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Abstract. The alternating direction implicit (ADI) method is a highly efficient tech-
nique for solving multi-dimensional time dependent initial-boundary value problems
on rectangles. When the ADI technique is coupled with orthogonal spline collocation
(OSC) for discretization in space we not only obtain the global solution efficiently but
the discretization error with respect to space variables can be of an arbitrarily high
order. In [2], we used a Crank Nicolson ADI OSC method for solving general non-
linear parabolic problems with Robin’s boundary conditions on rectangular polygons
and demonstrated numerically the accuracy in various norms. A natural question that
arises is: Does this method have an extension to non-rectangular regions? In this pa-
per, we present a simple idea of how the ADI OSC technique can be extended to some
such regions. Our approach depends on the transfer of Dirichlet boundary conditions
in the solution of a two-point boundary value problem (TPBVP). We illustrate our idea
for the solution of the heat equation on the unit disc using piecewise Hermite cubics.

AMS subject classifications: 65M70

Key words: Alternating direction implicit method, orthogonal spline collocation, two point bound-
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1 Introduction

ADI methods were first introduced in the context of finite differences (FD) by Peaceman
and Rachford [9] for solving elliptic and parabolic differential equations. Over the past
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70 years the ADI technique has been coupled with finite element Galerkin (FEG) and
OSC discretizations in space for solving efficiently a variety of multi-dimensional time
dependent initial-boundary value problems on rectangles, see [7] and references therein
for a brief overview of ADI FEG and ADI OSC methods.

For over 20 years, we have been developing and analysing new ADI OSC methods
for solving linear and nonlinear time dependent problems on rectangles and rectangular
polygons. In [1], we formulated and analyzed a Crank Nicolson ADI OSC method for
the solution of general linear parabolic problems with Dirichlet boundary conditions on
rectangles. In [2], we formulated a Crank Nicolson ADI OSC method to solve general
nonlinear parabolic problems with Robin’s boundary conditions on rectangular poly-
gons. The merits of these schemes and comparisons with ADI FD and ADI FEG methods
have been discussed in [7]. A natural question that arises is: Does the ADI OSC technique
have an extension to non-rectangular regions such as a triangle, a disc, a quadrilateral,
etc? The purpose of this paper is to present a simple idea of how the ADI OSC technique
can be extended to some such regions. Our approach depends on the transfer of Dirichlet
boundary conditions in the solution of TPBVP on the original interval without the end
subintervals of a non-uniform partition. We present our idea for the solution of the heat
equation on the unit disc in space using piecewise Hermite cubics in the space coordinate
directions.

A brief outline of the paper is as follows. In Section 2 we consider solution of TPBVP
on the original interval without the end subintervals. In Section 3 the ADI OSC method
for a unit disc is explained and numerical results, demonstrating the optimal rate of con-
vergence in the maximum norm, are presented. Concluding remarks are given in Section
4.

2 OSC for TPBVP without end subintervals

Consider the TPBVP on [a,b] with Dirichlet boundary conditions

Lu= f (x), x∈ (a,b), u(a)=ua, u(b)=ub, (2.1)

where a, b, ua, ub are given numbers, a< b, f is a given function on (a,b), and, with r a
given nonnegative function on (a,b),

Lu=−u′′+r(x)u. (2.2)

Assume that N is a natural number, {xi}N
i=0 is, in general, a nonuniform partition of [a,b],

that is,

a= x0< x1< ···< xN−1< xN =b.

Observe that there are N subintervals corresponding to the partition {xi}N
i=0. We want to

approximate u of (2.1)-(2.2) on [x1,xN−1] rather than [x0,xN ]; see Fig. 1.
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✲
x0 = a x1 xN−1 b = xN

Figure 1: Partition.

