studied by many au-
thors for various models. The study of reflection and refraction phenomena of plane
waves in an unbounded medium under initial stresses is due to Chattopadhyay et al. [29],
Sidhu and Singh [30] and Dey et al. [31]. Montanaro [32] investigated the isotropic linear
thermoelasticity with hydrostatic initial stress. Singh et al. [33], Singh [34] and Othman
and Song [35] studied the reflection of thermoelastic waves from a free surface under a
hydrostatic initial stress in the context of different theories of generalized thermoelastic-
ity. Ailawalia et al. [36] investigated deformation in a generalized thermoelastic medium
with hydrostatic initial stress.

The two-dimensional problem of generalized thermoelasticity for a fiber-reinforced
anisotropic thick plate under initial stress is studied in the context of the fractional or-
der theory. The upper surface of the plate is thermally insulated with prescribed surface
loading while the lower surface of the plate rests on a rigid foundation and temperature.
The problem is solved numerically using a normal mode analysis. Numerical results for
the temperature distribution, and the displacement and stress components are given and
illustrated graphically. It is found from the graphs that the initial stress significantly in-
fluences the variations of field quantities. The results obtained in this paper may offer
a theoretical basis and meaningful suggestions for the design of various fiber-reinforced
anisotropic thermoelastic elements under loading to meet special engineering require-
ments.

2 Basic equations of fractional thermoelasticity theory for

fiber-reinforced solids

The governing equations for a homogeneous transversely isotropic fiber-reinforced solid
with hydrostatic initial stress in the context of generalized thermoelasticity with frac-
tional order without any heat sources or body forces take the following forms:

The equation of motion [9]

σij,j+(ui,kσ0
kj),j =ρ

∂2ui

∂t2
, (2.1)

where σij are the components of stress, σ0
kj is the initial stress tensor, ρ is the density, ui
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are the components of displacement vector and i, j, k=1,2,3. The comma denotes space-
coordinate differentiation and the repeated index in the subscript implies summation.

The modified heat conduction equation with fractional order in the absence of heat
sources has the form [26]

(KijT,i),i=
(

δ+t0
∂α

∂tα

)[

ρCE
∂T

∂t
+T0

∂

∂t
(βijui,i)

]

, 0<α≤1, (2.2)

where Kij is the thermal conductivity tensor, t0 is a constant with the dimensions of time
that acts as a relaxation time, CE is the specific heat at constant strain, T0 is the tempera-
ture of the medium in its natural state, assumed to be such as |(T−T0)/T|≪1, βij is the
thermal elastic coupling tensor and eij are the components of the strain tensor.

The whole spectrum from local heat conduction through the standard heat conduc-
tion to the ballistic heat conduction is described by Eq. (2.2). The different values of the
parameter α with wide range (0<α≤2) cover different cases of the conductivity; (0<α<1)
correspond to weak conductivity, α=1 for normal conductivity, (1<α<2) correspond to
strong diffusion conductivity and α=2 for to ballistic conductivity.

The constitutive equations for a fibre-reinforced linearly thermoelastic anisotropic
medium with respect to the reinforcement direction b≡ (b1,b2,b3), where b2

1+b2
2+b2

3 = 1
are written as [9]

σij =λekkδij+2µTeij+χ(bkbmekmδij+bibjekk)

+2(µL−µT)(bkbiekj+bkbjeki)+βbkbmekmbibj−γ(T−T0), (2.3)

where λ, µT are the elastic constants, χ, β, (µL−µT) are the reinforcement parameters,
and δij is Kronecker delta. The comma notation is used for spatial derivatives and su-
perimposed dot represents time differentiation. The theories of coupled thermoelasticity,
generalized thermoelasticity with one relaxation time and the generalized theory without
energy dissipation follow as limited cases depending on the value of δ, t0 and α.

