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Abstract. In this paper, we present numerical computational methods for solving the
fracture problem in brittle and ductile materials with no prior knowledge of the topol-
ogy of crack path. Moreover, these methods are capable of modeling the crack initia-
tion. We perform numerical simulations of pieces of brittle material based on global
approach and taken into account the thermal effect in crack propagation. On the other
hand, we propose also a numerical method for solving the fracture problem in a ductile
material based on elements deletion method and also using thermo-mechanical behav-
ior and damage laws. In order to achieve the last purpose, we simulate the orthogonal
cutting process.
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1 Introduction

The behavior of materials can be classified into two categories: brittle and ductile. So,
steel and aluminum are usually fall in the class of ductile materials; glass and ceramic
are fall in the class of brittle materials. These two categories can be distinguished by
comparing the stress-strain curves. The material response for ductile and brittle materials
are exhibited by both qualitative and quantitative differences in their respective stress-
strain curves. Ductile materials will withstand large strains before the specimen rupture
and the rupture in brittle materials fracture occurs at much lower strains. The yielding
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region for ductile materials often takes up the majority of the stress-strain curve, whereas
for brittle materials it is nearly nonexistent.

The developments related to the theory of brittle fracture are based on the ideas of
Griffith [1]. In this theory, the fundamental quantities are the toughness Gc and the en-
ergy release rate G. Propagation will take place if G≥Gc. Despite the important contri-
bution of this theory, it has some shortcomings detailed in [2, 3]. Recently, the fracture
mechanics has been revisited by proposing different models of brittle fracture in linearly
elastic bodies inspired from the Griffith’s criterion. A variational theory was developed
by Bourdin et al. [2] end was studied by [3–5] aiming to model brittle fracture. Then, for
any displacement and crack configuration, one defines the total energy:

E(u,Γ)=P(e(u))+GcHN−1(Γ), (1.1)

where P(e(u)) denotes the elastic energy of the considered system subject to a displace-
ment u and cracked along Γ. HN−1(Γ) denotes the N−1 dimensional Hausdorff measure
of Γ, i.e., its length in 2D and its surface area in 3D. e(u) is the strain field. In order to
simulate the crack propagation based on the variational theory, we employ a numerical
method using the alternate minimization algorithm. Therefore, the first objective of our
work is to present the mains computational results of the crack initiation and propaga-
tion based on the variational approach and using an alternate minimization algorithm.
In addition, we examine also the crack formation under thermal shock in brittle material,
these numerical results will compared with experimental ones.

On the other hand and in order to propose a numerical method for solving the fracture
problem in a ductile material, we simulate the orthogonal cutting of the ductile material
by the formation of the discontinuous chip.

Cut modeling is highly conditioned by the relevance of the behavior law which should
describe the main phenomena and their interactions. The Johnson and Cook law [6], p-
resented in Eq. (1.2), is used to model orthogonal cutting.

σeq =[A+Bεn]
[
1+Cln

( ε̇

ε̇0

)][
1−

( T−Tamb

Tf −Tamb

)m]
, (1.2)

Tf is the melting temperature, Tamb is the room temperature and T is the cutting tempera-
ture. A is the yield strength of the work material at room temperature. B and n represent
the effects of strain hardening. C is the strain rate constant and m is the thermal softening
fraction. The strain rate ε̇ is normalized with a reference strain rate ε̇0=1s−1. The contin-
uous chip is characterized by a process of plastic deformation in the primary shear zone
(see Fig. 1). The chip flows continuously. This configuration is the most modeled in the
literature. One used two different methods to simulate the formation of the continuous
chip. The first consists in predefining the geometry of the chip [7–9]. The second starts
from an arbitrary geometry (i.e., without predefine the geometry of the chip) [10–14].

On the other hand, the discontinuous chip is characterized by its periodic rupture
and by the appearance of cracks. The shear stress reaches the limit of the material break
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Figure 1: Primary shear zone location.

in the primary shear zone and a crack propagates. Starting from an arbitrary geometry
(i.e., without predicted geometry of the chip), it is necessary to define a criterion for
separation to simulate the formation of discontinuous chip. Therefore, the second goal
of this paper is to present the behavior law and the failure model of Johnson and Cook
to simulate the orthogonal cutting process. In fact, we describe some numerical methods
to simulate orthogonal cutting with continuous and discontinuous chip and using the
Johnson and Cook law to model the behavior of the workpiece material. We show two
methods to modeling the formation of chip and to simulating the crack propagation in
a ductile material: the elements deletion method and the Johnson and Cook damage
model.