Let V be the space of piecewise Hermite cubics on [x1,xN−1] defined by

V=
{

v∈C1[x1,xN−1] : v|[xi ,xi+1]∈P3, i=1,··· ,N−2
}

,

where P3 is the set of polynomials of degree ≤3.
≤

✲

x0 = a x1 xN−1 b = xN

xi xi+1

ξi,1 ξi,2

r r r r r r r r r r

Figure 2: Collocation points.

In each [xi,xi+1], i=1,··· ,N−2, let ξi,1, ξi,2 (see black dots in Fig. 2) be two collocation
(Gauss) points given by

ξi,1= xi+
3−

√
3

6
(xi+1−xi), ξi,2= xi+

3+
√

3

6
(xi+1−xi). (2.3)

We look for the approximate solution U∈V such that

LU(ξi,k)= f (ξi,k), i=1,··· ,N−2, k=1,2. (2.4)

Since dim V = 2N−2 and the number of equations in (2.4) is 2N−4, we require two
additional equations. In order to define these equations, assume that p and q in P3 satisfy
respectively the following interpolation conditions

p(a)=ua, p(ξ1,1)=U(ξ1,1), p(ξ1,2)=U(ξ1,2), p(x2)=U(x2), (2.5a)

q(xN−2)=U(xN−2), q(ξN−2,1)=U(ξN−2,1), q(ξN−2,2)=U(ξN−2,2), q(b)=ub. (2.5b)

Fig. 3 shows that p of (2.5a) interpolates at four points around x1 and q of (2.5b) interpo-
lates at four points around xN−1.

✲
a x1 xN−1 b

x2 xN−2

r r r r r r

Figure 3: Interpolating points.

It is easy to see that

p(x)=ua p1(x)+U(ξ1,1)p2(x)+U(ξ1,2)p3(x)+U(x2)p4(x), (2.6)
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and

q(x)=U(xN−2)q1(x)+U(ξN−2,1)q2(x)+U(ξN−2,2)q3(x)+ubq4(x), (2.7)

where the pi and qi are cardinal functions, each of which in P3 is associated with one par-
ticular interpolation point used in the definitions (2.5a) and (2.5b) of p and q, respectively.
For example, p1 is associated with the interpolation point a and

p1(a)=1, p1(ξ1,1)=0, p1(ξ1,2)=0, p1(x2)=0.

The remaining pi and the qi are defined similarly. Each pi and qi is easily obtained using
Newton’s divided difference formula for the Lagrange interpolating polynomial. Our
two additional equations, complementing (2.4), are

U(x1)= p(x1), U(xN−1)=q(xN−1), (2.8)

which, on using (2.6) and (2.7), yield respectively

U(x1)−p2(x1)U(ξ1,1)−p3(x1)U(ξ1,2)−p4(x1)U(x2)=ua p1(x1) (2.9)

and

−q1(xN−1)U(xN−2)−q2(xN−1)U(ξN−2,1)−q3(xN−1)U(ξN−2,2)

+U(xN−1)=ubq4(xN−1). (2.10)

To describe the algebraic problem corresponding to (2.4), (2.9) and (2.10), we write the
approximate solution

U(x)=
N−1

∑
i=1

[c2i−1vi(x)+c2isi(x)], x∈ [x1,xN−1], (2.11)

where the vi and si in Vh are respectively the value and scaled slope basis functions asso-
ciated with the partition point xi. Substitution of (2.11) into (2.9), (2.4), and (2.10) gives
rise to the (2N−2)×(2N−2) linear system

Ac= f, (2.12)

where

c=[c1,c2,··· ,c2N−3,c2N−2]
T, f=[ f1, f2,··· , f2N−3, f2N−2]