The heat conduction Eq. (2.2), in the limiting case α→0 and δ=1 transforms to:

(KijT,i),i=
( ∂

∂t
+t0

∂2

∂t2

)

(ρCET+T0βijui,i),

which is the same equation obtained by the generalized theory with one relaxation time.
In the limiting case, when α→0, t0 =1 and δ=0, the heat conduction Eq. (2.2), trans-

forms to:

(KijT,i),i=ρCE
∂2T

∂t2
+γT0

∂2

∂t2
(βijui,i),

which is the same equation of the generalized theory without energy dissipation intro-
duced by Green and Naghdi [18]. The coupled theory of thermoelasticity can be obtained
from Eq. (2.2) in the limiting case α→0, δ=1 and t0→0 as

(KijT,i),i=ρcE
∂T

∂t
+γT0

∂

∂t
(βijui,i).
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3 Formulation of the problem

We consider a homogeneous, transversely isotropic, thermally conducting thermoelastic
an infinite thick plate with traction free surfaces and thickness 2L under hydrostatic initial
stress. Let the origin of the coordinate system (x,y,z) is taken at the middle surface of the
plate, where −L≤x≤L. Since the xy plane is chosen to coincide with the middle surface
and y axis normal to it along the thickness, the components of the displacement vector
u=(u,v,w) and temperature T can be written as follows:

u=u(x,y,t), v=v(x,y,t), w=0, T=T(x,y,t). (3.1)

The reinforcement direction, b is setting as b=(1,0,0). According to the above problem
formulation, the constitutive relations can be derived from (2.3) as:

σxx =(λ+2χ+4µL−2µT+β)
∂u

∂x
+(λ+χ)

∂v

∂y
−β11(T−T0), (3.2a)

σyy =(λ+2µT)
∂v

∂y
+(λ+χ)

∂u

∂x
−β22(T−T0), (3.2b)

σxy =µL

( ∂v

∂x
+

∂u

∂y

)

. (3.2c)

The the forms of the constants β11 and β22 are

β11 =(2λ+3χ+4µL−2µT+β)α11+(λ+α)α22,

β22 =(2λ+χ)α11+(λ+2µT)α22,

where α11 and α22 are the coefficients of thermal expansion.
In similar way of driving (3.2a)-(3.2c), the equations of motion along x and y direc-

tions can be obtained as follows

(λ+2(χ+µT)+4(µL−µT)+β+σ0)
∂2u

∂x2
+(σ0+µL)

∂2u

∂y2

+(χ+λ+µL+µL)
∂2v

∂x∂y
−β11

∂T

∂x
=ρ

∂2u

∂t2
, (3.3a)

(λ+2µT+σ0)
∂2v

∂y2
+(σ0+µL)

∂2v

∂x2
+(χ+λ+µL+µL)

∂2u

∂x∂y

−β22
∂T

∂y
=ρ

∂2v

∂t2
, (3.3b)

where σ0 is the initial stress. According to the aforementioned above assumptions, the
heat equation can be obtained using (2.2) as follows:

K11
∂2T

∂x2
+K22

∂2T

∂y2
=
(

δ+t0
∂α

∂tα

)[

ρCE
∂T

∂t
+T0

∂

∂t

(

β11
∂u

∂x
+β22

∂v

∂y

)]

. (3.4)
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To simplify the above equations, the following non-dimensional variables are assumed

x′= c0ηx, y′= c0ηy, u′= c0ηu,

v′= c0ηv, θ=β11(T−T0)/(λ+2µT), t′= c2
0ηt,

t′0= c2
0ηt0, σ′

ij =σij/(ρc2
0), σ′

0=σ0/(ρc2
0),











(3.5)

where

c2
0=

A11

ρ
, η=

ρCE

K11
, A11=λ+2(χ+µT)+4(µL−µT)+β.

The above governing equations, with the help of Eq. (3.5) may be recast into the dimen-
sionless form after suppressing the primes as:

(1+σ0)
∂2u

∂x2
+(σ0+B4)

∂2u

∂y2
+(B1+B4)

∂2v

∂x∂y
− ∂θ

∂x
=

∂2u

∂t2
, (3.6a)

(B2+σ0)
∂2v

∂y2
+(σ0+B4)

∂2v

∂x2
+(B1+B4)

∂2u

∂x∂y
−B3

∂θ

∂y
=

∂2v

∂t2
, (3.6b)

∂2θ

∂x2
+ε1

∂2θ

∂y2
=
(

δ+t0
∂α

∂tα

)[∂θ

∂t
+

∂

∂t

(

ε2
∂u

∂x
+ε3

∂v

∂y

)]

, (3.6c)

σxx =
∂u

∂x
+B1

∂v

∂y
−θ, (3.6d)

σyy =B1
∂u

∂x
+B2

∂v

∂y
−B3θ, (3.6e)

σxy=B4

(∂u

∂y
+

∂v

∂x

)

. (3.6f)

Where

B1=
A12

A11
, B2=

A22

A11
, B3=

β22

β11
, B4=

µL

A11
, ε1=

K22

K11
,

A11=λ+2(χ+µT)+4(µL−µT)+β, ε2=
β22β11T0

ρCE A11
,

A12=χ+λ+µL, A22=λ+2µT , ε2=
β2

11T0

ρCE A11
.