2 Overview of modeling the fracture mechanics

2.1 Fracture mechanics in fragile materials

The main objective of fracture mechanics is to determine the crack propagation in a con-
tinuous medium. The model of linear elasticity is sufficiently known to allow the study
of brittle fracture in fragile materials such as ceramics and glass. The developments re-
lated to the theory of brittle fracture are mainly based on the ideas of Griffith [1]. He
associates with each crack a surface energy proportional to its length. In this theory, the
fundamental quantities are the toughness Gc and the energy release rate G. Consider a
crack with length a in a deformable domain. For an ideally brittle material and according
to the law of conservation of energies, the energy balance during crack growth takes the
form:

G=
∂W
∂a

− ∂Eelast

∂a
=

∂Esur f

∂a
. (2.1)

The cracks growth if G≥Gc, and will not if G<Gc. The theory of Griffith [1] has some
shortcomings detailed in [2,3]. So, the fracture mechanics has been revisited and authors
propose other models of brittle fracture inspired from the Griffith’s criterion.

A variational theory was developed by Francfort and Marigo [15], and was be used
aiming to model brittle fracture [4,5,16–21]. The main idea consists in introducing a new
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Figure 2: Crack pattern in a slab after a thermal shock (see [28]).

variable α as defined in functional of Ambrosio and Tortorelli [22,23] on image segmenta-
tion problems developed by Mumford and Shah [24]. This variable controls the damage
of the structure. This theory allows the treatment of crack as surface of free discontinuity
which takes place in a structure in such a way that the crack is maintained at a minimum
level of the structure energy. The new functional characterizes the variational approach,
is parameterized by η and is defined by the Eq. (2.2)

E(u,α)=
µ

2

∫ (
(1−α)2+ϵ(η)

)
∇u·∇udx+Gc

∫ ( α2

4η
+η∇α·∇α

)
dx, (2.2)

where u is the anti-plane displacement, the variable α controls the damage field of the
structure, η is a regularized numerical parameter, ϵ is a positive infinitesimal whose role
is to render coercive the regularized functional and µ is the shear modulus of the consid-
ered material. In this formulation (Eq. (2.2)), the energy is made of two parts. The first
one is equal to the elastic energy, while the second is proportional to the crack length. In
order to simulate the crack propagation based on the variational theory, the finite elemen-
t method cannot predict the evolution of crack since it is unable to treat the space-time
trajectories of crack. To overcome this difficulty, we employ a numerical method based
on alternate minimization algorithm. In fact, The functional E(u,α) is not convex; this
makes the research for a minimum of the energy a very complex task. However, this
functional is convex at each variable separately, displacement u and damage variable α,
and can therefore be iteratively minimized with respect to these variables.

On the other hand, we focus also on the crack propagation in brittle materials under
thermal shock. The theoretical and numerical aspects of this problem have been studied
by many authors using the Griffith theory. In this context, [25] discusses the initiation and
propagation of the periodic crack pattern using a stress criterion for initiation. More re-
cently, [26,27] study spacing and initiation by global minimization of the Griffith energy.
Bourdin et al. [28] report numerical results of thermal shock problem obtained trough the
variational approach, focusing on the spacing between cracks as a function of the depth
(Fig. 2).

2.2 Fracture mechanics in ductile material

Because of the trend in the industry to optimise the cutting conditions and higher stroke
rates, modelling of machining process requires the development of advanced material
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distance D entre la pointe de l'outil et le noeud en vis à vis est inférieure à une distance critique D

Fig 1.22 : Critère de séparation des nœuds 

Les modèles utilisant la suppression des éléments ressemblent en quelque sorte aux modèles 
Figure 3: Nodal release procedure.

 

Figure 4: Deleting elements method.

models. Large plastic strain, hight strain rate and temperature effects, as well as damage
and fracture have to be taken into account. Several models exist and can be characterized
by different criteria, such as validity domain, physical or phenomenological bases, cou-
pled or uncoupled. In the field of machining and forming processes, the more commonly
used models are [6, 29–32]. Without going into details of these approaches, we are inter-
esting for the Johnson and Cook model [6]. The purely phenomenological Johnson and
Cook model is known for its simplicity and its ability to model hight strain rate processes
with heating effect. The damage behavior is modeled by a critical strain fracture criteri-
on. This damage model of Johnson and Cook may be used to simulate the formation of
chip in machining process.