T ,

and the entries of f are given in terms of ua, f (ξi,k), i=1,··· ,N−2, k=1,2, and ub. It follows
from formulas (5.1)-(5.3) in [1] defining the vi and si that v1 and s1 are zero outside the
interval [x1,x2], for i= 2,··· ,N−2, vi and si are zero outside the interval [xi−1,xi+1], and
vN−1 and sN−1 are zero outside the interval [xN−2,xN−1]. Therefore, the matrix A has the
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following structure, displayed here for N=6,
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The system (2.12) can be solved at a cost O(N−2) using the capacitance matrix method [3]
and the package COLROW [4, 5]. To describe this computation, we consider the matrix
B whose rows are the same as the corresponding rows in A, except that the first and last
rows of B are

[1,0,··· ,0,0,0,0], [0,0,··· ,0,0,1,0],

respectively. These two rows correspond to specifying U of (2.11) at x1 and xN−1, respec-
tively. The matrix B is almost block diagonal (ABD) [4] and nonsingular [6] since the
function r in (2.2) is nonnegative. A linear system with B can be solved at a cost O(N−2)
using the package COLROW of [4, 5] for solving ABD linear systems. We look for the
solution c of (2.12) in the form

c=d+γ1d1+γ2d2, (2.13)

where the numbers γ1 and γ2 are to be determined and the vectors d, d1, d2 are solutions
of the linear systems

Bd=[0, f2,··· , f2N−3,0]T , Bd1=[1,0,··· ,0,0]T , Bd2=[0,0,··· ,0,1]T . (2.14)

Using
A(i,:)=B(i,:), i=2,··· ,2N−3,

and (2.14) it is easy to verify that, for arbitrary γ1 and γ2,

A(i,:)(d+γ1d1+γ2d2)= fi, i=2,··· ,2N−3.

Moreover,

A(i,:)(d+γ1d1+γ2d2)=A(i,:)d+γ1A(i,:)d1+γ2A(i,:)d2, i=1,2N−2.

Hence c given by the right-hand side of (2.13) solves (2.12) if and only if γ1 and γ2 solve
the 2×2 linear system

[

A(1,:)d1 A(1,:)d2

A(2N−2,:)d1 A(2N−2,:)d2

][

γ1

γ2

]

=

[

f1

f2N−2

]

−
[

A(1,:)d
A(2N−2,:)d

]

. (2.15)
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Since A and B are nonsingular, it follows from Theorem 1 in [3] that the 2×2 matrix in
(2.15) is also nonsingular. Thus we obtain solution c of the system (2.12) by first comput-
ing, with the use of COLROW, the vectors d, d1, and d2 of (2.14). Then we set up and
solve the system (2.15) and finally we form c using (2.13). The cost of this computation is
O(N−2).

Numerical tests indicate that the proposed OSC scheme, comprising (2.4) and (2.8),
for approximating u of (2.1)-(2.2) is fourth order accurate in the maximum norm over
[x1,xN−1]. As a test example, we take [a,b]= [−1,1], u(x)= ex, and r(x)=1. For an even
natural number N, we use the nonuniform partition {xi}N

i=0 of [−1,1] defined by

−xi = xN−i=cos(iπ/N), i=0,··· ,N/2. (2.16)

We compute the maximum norm error in U on [x1,xN−1] using 10 points in each subin-
terval [xi,xi+1]. We expect O(h4) accuracy, where

h= max
i=1,···,N−2

(xi+1−xi).

Drawing, in the xy plane, half of the unit circle with the endpoints (−1,0) and (1,0),
dividing it into N equal subarcs, and using xN/2=0, we see that

h= xN/2+1−xN/2=sin(π/N)≈π/N for large N. (2.17)

For several values of N, denoted by Ni, and the corresponding values of h, denoted by
hi, we compute the convergence rate using the formula

Rate= log(ǫi/ǫi+1)/log(hi/hi+1), (2.18)

where ǫi is the error corresponding to Ni. The obtained results, presented in Table 1,
indicate the expected convergence rate of 4.