4 Initial and boundary conditions

The above equations are solved subjected to the initial conditions,

u(x,y,t)=v(x,y,t)= θ(x,y,t)=0, t=0,

∂u(x,y,t)

∂t
=

∂v(x,y,t)

∂t
=

∂θ(x,y,t)

∂t
=0, t=0.
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The boundary conditions for the problem may be taken as

σxx(L,y,t)=−P, σxy(L,y,t)=0,
∂θ

∂x
(L,y,t)=0, (4.1a)

u(−L,y,t)=0, v(−L,y,t)=0, θ(−L,y,t)=0. (4.1b)

5 Normal mode analysis

The normal mode analysis gives exact solutions without any assumed restrictions on tem-
perature, displacement, and stress distributions. It is applied to a wide range of problems
in different branches. It can be applied to boundary-layer problems, which are described
by the linearized Navier–Stokes equations in electro hydrodynamics. The normal mode
analysis is, in fact, to look for the solution in the Fourier transformed domain, assum-
ing that all the field quantities are sufficiently smooth on the real line so that the normal
mode analysis of these functions exists. The normal mode expansion method has been
proposed by Cheng and Zhang [37] for modeling the thermoelastic generation process of
elastic waveforms in an isotropic plate.

The solution of the considered physical variable can be decomposed in terms of nor-
mal modes as the following form

[u,v,θ,σij](x,y,t)= [u∗,v∗,θ∗,σ∗
ij](x)e(ωt+iay), (5.1)

where ω is the (complex) frequency constant, i =
√
−1, a is the wave number in the y

direction, and u∗(x), v∗(x), θ∗(x), and σ∗
ij(x) are the amplitudes of the field quantities.

Using (5.1), Eqs. (3.6a)-(3.6f) take the forms

( d2

dx2
−g1

)

u∗+g2
dv∗

dx
= g3

dθ∗

dx
, (5.2a)

( d2

dx2
−g4

)

v∗+g5
du∗

dx
= g6θ∗, (5.2b)

( d2

dx2
−g7

)

θ∗= g8
du∗

dx
+g9v∗, (5.2c)

σ∗
xx =

du∗

dx
+iaB1v∗−θ∗, (5.2d)

σ∗
yy=B1

du∗

dx
+iaB2v∗−B3θ∗, (5.2e)

σ∗
xy=B4

(

iau∗+
dv∗

dx

)

, (5.2f)

where

g1 =

(

a2(σ0+B4)

(1+σ0)
+

ω2

(1+σ0)

)

, g2=

(

ia(B1+B4)

(1+σ0)

)

, g3 =
1

(1+σ0)
,
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g4 =

[

a2(B2+σ0)

(σ0+B4)
+

ω2

(σ0+B4)

]

, g5=
ia(B1+B4)

(σ0+B4)
, g6 =

iaB3

(σ0+B4)
,

g7 =
[

ω2ε1+ω(δ+t0ωα)
]

, g8=ω(1+t0ωα)ε2, g9 = iaε3ω(1+t0ωα).

Eliminating θ∗(x) and v∗(x) in Eqs. (5.2a)-(5.2c), we obtain

(D6−AD4+BD2−C)u∗(x)=0, (5.3)

with

A=
h1h5−h6g3h4−h3g2

h6−g8g2
, B=

h2h5−h1h6−h3h4

h5−g8g2
, C=

−h6h2

h5−g8g2
,

h1 = g4+g7, h2= g4g7−g9g6, h3= g8g4+g5g9,

h4 = g9g3+g2g7, h5= g2g8−g9, h6= g1g9.