On the other hand, in literature, the simulation of the formation of discontinuous chip
uses one of two criteria presented as follow:

• The chip segmentation is achieved through a nodal release procedure by defining
a bonded interface along the cutting path and by applying the proposed segmenta-
tion criterion to the state at a fixed distance ahead of the tool edge (Fig. 3). The idea
is to separate the chip from the workpiece when the distance D between the tool
edge and the nearest node is less than a critical distance Dc.

• Deletion criterion of elements [13, 33]. Models based on the deleting elements
method (Fig. 4) are similar to models based on nodal release procedure.

Thus, cracks can be created from the definition of the cutting model [34]. The crack
propagates in elements in contact with the tool as a function of the feed of the latter up
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to the deletion of these elements. Other studies, as shown in [35], ones have defined a
damage coefficient for chip breaking.

On the other hand, [14, 34] are interest to Johnson and Cook law to model fracture in
which, the model is based on the critical parameter WJC =∑(∆εeq/εr).

εr =
[

D1+D2exp
(

D3
σH

σeq

)][
1+D4 ln

( ˙εeq

ε̇0

)][
1+D5

( T−Tamb

Tf −Tamb

)m]
. (2.3)

The fracture will occur when the critical parameter of Johnson and Cook damage mod-
el [6] is WJC = 1. This model can take into account the effects of stress, the strain and
temperature on the damage. The problem of this model is the identification of its param-
eters (D1 to D5).

3 Mechanical model of brittle fracture using the global
approach

We assume that the material is elastic, isotropic and homogeneous with shear modulus
µ. The static model of anti-plane shear with fracture is given by minimizing the reg-
ularized energy provided by Eq. (2.2). We consider a rectangular structure occupying
the studied domain Ω ⊂ R2; Ω = (0,L)×(0,l) with L and l are respectively its length
and its width. The structure is fixed at left edge and submitted at the right edge to a
load-dependant boundary condition δ. The upper and lower edges are free. We consider
Dirichlet boundary conditions for damage variable α on the right and left edges of our
structure which are given in the following equation:

α(x1=0,x2)=α(x1=L,x2)=0, ∀x2∈ [0,l]. (3.1)

The problem consists in finding the displacement satisfying:

∂2u
∂x2

1
+

∂2u
∂x2

2
=0 dans Ω, (3.2a)

u(0,x2)=0, u(L,x2)=δ(t), ∀x2∈ [0,1], (3.2b)
∂u
∂n

=0, ∀(x1,x2)∈ [0,L]×[0,l]. (3.2c)

A standard linear (P1) Lagrange finite element method was used to discretize the prob-
lem on u and α respectively in the following equations (Eqs. (3.3) and (3.4c)):

P(U)α

{
Find u; u∈Aδ as ∀v∈A0 :∫

Ω

(
(1−α)2+ϵ

)
∇u·∇vdΩ=0, (3.3)
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with:

Aδ ={u∈H1(Ω) as u=δ in Γ1}, (3.4a)

A0={v∈H1(Ω) as v=0 in Γ1}, (3.4b)

P(α)U =


Find α; α∈H1(Ω) as ∀β∈H1(Ω) :∫

Ω
αβ|∇U|2dΩ+

∫
Ω

Gc

2η
αβdΩ+

∫
Ω

2Gcη∇α·∇β=
∫

Ω
β|∇u|2dΩ.

(3.4c)

Eq. (3.3) gives the anti-plane displacement u. It will be injected in the Eq. (3.4c) to find
the damage variable α.