Table 1: Errors and rates.

|u−U|
Ni Error Rate
10 2.07–05
20 1.55–06 3.806
30 3.08–07 4.004
40 9.82–08 3.985
50 4.03–08 4.001

In what follows, we refer to the two additional equations in (2.8) as transferring of the
Dirichlet boundary conditions at a and b (see green dots in Fig. 4) to x1 and xN−1 (see red
dots in Fig. 4).

The equations in (2.8) are not the only choice of two additional equations comple-
menting (2.4). It is possible, for example, to use the following two equations

U′(x1)= p′(x1), U′(xN−1)=q′(xN−1), (2.19)
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✲
a x1 xN−1 b

r r r r

Figure 4: Transfer.

where p and q in P3 satisfy the following interpolation conditions

p(a)=ua, p(x1)=U(x1), p(x2)=U(x2), p′(x2)=U′(x2),

q(xN−2)=U(xN−2), q′(xN−2)=U′(xN−2), q(xN−1)=U(xN−1), q(b)=ub.

Again numerical tests (not shown here) indicate that the OSC scheme consisting of (2.4)
and (2.19) is fourth order accurate in the maximum norm over [x1,xN−1].

3 ADI OSC for parabolic problems on the unit disc

Assume that Ω is the open unit disc, that is,

Ω={(x,y) : x2+y2
<1},

and ∂Ω is the boundary of Ω, that is,

∂Ω={(x,y) : x2+y2 =1}.

Let ∆ be the Laplace operator. Consider the parabolic problem consisting of the heat
equation

ut−∆u= f (x,y,t), (x,y,t)∈Ω×(0,T], (3.1)

the initial condition

u(x,y,0)= g1(x,y), (x,y)∈Ω, (3.2)

and the Dirichlet boundary condition

u(x,y,t)= g2(x,y,t), (x,y,t)∈∂Ω×(0,T], (3.3)

where f ,g1 and g2 are given functions.

3.1 Partitions; collocation points

For an even natural number N, we construct a partition of Ω as follows. We divide the
unit circle into 2N equal subarcs using points {Pi}2N

i=0 with P0=P2N =(0,1) (see Fig. 5(a)).
Vertical and horizontal lines passing through the points Pi (see Fig. 5(a)) give nonuniform
partitions {xi}N

i=0 and {yj}N
j=0 of [−1,1] along the x and y axes, respectively (see Fig. 5(b)).

Note that the xi are given by (2.16) and that yj = xj, j=0,··· ,N.
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Figure 5: Consistent partition.

The obtained partition of Ω is consistent in the following sense. Let Rx be the union
of all vertical lines passing through the points (xi,0), i=0,··· ,N, and let Ry be the union
of all horizontal lines passing through the points (0,yj), j=0,··· ,N. Then (see Fig. 5(a))

Rx∩∂Ω=Ry∩∂Ω.

It is possible to obtain other consistent partitions of Ω. For example, with an even nat-
ural number N, another consistent partition of Ω is obtained using the uniform partition
{xi}N

i=0 of [−1,1] given by

xi=−1+2i/N, i=0,··· ,N,

and the corresponding nonuniform partition {yj}N
j=0 of [−1,1] given by

yj =−yN−j, yN−j =
√

1−(2j/N)2, j=0,··· ,N/2; (3.4)

see Fig. 6.

✻

✲ ✲

✻

✲
x0 xN

y0

yN

Figure 6: Consistent partition.

In the rest of this Section we use only the consistent partition shown in Figs. 5(a),
(b) to describe the ADI OSC method. In each subinterval [xi,xi+1], i= 1,··· ,N−2, there
are two collocation points ξi,1 ξi,2 (cf. (2.3)) and similarly, in each subinterval [yj,yj+1],
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j = 1,··· ,N−2, there are two collocation points ηj,1 ηj,2 (see black dots in Fig. 7(a)). We

have the closed rectangular polygon PΩ inside Ω given by

PΩ=

{

⋃

i,j=1,···,N−2

[xi,xi+1]×[yj,yj+1] : [xi,xi+1]×[yj,yj+1]⊂Ω

}

, (3.5)

and four collocation (Gauss) points of the form (ξi,k,ηj,l) in each cell of PΩ (see black dots
in Fig. 7(b)).