The above equation can be factorized as

(D2−k2
1)(D2−k2

2)(D2−k2
3)u

∗(x)=0, (5.4)

where k2
n (n=1,2,3) are the roots of the following characteristic equation

k6−Ak4+Bk2−C=0. (5.5)

The solution of Eq. (5.4) is given by

u∗(x)=
3

∑
n=1

(M1n(a,ω)e−knx+M2n(a,ω)ekn x). (5.6)

In a similar manner, we get

(D6−AD4+BD2−C){v(x),θ∗(x)}=0. (5.7)

Similarly

θ∗(x)=
3

∑
n=1

(M′
1n(a,ω)e−kn x+M′

2n(a,ω)ekn x), (5.8a)

v∗(x)=
3

∑
n=1

(M1n”(a,ω)e−kn x+M2n”(a,ω)ekn x), (5.8b)

where Mn, M′
n, and Mn” are some parameters depending on a and ω. Substituting

Eqs. (5.5)-(5.8b) into Eqs. (5.2a)-(5.2c), we obtain the following relation:

M′
1n(a,ω)=H1n M1n(a,ω), M′

2n(a,ω)=H2n M2n(a,ω),

Mn”(a,ω)=H2n Mn(a,ω), n=1,2,3,
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where

H1n =
−(g8k3

n−h3kn)

k4
n−h1k2

n+h2
, H2n =−H1n,

H3n =
1

g9
[(k2

n−g7)H1n+g8kn], H4n =
1

g9
[(k2

n−g7)H1n−g8kn].

Thus, we have

θ∗(x)=
3

∑
n=1

(H1n M1n(a,ω)e−kn x+H2n M2n(a,ω)ekn x), (5.9a)

v∗(x)=
3

∑
n=1

(H3n M1n(a,ω)e−kn x+H4n M2n(a,ω)ekn x). (5.9b)

Substituting Eqs. (5.5), (5.9a), and (5.9b) into Eqs. (5.2d)-(5.2f), we obtain

σ∗
xx(x)=

3

∑
n=1

(H5n M1n(a,ω)e−kn x+H6n M2n(a,ω)ekn x), (5.10a)

σ∗
yy(x)=

3

∑
n=1

(H7n M1n(a,ω)e−kn x+H8n M2n(a,ω)ekn x), (5.10b)

σ∗
xy(x)=

3

∑
n=1

(H9n M1n(a,ω)e−kn x+H10n M2n(a,ω)ekn x), (5.10c)

where

H5n =−kn+iaB1H3n−H1n, H6n = kn+iaB1H4n−H2n,

H7n =−B1kn+iaB2H3n−B3H1n, H10n = iaB4+B4kn H4n,

H9n = iaB4−B4kn H3n, H8n =B1kn+iaB2H4n−B3H2n.

Substituting the expressions of the variables considered into the boundary conditions,
we obtain

σ∗
xx|x=L=

3

∑
n=1

(H5n M1n(a,ω)e−kn L+H6n M2n(a,ω)ekn L)=−P∗, (5.11a)

σ∗
xy|x=L=

3

∑
n=1

(H9n M1n(a,ω)e−kn L+H10n M2n(a,ω)ekn L)=0, (5.11b)

∂θ∗

∂x

∣

∣

∣

x=L
=

3

∑
n=1

(−knH1n M1n(a,ω)e−kn L+knH2n M2n(a,ω)ekn L)=0, (5.11c)

u∗|x=−L=
3

∑
n=1

(M1n(a,ω)ekn L+M2n(a,ω)e−kn L)=0, (5.11d)
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θ∗|x=−L=
3

∑
n=1

(H1n M1n(a,ω)ekn L+H2n M2n(a,ω)e−kn L)=0, (5.11e)

v∗|x=−L=
3

∑
n=1

(H3n M1n(a,ω)ekn L+H3n M2n(a,ω)e−kn L)=0. (5.11f)

After applying the inverse of matrix method, we have the values of the three constants
M1j and M2j (j=1,2,3)

(

M11 M12 M13 M21 M22 M23

)Tr
=E−1×F, (5.12)

where

F=
(

−P∗ 0 0 0 0 0
)Tr

,

E=























H51e−k1L H52e−k2L H53e−k3L H61ek1 L H62ek2 L H63ek3L

H91e−k1L H92e−k2L H93e−k3L H101ek1 L H102ek2 L H103ek3 L

−k1H11e−k1L −k2H12e−k2L −k3H13e−k3L k1H21ek1 L k2H22ek2L k3H23ek3 L

ek1 L ek2 L ek3 L e−k1L e−k2L e−k3 L

H11ek1L H12ek2 L H13ek3 L H21e−k1 L H22e−k2L H23e−k3L

H31ek1L H32ek2 L H33ek3 L H41e−k1 L H42e−k2L H43e−k3L























.

