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Abstract. In this paper, the Crank-Nicolson linear finite volume element method is
applied to solve the distributed optimal control problems governed by a parabolic
equation. The optimal convergent order O(h2+k2) is obtained for the numerical solu-
tion in a discrete L2-norm. A numerical experiment is presented to test the theoretical
result.

AMS subject classifications: 65M15, 65N08, 49M05, 35K05

Key words: Variational discretization, parabolic optimal control problems, finite volume element
method, distributed control, Crank-Nicolson.

1 Introduction

The optimal control problems introduced in [13] are playing an increasingly important
role in science and engineering. They have various applications in the operation of
physical, social, and economic processes. Many numerical methods, such as finite ele-
ment method, mixed finite element method, spectral method, streamline finite element
method etc., have been applied to approximate the solutions of these problems (see,
e.g., [3–8, 10, 14]).

In [16], to our best knowledge, the authors first use the finite volume element method
to obtain the numerical solution for an optimal control problem associate with a parabolic
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equation by using optimize-then-discretize approach and the variational discretization tech-
nique (proposed in [12]). Also, the authors derive some error estimates for the semi-
discrete solution and fully-discrete approximation. For the fully-discrete approximation,
the convergent order is O(h2+k) there. Here we develop the Crank-Nicolson linear finite
volume element method for solving the parabolic optimal control problems and get the
optimal order O(h2+k2).

In this paper, we consider the following optimal control problems: Find y, u such that

min
u∈Uad

1

2

∫ T

0

(

‖y(τ,x)−yd(τ,x)‖2
L2(Ω)+α‖u(τ,x)‖2

L2(Ω)

)

dτ, (1.1a)

yt(t,x)−∇·(A∇y(t,x))=Bu(t,x)+ f (t,x), t∈ J, x∈Ω, (1.1b)

y(t,x)=0, t∈ J, x∈Γ, y(0,x)=y0, x∈Ω, (1.1c)

where

∇·(A∇y)=
∂

∂xi

(

aij(x)
∂y

∂xj

)

,

Ω⊂R2 is a bounded convex polygon domain and Γ is the boundary of Ω, α is a positive
number, f (t,·),yd(t,·)∈ L2(Ω) or H1(Ω), J = (0,T], A= (ai,j)2×2 is a symmetric, smooth
enough and uniformly positive definite matrix in Ω, B : L2(J;L2(Ω))→ L2(J;L2(Ω)) is a
continuous linear operator, y0(x)=0, x∈Γ, Uad is a set defined by

Uad=
{

u : u∈L2(J;L2(Ω)), a≤u(t,x)≤b, a.e. in Ω, t∈ J, a,b∈R
}

.

A semi-discrete optimal system is carried out in [16] and the existence and uniqueness
of the solution for the system is proved there. Here we use the Crank-Nicolson scheme
to discretize the semi-discrete optimal system and obtain the optimal convergent order
O(h2+k2).

The remainder of this paper is organized as follows. In Section 2, we present some no-
tations. In Section 3, we present the Crank-Nicolson linear finite volume element method
for the optimal control problems. In Section 4, we first show some lemmas and then an-
alyze the error estimate between the exact solution and the Crank-Nicolson linear finite
volume element approximation. And in Section 5, a numerical example is presented to
test the theoretical results.

Throughout this paper, the constant C denotes different positive constant at each oc-
currence, which is independent of the mesh size h and the time step k.

2 Notations

We use the standard notations Wm,p(Ω) for Sobolev spaces and their associated norms
‖v‖m,p (see, e.g., [1]) in this paper. To simplify the notations, we denote Wm,2(Ω) by
Hm(Ω) and drop the index p=2 and Ω whenever possible, i.e.,

‖u‖m,2,Ω=‖u‖m,2=‖u‖m, ‖u‖0=‖u‖.