✻
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Figure 7: Collocation points.

For a natural number M and τ = T/M, let {tn}M
n=0 be a partition of [0,T] such that

tn =nτ, n=0,··· ,M, and let tn+1/2=(tn+tn+1)/2, n=0,··· ,M−1.

3.2 The approximate solution

For each tn, n = 0,··· ,M, and each ξi,k, i = 1,··· ,N−2, k = 1,2, the ADI OSC scheme in-
volves finding the approximate solution Un

i,k which is a piecewise Hermite cubic (in the y
variable) on [yγ(i),yN−γ(i)] (see Fig. 8), where the function γ is defined by

γ(i)=

{

N/2−i, if i=1,··· ,N/2−1,
i−N/2+1, if i=N/2··· ,N−2.

(3.6)
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Figure 8: Un
i,k(y)≈u(ξi,k,y,tn), y∈ [yγ(i),yN−γ(i)].
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Also, for each tn+1/2, n=0,··· ,M−1, and each ηj,l , j=1,··· ,N−2, l=1,2, the ADI OSC

scheme involves finding the approximate solution Un+1/2
j,l which is a piecewise Hermite

cubic (in the x variable) on [xγ(j),xN−γ(j)] (see Fig. 9), where the function γ is defined in
(3.6).
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Figure 9: Un+1/2
j,l (x)≈u(x,ηj,l ,tn+1/2), x∈ [xγ(j),xN−γ(j)].

3.3 The ADI OSC scheme

The ADI OSC scheme consists of the following three main steps (computations).

Step 1 Initial approximation.

At t0, for each ξi,k, i = 1,··· ,N−2, k = 1,2, the piecewise Hermite cubic U0
i,k on

[yγ(i),yN−γ(i)], with γ of (3.6), is determined by interpolating the values of g1(ξi,k,·)
(cf. (3.2)) at the collocation points on the vertical line segment {ξi,k}×[yγ(i),yN−γ(i)]
(see black dots in Fig. 10) and at the end points of the same vertical line segment (see
green dots in Fig. 10).
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Step 2 Advancing from level tn to level tn+1.

To advance the approximate solution from time level tn to tn+1, n=0,··· ,M−1, first,
for each ηj,l, j=1,··· ,N−2, l=1,2, we compute the piecewise Hermite cubic Un+1/2

j,l

on [xγ(j),xN−γ(j)], with γ of (3.6). Un+1/2
j,l satisfies the collocation equations

(2/τ)
[

Un+1/2
j,l (ξi,k)−Un

i,k(ηj,l)
]

−(Un+1/2
j,l )xx(ξi,k)−(Un

i,k)yy(ηj,l)

= f (ξi,k,ηj,l ,tn+1/2), i=γ(j),··· ,N−γ(j)−1, k=1,2,

(cf. the first equation of (3.1) in [2]) and the two additional equations obtained by
transferring the Dirichlet boundary condition (3.3) at the two boundary points (x,y,t)=
(

∓
√

1−η2
j,l ,ηj,l ,tn+1/2

)

(see green dots in Fig. 11) to the left and right end points

(see red dots in Fig. 11) of the horizontal line segment [xγ(j),xN−γ(j)]×{ηj,l}. Each

Un+1/2
j,l can be computed by solving the OSC TPBVP along the horizontal line segment

at cost O(N−2γ(j)).
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Figure 11: Advancing.