Hence, we obtain the expressions for the displacements, the temperature distribution,
and another physical quantities of the plate muscles.

6 Particular and special cases

6.1 Equation of coupled thermoelasticity

The equations of the coupled thermoelasticity (CTE theory) are obtained when t0=0 and
δ=1.

6.2 Equations of generalized thermoelasticity with one relaxation time

The equations of the Lord-Shulman (LS theory), are retrieved when α→1, t0>0 and δ=1.

6.3 Equations of generalized thermoelasticity without energy dissipation

The equations of the generalized thermoelasticity without energy dissipation (the lin-
earized GN theory of type II ) are obtained when α→1, δ=0 and t0 =1.

Also all the results reduce to the classical isotropic results when the anisotropic pa-
rameters for the fibre-reinforced medium tend to zero (if necessary writing χ= 0, β= 0
and considering |µL−µT|→0.
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7 Numerical results

We now consider a numerical example for which computational results are given. The
results depict the variations of normal displacement, normal force stress and tempera-
ture distribution in the context of fractional order thermoelasticity theory. To study the
effect of reinforcement on wave propagation, we use the following physical constants for
generalized fibre-reinforced thermoelastic materials:

λ=5.65×1010N/m2, µT =2.46×1010N/m2, µL =5.66×1010N/m2,

χ=−1.28×1010N/m2, β=220.9×1010N/m2, CE=0.787×103J/(kgK),

ρ=2660kg/m3, α11=0.017×10−4K−1, α22=0.015×10−4K−1,

K11=0.0921×103J·m−1 ·s−1 ·K−1, K22=0.0963×103J· m−1 · s−1 ·K−1,

τ0=0.02, a=1, T0=293K, L=1,

P∗=0.5, ω=ω0+iξ, ω0=2, ξ=1.

The calculations are carried out for a time of t = 0.3. The numerical technique out-
lined above is used for the distribution of the real part of the thermal temperature θ,
the displacements u and v, the distributions of stresses σxx, σyy, and σxy for the problem.
The field quantities including temperature, displacement components u, v, and stress
componentsσxx, σyy, and σxy depend not only on space x and time t, but also on fractional
order α. Here all the variables are taken in the non-dimensional forms.

Figs. 1-6 are drawn to give comparison of the results obtained for displacements,
temperature and stresses for three models of Lord and Shulman model, fractional or-
der model and classical model, against the thickness x for different values of α at y= 1.
Three different values of α (α=1,0.75 and α=0.25 i.e., in the absence and the presence of
the fractional) are considered. It can be found from Figs. 1-6 that, the physical quantities

Figure 1: Dependence of temperature θ on distance for different values of fractional order parameter α fractional
in the absence and presence of fiber-reinforcement.
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Figure 2: Dependence of horizontal displacement distribution u on distance for different values of fractional
order parameter α fractional in the absence and presence of fiber-reinforcement.

Figure 3: Dependence of vertical displacement ν on distance for different values of fractional order parameter
α fractional in the absence and presence of fiber-reinforcement.

depend not only on time and space, but also depend on the characteristic parameter of
fractional order thermoelasticity theory. We notice that the results for the temperature,
the displacement and stress distribution with the fractional order parameter included
in the heat equation are distinctly different from those without the fractional order pa-
rameter in the heat equation. The different values of the parameter α with wide range
(0<α≤1) cover the two cases of the conductivity; (0<α<1) for weak conductivity and
α=1 for normal conductivity (ordinary heat conduction equation).

Fig. 1 shows the variation of temperature with x and it indicates that temperature field
has maximum value at the boundary x=L=1 and then decreases to zero at x=−L=−1.
The y = 0 represents the plane of the crack, which is symmetric with respect to the y
plane. The effect of fractional order parameter on temperature increases the value of
the real part of of θ. As shown in Fig. 2, horizontal displacement u increases near the
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Figure 4: Dependence of stress σxx on distance for different values of fractional order parameter α fractional in
the absence and presence of fiber-reinforcement.