The alternate minimizations algorithm is as follow:

Step 1 Require α(δ=0), dδ=T/N
Step 2 For i=1 to N do
Step 3 Set δ= idδ

Step 4 Find u solution of Eq. (3.3)
Step 5 Find α solution of Eq. (3.4c) with respect the irreversibility condition: α(δ)≥α(δ−

dδ)

Step 6 End for

The material properties are µ = 1 and fracture toughness Gc = 1. The mesh consists of
approximately 11276 linear finite elements and 5789 nodes. The mesh size is h=0.04, the
regularization parameters is η=0.06 and ϵ=10−5. We discretize the load interval N=440
in dδ=0.01 equi-distributed load steps. Fig. 5 represents the evolution of damage field in

 

 

 

Figure 5: Crack propagation.
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the rectangular domain as a function of load. A brutal cracking appears and the critical
load is overestimated δc>δth

c =2. In fact, for L=2, Gc=1 and µ=1, the theoretical critical
load δth

c is:

δth
c =

√
2LGc

µ
. (3.5)

The alternate minimizations algorithm cannot expect to converge to the global minimizer
of E(U,α). Those evolutions have to correspond to local minimizer of the regularized
energy. Otherwise, the load causing fracture δc converges to the theoretical value when
the ratio h/η decreases and converges to zero. Thus, if η≫h, the surface energy converges
to the theoretical value Eth

sur f =1. We remind that Bourdin et al. [5] shows that the surface
energy may be approximated using the following formula:

Esur f =Gc

∫
Ω

( α2

4η
+η∇α∇α

)
dx1dx2≃Gc

(
1+

h
4η

)
H1(Γ), (3.6)

where H1(Γ) is the length of crack. So, we amplify the fracture toughness by a factor
(1+h/4η), yielding an effective toughness Ge f f =Gc(1+h/4η) which has to be taken into
account when interpreting the numerical results. So, we justify why in the last numerical
computations, the surface energy Esur f is always superior to 1.

But, if η≫ h and η tends to zero, the surface energy is Esur f ≃Eth
sur f =1. So, the regu-

larization parameter η should be chosen large enough, as compared to the discretization
step h (η≫h) and η must meet one of the Γ−convergence properties of regularized energy
for the problem of brittle fracture (η≪1).

Moreover, we know that if the mesh is more tightened (mesh size h is so small), the
obtained solution using the finite element method is accurate to the analytic solution.
We model material failure using a gradient damage model characterized by the energy
function E(u,α). We conclude that with a best choice of numerical parameters (h≪η≪1),
we simulate the crack propagation in brittle materials, like as glass and ceramic, using the
alternate minimizations algorithm.

4 Thermo-Mechanical model of brittle fracture

We consider a rectangular piece with isotropic elastic stiffness tensor A0 and thermal ex-
pansion coefficient β. The initial temperature is T0, its lower edge is brought in contact
with dry ice held at temperature Ts. Assuming a null flux through the lateral and supe-
rior edges of the domain and when the heat penetration depth is small compared to the
length L. We neglect the effect of cracks on the heat transfer throughout the sample, and
thermo-elastic effects, i.e., assume that the deformation is slow enough that it induces
no changes in the temperature fields. These assumptions allow us to compare our nu-
merical experiments with the experimental ones founded in literature. So, we compute
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Figure 6: Numerical simulation of brittle material submitted to a thermal shock.

  

e1 e2

a1
a2

Figure 7: Thermal shock cracks pattern.

the temperature field at each time step, then minimize the total energy in which thermal
expansion is accounted for by replacing the elastic term P(e(u)) in Eq. (1.1) with:

P(e(u),T)=
∫

A0(e(u)−βT) : (e(u)−βT)dx. (4.1)

Fig. 6 represents the numerical simulation of a brittle material submitted to a thermal
shock. We show only the damage field (α=1).

During the initial stage, the thermal shock cracks initiate and propagate uniformly,
then the propagation speed decreases gradually with the release of thermal stress until
the elastic energy Eelast cannot support the simultaneous propagation of all cracks. We
defined a fundamental region with a minimum period, as shown in Fig. 7, where e2 is
the minimum crack spacing and a2 is the crack length. When the minimum point of the
surface energy Esur f jumps to a certain curve of spatial period doubling every time step
dt, crack continues to propagate until a length of a1, whereas the other cracks stop with a
length of a2 but always with an equal spacing e1 = e2. This process can be repeated until
the elastic energy induced by thermal stress cannot support the propagation of any crack-
s. The numerical simulations can conveniently reproduce the evolution of thermal shock
cracks, which is difficult to observe experimentally. It was found that with an increase in
the thermal shock temperature the initiating crack level appears between the developed
crack levels; the length of the longest crack level continues to increase, whereas the other
crack levels become shorter.