Next, for each ξi,k, i= 1,··· ,N−2, k= 1,2, we compute the piecewise Hermite cubic
Un+1

i,k on [yγ(i),yN−γ(i)], with γ of (3.6). Un+1
i,k satisfies the collocation equations

(2/τ)
[

Un+1
i,k (ηj,l)−Un+1/2

j,l (ξi,k)
]

−(Un+1/2
j,l )xx(ξi,k)−(Un+1

i,k )yy(ηj,l)

= f (ξi,k,ηj,l ,tn+1/2), j=γ(i),··· ,N−γ(i)−1, l=1,2,

(cf. the second equation of (3.1) in [2]) and the two additional equations obtained
by transferring the Dirichlet boundary condition (3.3) at the two boundary points

(x,y,t)=
(

ξi,k,∓
√

1−ξ2
i,k,tn+1

)

(see green dots in Fig. 12) to the lower and upper end

points (see red dots in Fig. 12) of the vertical line segment {ξi,k}×[yγ(i),yN−γ(i)]. Each

Un+1
i,k can be computed by solving the OSC TPBVP along the vertical line segment at

cost O(N−2γ(i)).
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Figure 12: Advancing.

Step 3 The approximate solution UM for t= tM =T on PΩ.

From Step 2, for each ξi,k, i=1,··· ,N−2, k=1,2, we know the piecewise Hermite cubic
UM

i,k on [yγ(i),yN−γ(i)], with γ of (3.6); (see Fig. 8). To determine the approximate

solution UM corresponding to t= tM =T and defined on the rectangular polygon PΩ

of (3.5), first, for each yj, j=1,··· ,N/2−1, we compute the piecewise Hermite cubic

UM(·,yj) on [xγ(j),xN−γ(j)] by interpolating the values UM
i,k(yj), i=γ(j),··· ,N−γ(j)−

1, k=1,2, (see the corresponding blue dots in Fig. 13(a)) and by interpolating the values

g2(∓
√

1−y2
j ,yj,T) (see the corresponding green dots in Fig. 13(a)). In a similar way,

for each yj, j=N/2+1,··· ,N−1, we compute the piecewise Hermite cubic UM(·,yj)
on [xγ(j−1),xN−γ(j−1)]. For j=N/2, and hence yj=yN/2=0, we compute the piecewise

Hermite cubic UM(·,0) on [x1,xN−1] by interpolating the values UM
i,k(0), i=1,··· ,N−2,

k=1,2, (see the corresponding blue dots in Fig. 13(a)) and by transferring the Dirichlet
boundary condition (3.3) at the two boundary points (x,y,t)=

(

∓1,0,T
)

(see green
dots in Fig. 13(a)) to the left and right endpoints (see red dots in Fig. 13(a)) of

✻

✲
q qq q q qqqqq qqyj qq

q

q

q

q

q

q

q

q

q

q

q q

q

q

q

q

q q

q

q

q

q

q

q

q

q

q

q

qq

q

q

q

q

qq q

q

q

q

q

q

q

q

q

q

q q q q q qqqqqqqyN/2 q qqq ✲

✻

✲
q q q q q q qqqqq qq q q qq q q

ξi,k

yj

xi

q

q

q

q

q

q

qqqq q qq q q q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

qq

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

(a) (b)

Figure 13: Approximate solution at t=T.



B. Bialecki and R. I. Fernandes / Adv. Appl. Math. Mech., 5 (2013), pp. 461-476 473

the horizontal line segment [x1,xN−1]×{0}. Values of UM at all points (xi,yj) and
(ξi,k,yj) in PΩ (see blue dots in Fig. 13(b)) are stored.

Next, for each ηj,l, j= 1,··· ,N−2, l = 1,2, we compute the piecewise Hermite cubic

UM(·,ηj,l) on [xγ(j),xN−γ(j)], with γ of (3.6), by interpolating the values UM
i,k(ηj,l),

i=γ(j),··· ,N−γ(j)−1, k=1,2, (see the corresponding blue dots in Fig. 14(a)) and
by transferring the Dirichlet boundary condition (3.3) at the two boundary points

(x,y,t)=
(

∓
√

1−η2
j,l ,ηj,l,T

)

(see green dots in Fig. 14(a)) to the left and right end

points (see red dots in Fig. 14(a)) of the horizontal line segment [xγ(j),xN−γ(j)]×{ηj,l}.
Values of UM at all points (xi,ηj,l) and (ξi,k,ηj,l) in PΩ (see blue dots in Fig. 14(b))
are stored.
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Figure 14: Approximate solution at t=T.