Figure 5: Dependence of stress σyy on distance for different values of fractional order parameter α fractional in

the absence and presence of fiber-reinforcement.

boundary x= L= 1, then smooth decreases again to reach its minimum magnitude just
at about the plate end x=−L=−1. The values of u for α=0.25,0.75 are larger compared
to those for α = 1. Fig. 3 shows vertical displacement v. We can see that displacement
component v always starts from a negative value and terminates at the zero value. The
values of v for α=0.25,0.75 are larger compared to those for α=1.

It is observed from these figures that on the rigid base at x=−L, the temperature and
displacements are zero which confirms the assumed boundary conditions. On the upper
surface of the plate, x=L is assumed to be thermally insulated and the displacements are
maxima which supports the physical fact.

The stress component σxx reaches coincidence with a negative value (Fig. 4). The
behaviors of the two cases with different values of fractional are similar. The fractional
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Figure 6: Dependence of stress σxy on distance for different values of fractional order parameter α fractional in

the absence and presence of fiber-reinforcement.

Figure 7: The temperature distribution in the case of material with fractional in the absence and presence of
initial stress.

order decreases the amplitudes of the stress. Figs. 5 and 6 show the same behavior as that
found in Fig. 4. Fig. 6 shows that stress component σxy satisfies the boundary condition
at x= L and has a different behavior compared to that of σyy. These trends obey elastic
and thermoelastic properties of the solid under investigation.

Figs. 1-6 show also the variation of the physical quantities with space x at t = 0.15
under two types with reinforcement and without reinforcement (i.e., α = 0, β = 0 and
µL−µT =0). The values of u, σxx, and σyy are evidently smaller with reinforcement when
compared to those in the absence of reinforcement. The values of thermal stress σxy and
displacement v and the values of θ are evidently larger with reinforcement when com-
pared to those in the absence of reinforcement. It is clear from the above investigation
that the surface waves in the fibre-reinforced medium are affected by the reinforced pa-
rameters.
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Figure 8: The displacement u distribution in the case of material with fractional in the absence and presence
of initial stress.

Figure 9: The displacement ν distribution in the case of material with fractional in the absence and presence of
initial stress.

Figure 10: The stress σxx distribution in the case of material with fractional in the absence and presence of
initial stress.
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Figure 11: The stress σyy distribution in the case of material with fractional in the absence and presence of

initial stress.

Figure 12: The stress σxy distribution in the case of material with fractional in the absence and presence of

initial stress.

Figs. 7-12 exhibit the variation of the temperature, displacement components u, v,
and stress components σxx, σyy, and σxy with distance x under the fractional order theory
theory at y=1 for three different values of initial stress (σ0=0,1,3) at α=0.5. It is clear from
the figures that the surface waves in the fibre-reinforced medium are depend not only on
the state and space variables t, x, and y, but also on the initial stress σ0. It has been
observed that the initial stress σ0 plays a vital role on the development of temperature,
stress, and displacement fields.

8 Conclusions

Analytical solutions based on the normal mode analysis for the themoelastic problem in
solids have been developed and utilized. The stress distributions and the temperature are
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evaluated as functions of the distance. The effects of anisotropy, hydrostatic initial stress
and fractional are studied on all the quantities. Analytical solutions based upon normal
mode analysis for thermoelasticity with fractional order in solids have been developed
and utilized. The computations have revealed that:

1. The presence of fractional order parameter α plays a significant role in all the phys-
ical quantities. Therefore, the presence of fractional order parameter in the current
model is of significance.

2. The fibre-reinforcement has an important role on the distributions of the field quan-
tities.

3. The method which used in the present article is applicable to a wide range of prob-
lems in thermodynamics and thermoelasticity.

4. The theories of coupled thermoelasticity (CTE), and generalized thermoelasticity
with one relaxation time (LS) and without energy dissipation (GN) can be obtained
as limited cases.

5. Deformation of a body depends on the nature of the forces applied as well as the
type of boundary conditions.

6. The variations of all the quantities show appreciable effect with and without de-
pendence of initial stress.

7. The method, which is used in the present article, is applicable to a wide range of
problems in thermodynamics and thermoelasticity.

8. According to the numerical results and its graphs, a conclusion about the new the-
ory of thermoelasticity has been constructed. The result provides a motivation to
investigate conducting materials as a new class of applicable materials.
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