These interesting phenomena were experimentally confirmed as shown in [27]. In
fact, we show in Fig. 8 the experimental results for the crack patterns founded by [27]
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Figure 8: Comparison between the crack patterns in numerical models and in real specimen.

and the numerical ones. The simulations reproduce faithfully the crack patterns obtained
from quenching test. The similarity between the numerical results and the real test is
understood. So, the numerical study let us to understand the formation and the evolution
of thermal shock crack patterns in brittle materials.

5 Modeling of chip formation using the behavior law of
Johnson and Cook

The workpiece material properties have been modeled using the Johnson and Cook plas-
ticity model (Eq. (5.1)).

σeq =[A+Bεn]
[
1+Cln

( ε̇

ε̇0

)][
1−

( T−Tamb

Tf −Tamb

)m]
. (5.1)

Johnson and Cook work material model is used for elastic plastic work deformation-
s. The simulation results include not predicted chip formation. The Johnson-Cook law
have a main apport in the cutting process. In fact, the domain of validity of the law
of Johnson Cook covers the area of variation of plastic deformation (some units), rates
of deformation (reaches the value 105s−1) and temperature which can reach 60% of the
melting temperature of the material in machining processes. The workpiece is modeled
as a deformable rectangular solid, the length and the width are respectively L and l. The
behavior law of the workpiece is defined by the Johnson Cook law. The material of the
workpiece is the steel AISI1045 (C48 according to AFNOR standard). The coefficients of
the constitutive law is presented in the Table 1.

On the other hand, several choices already exist in literature for the modeling of the
cutting tool. We consider the cutting tool as a rigid material. The tool cutting edge radius

Table 1: The coefficients of the behavior law.

A B C n m ε̇0 Tf (C) Tamb(C)
800 700 0.04 0.5 1 1 1460 20
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Fig 2.9 Modèle de coupe 

u2 

u1 

Vc 

Figure 9: Cutting model.

is equal to 0.05mm. The rake and clearance angle are respectively equal to 10◦ and 11◦.
So, the cutting model is defined using ABAQUS is presented in Fig. 9.

The dimension of any element in the upper side of the workpiece is 0.05mm (accord-
ing to −→u1 ) and 0.03mm (according to −→u2 ). Whereas, the dimensions are respectively equal
to 0.05mm (according to −→u1 ) and 5mm (according to −→u2 ) in the lower side. A cutting speed
Vc is applied on the tool and the lower and left edges of the workpiece are fixed. In the
first, we show the formation of continuous chip in Figs. 10 and 11. They present respec-
tively the variation of Von Mises stress and temperature in our structure. We simulate
the continuous chip formation which is characterized by a plastic deformation process
in the primary shear zone. We note in Figs. 10 and 11 that the Von Mises stress and the
temperature are maximal in the primary shear zone. The maximal von Mises stress is :
σmax

vonMises=1800MPa. The analysis of the thermal field during the simulation of the cutting
shows that maximum temperature is located around the tool tip, Tmax =839◦C. There is
no separation criterion defined since chip formation is assumed to be due to plastic flow,
therefore, the chip is formed by continuously remeshing the workpiece.

6 Mechanisms of discontinuous chip formation in hard
machining

In this section, we use the same characteristics of the workpiece and the tool in the simu-
lation of orthogonal cutting with continuous chip formation. Changes in the model of the
last paragraph concern the mesh size of the workpiece, the cutting speed and the cutting
thickness. The dimension of any element in the upper side of the workpiece is 0.035mm
(according to −→u1 ) and 0.025mm (according to −→u2 ). The total displacement of the tool is
0.425mm. The cutting speed is Vc = 500m/min and the cutting thickness is h1 = 1mm.
We present in the next two methods to simulate discontinuous chip using a procedure
of deleting elements method and the thermo-Mechanical model of Johnson and Cook of
ductile fracture.
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Fig 2.10 Variation de la contrainte équivalente de Von Mises (Vc = 9m/min ; h1 = 0,1mm) 

Fig 2.11 Variation de la contrainte équivalente de Von Mises (Vc = 50m/min ; h1 = 0,1mm) 

Figure 10: Variation of the Von Mises stress.

 

Figure 11: Variation of the temperature.

6.1 Procedure of deleting elements method

To simulate the initiation and propagation of cracks, we add a calculate module for
the cyclic removal of the damaged elements during the simulation. Only a minority
of work [35] succeeds in establishing this type of technique. The main idea is to inter-
cept the intermediate results generated during the simulation to identify the damaged
elements. Then, the model will be updated by removing damaged elements and the sim-
ulation will continue. This technique will be applied periodically during the simulation.
Abaqus allows the exploitation of its outputs using external programs called subroutines
which provides a strong and flexible analysis tool. Thus, a subroutine may access to a
simulation outputs which are saved in a file generated after the simulation end. This file
is composed of a set of records.