Thus, for any (x∗,y∗) in the rectangular polygon PΩ, UM(x∗,y∗) is obtained by locating
a cell of PΩ containing (x∗,y∗) and calculating the 2d Lagrange interpolant [8, pp. 385]
using the values of UM at the 16 points in the cell (see 16 blue dots in Fig. 15).
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Figure 15: Approximate solution at t=T.
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3.4 Numerical results

We solved the parabolic problem (3.1)-(3.3) with u=et+x+y and T=1. For an even natural
number N, we used partitions I and II corresponding to Figs. 5(a), (b) and Fig. 6, respec-
tively. We computed the maximum norm error in UM over the rectangular polygon PΩ

of (3.5) using 100 uniform points in each cell of PΩ. We expected O(τ2) accuracy in t and
O(h4) accuracy in x,y, where

h=max
{

max
i=1,···,N−2

(xi+1−xi), max
j=1,···,N−2

(yj+1−yj)
}

.

For partition I, h is given by (2.17). We set τ = 1/N2 so that for large N, by (2.17),
τ2=1/N4≈h4/π4, that is, τ2 is approximately proportional to h4 with the proportionality
constant π−4. For several values of N, denoted by Ni, and the corresponding values of
h, denoted by hi, we computed the convergence rate using the formula in (2.18), where
ǫi was the error corresponding to Ni. The obtained results, presented in Table 2, indicate
the expected convergence rate of 4 in the approximation UM with respect to x and y.

Table 2: Errors and rates.

|u(·,T)−UM|
Ni Error Rate
10 9.80–04
20 1.10–04 3.215
30 2.34–05 3.836
40 7.45–06 3.989
50 3.04–06 4.028

For partition II, it is clear from Fig. 6 that h= yN/2+1−yN/2 = yN/2+1, since yN/2 = 0.
Using the second equation in (3.4) with j=N/2−1, we obtain

h=yN/2+1 =
√

1−(N−2)2/N2 ≈2/
√

N for N large.

We therefore set τ = 1/N so that τ2 = 1/N2 ≈ h4/16, that is, τ2 is again approximately
proportional to h4 but with the proportionality constant 1/16. The convergence rates in
Table 3 were calculated in the same way as for Table 2. Once again the expected conver-
gence rate of 4 is seen approximately. Since τ2 and h4 are proportional to one another,

Table 3: Errors and rates.

|u(·,T)−UM|
Ni Error Rate
10 2.24–01
20 7.26–02 3.527
30 3.47–02 3.809
40 2.02–02 3.875
50 1.32–02 3.909
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the error goes to 0 like O(τ2)=O(1/N2), that is, convergence is quadratic with respect
to 1/N. This explains why the errors in Table 3 are larger than the corresponding errors
in Table 2.

4 Concluding remarks

We developed a simple approach to formulate an ADI OSC scheme for parabolic prob-
lems on some non-rectangular regions. The approach avoids using a conformal mapping
of a region onto a rectangle.

Several extensions are yet to be considered such as extension to more general regions,
variable coefficient and nonlinear parabolic problems, higher degree piecewise polyno-
mials, other types of problems, such as second order hyperbolic problems, systems of
parabolic equations, and three dimensional parabolic problems.

For an arbitrary region, it may not always be possible to construct a consistent nonuni-
form partition as shown for the unit disc in Section 3.1. Hence a generalization of our ADI
OSC scheme for arbitrary domains will be considered using inconsistent partitions which
are uniform in both coordinate directions.
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