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Numerical Integration over Pyramids
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Abstract. Pyramidal elements are often used to connect tetrahedral and hexahedral
elements in the finite element method. In this paper we derive three new higher order
numerical cubature formulae for pyramidal elements.
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1 Introduction

Let
K=

{

(x,y,z)∈R
3
∣

∣ |x|,|y|≤1−z, 0≤ z≤1
}

be the reference pyramidal element. For a continuous function f of K we shall look for
the numerical integration formulae

∫

K
f (x,y,z)dxdydz≈

n

∑
m=0

ωm f (Am), (1.1)

where weights ωm∈R
1 and at the same time positions of nodes Am∈K are appropriately

chosen so that Eq. (1.1) is exact for all polynomials of the highest possible degree.
Pyramidal elements are natural and useful for making face-to-face connections be-

tween tetrahedral and hexahedral elements in approximating the solutions of three-
dimensional initial and boundary value problems by the finite element method (see
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Figure 1:

Fig. 1). This often happens when one part of the solution domain is decomposed into
hexahedra and the other into tetrahedra (usually near a curved boundary).

In 1997 it was independently observed in [8] and [15] that a conforming finite ele-
ment method cannot be achieved with polynomial shape functions on pyramids. This
surprising statement was later exactly proved in [12] Liu et al., namely, that there is no
continuously differentiable function on the pyramid K that would be linear on its four
triangular faces and bilinear, but not linear, on its rectangular base. Therefore, in [12]
and [13] three symmetric composite finite elements with 5, 13, and 14 degrees of freedom
were introduced. Their piecewise polynomial shape functions on each pyramid yield a
conforming finite element space. Another way is to apply a nonconforming finite ele-
ment method (see, e.g., [2]), where finite element functions are, in general, discontinuous
on interior faces in a partition involving pyramidal elements. In this case we have to in-
tegrate polynomials and other smooth functions over pyramids to calculate the stiffness
matrix and the corresponding right-hand side (the load vector). For instance, the famous
discontinuous Galerkin method belongs to the class of nonconforming methods.

Numerical integration formulae on tetrahedra, prisms or hexahedra are very well
studied in the literature (see, e.g., [5, 7, 11]). However, up to the authors’s knowledge,
there are only a few papers dealing with numerical integration on pyramids. For in-
stance, nothing about this topic is mentioned in the encyclopedia [6]. Some special cu-
bature formulae on pyramids are treated in [9, 10, 14]. In [1] a bilinear surjective vector
mapping F from the unit cube to the reference pyramid K is proposed. The whole upper
face of the cube is mapped onto the upper vertex of K. Numerical integration on K is then
derived from the standard Gaussian formulae on the unit cube by means of the mapping
F. For instance, the numerical cubature formula that is exact for all cubic polynomials
has 8 nodal points inside the cube. Their images are inside of K, but the four upper
integration points are somewhat unnaturally accumulated near the top vertex (0,0,1).
Moreover, the corresponding numerical cubature formula (see Eq. (4.2)) is not exact for
all cubic polynomials. When solving nonlinear three-dimensional problems, numerical
cubature formulae usually cannot be avoided, since the entries of the stiffness matrix
and/or the right-hand side cannot be evaluated analytically.

In Sections 2 and 3, we derive new numerical cubature formulae which are exact
for all quadratic and cubic polynomials and they have only 5 and 6 integration points,
respectively. Our formulae are different from those presented in [1, 9, 10, 14]. Section