We present in Fig. 12 some examples of records which may exist in an output file.
Records having as key value 107 define the node coordinates. Records having as key
value 1900 represent the model elements defined by enumerating nodes constituting each
element. Besides, records having as key value 101 represent the displacement of each
node of the resulting model compared to the initial one along the different coordinate
axes. The external module should be able to exploit the simulation outputs, updating
the model, and to continue the simulation. We decomposed the real simulation time
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Record key: 107 Output variable identifier: COORD

Record type: Coordinates
Attributes: 1  – Node number. 

2  – First coordinate. 
3  – Second coordinate. 
4  – Etc.

Record key: 1900 Record type: Element definitions 

Attributes: 1  – Element number. 
2  – Element type (characters, A8 format, left justified). 
3  – First node on the element. 
4  – Second node on the element. 
5  – Etc.

Record key: 101 Output variable identifier: U

Record type: Displacements  
Attributes: 1  – Node number. 

2  – First component of displacement. 
3  – Second component of displacement. 
4  – Etc.

Ainsi, une « subroutine » peut exploiter les résultats de la simulation « modele.inp » à travers les 
Figure 12: Structure of the output records of Abaqus.

into a set of periods. We use this period as a partial simulation time having as result
an intermediary result of the real simulation. After each partial simulation, the removal
material module is executed in order to generate a new model which will be used as input
of the next partial simulation. The generated model corresponds exactly to the model
resulting of the previous simulation but where the damaged elements are removed.

The removal materials model is presented in Fig. 13. This module takes as input a
file describing the initial model and begins by starting the first partial simulation which
generates an output file. The latter will be converted by our external module to generate
a file which will be used by the Fortran subroutine. Then, the materials removal module
will run the Fortran subroutine which will use the converted file as well as files describing
the geometry of the model resulting from the previous partial simulation. The latter
includes the piece nodes and elements, and the cutting tool nodes and elements.

Thus, the Fortran subroutines will use these data in order to generates files describing
the geometry of the new model resulting from the partial simulation as well as the stress
and deformation of each element of the model. Based on these data, the material removal
module will identify elements which should be deleted. Then, it will generate the new
model which corresponds to the new geometry where damaged elements are deleted,
and finally apply the resulting stress and deformation as initial conditions of the new
model. The latter will be used as input of the next partial simulation.

In order to identify the elements which should be deleted, the material removal mod-
ule analyzes the Fortran subroutine output to select elements having a MISES value high-
er than the tensile strength of the used material.

Thus, element 2 (Fig. 14) is deleted when its equivalent von Mises constraint reaches
the tensile strength. The new model allowing the execution of the next partial simulation
is created while respecting the following constraints:
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déformation et contrainte, comme conditions initiales des élément du nouveau modèle. 

Diag 2.3 Fonctionnement du module d’enlèvement de matière 

Copeau.k.inp Abaqus job=Copeau.k.inp Copeau.k.sel

Abaqus convert job= Copeau.k 

Copeau.0.fil

subroutine

Copeau.k.0.elem.inp 

Copeau.k.0.node.inp

Copeau.k.0.out.inp

Copeau.k.0.elem_out.inp 

Copeau.k.1.elem.inp 

Copeau.k.1.node.inp

Copeau.k.1.out.inp

Copeau.k.1.elem_out.inp 

Copeau.k.1.peeq.inp

Copeau.k.1.sig.inp

Copeau.k.1.Mises.inp

Copeau.(k+1).0.elem.inp 

Copeau.(k+1).0.node.inp

Copeau.(k+1).0.out.inp

Copeau.(k+1).0.elem_out.inp 

Copeau.(k+1).0.peeq.inp

Copeau.(k+1).0.sig.inp

k = k+1

1

2

3

4Element deleting

Figure 13: Material removal process.

 

Figure 14: Elements removal principal.

• The nodes coordinate of the new model correspond to the coordinates generated by
the subroutine. Thus the geometry of the new model corresponds to the geometry
of the model resulting from the previous partial simulation

• A crack is initiated and the element, which the Von Mises stress became higher
then the critical value, is deleted along with all parameters related to this element
including element connectivity definition, the strain value and the stress value.

• For each element of the new model, initial conditions specifying the values of PEEQ,
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TEMP, and S should be added in order to ensure that the initial values of these pa-
rameters for the next partial simulation correspond to their values at the end of the
previous partial simulation. Thus, we ensure a correct evolution of these parame-
ters values during the real simulation.

Based on this method, we represent in Fig. 15 first iteration and in Fig. 16 the final chip
formation and separation during the process. So, every element having an equivalent
Von Mises stress value σvonMises higher than according to the tensile strength σr=750MPa
will be removed.

 

 
 

Fig 2.23 Copeau.0.inp 
Figure 15: First iteration.

à 0,1 mm. 

 
Fig 2.26 Copeau.3.inp 

La contrainte équivalente selon Von Mises maximale dans les éléments est   = 986MPa. Figure 16: Final iteration.

The maximal equivalent Von Mises constraint is σmax = 986MPa. We notice that the
equivalent Von Mises constraints in the piece are maximal in the primary shear zone. If
we continue the simulation, the first chip fragment will be totally detached of the piece
and a second chip fragment will be formed.

6.2 Thermo-Mechanical model of ductile fracture

Johnson and Cook [6] proposed a model for metals subjected to strains, strain rates and
heating effects. In this model, the von Mises flow stress is depending on strain, strain rate
sensitivity and temperature dependence of stress. They proposed also a damage criterion
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Figure 17: Discontinuous chip formation based on the Johnson and Cook damage law.

based on cumulative plastic strain and given by Eqs. (6.1a) and (6.1b).

εr =
[

D1+D2exp
(

D3
σH

σeq

)][
1+D4 ln

( ˙εeq

ε̇0

)][
1+D5

( T−Tamb

Tf −Tamb

)m]
, (6.1a)

WJC =∑
∆εeq

εr
. (6.1b)

In Eq. (6.1a), σH is the hydrostatic stress, σeq is the von Mises equivalent stress, ε̇0 =
1s−1 is the reference strain rate. D1, D2, D3, D4 and D5 are the material constants. In
Eq. (6.1b), ∆εeq is the increment of equivalent plastic strain. So, the fracture will occur
when WJC=1, the stresses are set to zero, simulating rupture. The problem of this model
is the identification of its parameters (D1 to D5).

The material data are given in Table 2 and will be used in numerical computation.
They may be given from the literature [36] and determined also experimentally.

Based on this method, we represent in Fig. 17 some discontinuous chip which are
formed by using the Johnson and Cook damage law.

We can show the coefficients of the Johnson and Cook damage law have an important
influence on the morphologie of chip and the value of plastic strain. The problem of this
model is the identification of its parameters (D1 to D5). So the actual research problem is
to define a method to identify the Johnson Cook behavior and damage laws coefficients.
To achieve this purpose, we can employ an orthogonal cutting simulation by the contin-
uous chip formation. The criteria of identification take into account both the geometry
of the chip, the variation of temperature and the cutting forces, and these results may be
compared to the experimental ones.

Table 2: The coefficients of the Johnson and Cook damage law.

D1 D2 D3 D4 D5
0.3 0.28 −3.03 0.0014 1.12
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7 Conclusions

In this paper, we propose in the first, numerical method to simulate the crack propagation
in a brittle and ductile materials.

In fact, this work deals with two problems. The first consists of 2D anti-plane shear
experiment on a rectangular domain and without an initial crack. The second one con-
sists of presenting a cracking process in ceramic materials under thermal shock. The
numerical simulations reveal the periodical and hierarchical characteristics of thermal
shock cracks. So, we can simulate the crack propagation in brittle materials using a dam-
age thermo-mechanical model. The last is the variational approach based on the theory
of Griffith.

In the second, we present numerical implementation of thermo-mechanical model
used to simulate the cutting process of ductile materials. We use the Johnson and Cook
laws of behavior and damage to simulate the formation of continuous and discontinuous
chips.

In fact, the Johnson and Cook law is used to model the workpiece behavior. Thus, we
simulate the formation of discontinuous chip. It is characterized by its periodic rupture.
The shear stress reaches the breaking point of the material in the primary shear zone
and a crack propagates. The discontinuous chip is obtained by using two methods, the
element deletion criterion and the failure model of Johnson and Cook.
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