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Abstract. Based on the boundary vorticity-flux theory, topology optimization of the
caudal fin of the three-dimensional self-propelled swimming fish is investigated by
combining unsteady computational fluid dynamics with moving boundary and topol-
ogy optimization algorithms in this study. The objective functional of topology op-
timization is the function of swimming efficiency, swimming speed and motion di-
rection control. The optimal caudal fin, whose topology is different from that of the
natural fish caudal fin, make the 3D bionic fish achieve higher swimming efficiency,
faster swimming speed and better maneuverability. The boundary vorticity-flux on
the body surface of the 3D fish before and after optimization reveals the mechanism
of high performance swimming of the topology optimization bionic fish. The compar-
ative analysis between the swimming performance of the 3D topology optimization
bionic fish and the 3D lunate tail bionic fish is also carried out, and the wake structures
of two types of bionic fish show the physical nature that the swimming performance
of the 3D topology optimization bionic fish is significantly better than the 3D lunate
tail bionic fish.

AMS subject classifications: 76Z10, 74F10

Key words: 3D bionic fish, caudal fin, topology optimization, swimming performance, vortex
dynamics.

1 Introduction

Through hundreds of millions of years of natural evolution, most fishes achieve excel-
lent swimming performance, which the motion performance of man-made vehicles can
not catch up with. So the secret of fish swimming attracts interests and exploring of
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researchers from all areas. Gray estimated that the muscle energy of a dolphin at a
swimming speed between 15 and 20 knots is one-seventh of the energy needed to drag
a rigid body at the same speed [1]. The results of the study are known as the famous
Gray’s paradox, which promotes the study of fish swimming into a peak. From then
on many researchers explain or challenge the conclusions of Gray’s paradox. Lighthill
studied anguilliform and carangiform swimming using the elongated-body theory. Wu
proposed a two-dimensional waving plate theory for fish swimming [2]. However, these
analytical methods can be only employed to calculate the thrust and the lateral forces
of a undulating plates or a pitch-heave wing and have significant limitations in model-
ing realistic fish swimming. Cheng [3] developed a semi-numerical and semi-analytical
method to analyze the propulsion mechanism of a 3D waving plate. Candelier et al. ex-
tended Lighthill’s large-amplitude elongated-body theory of the fish locomotion to the
three-dimensional movements, and founded that the results predicted with the three-
dimensional extension theory are in good agreement with the data obtained in the nu-
merical simulations [4].

Fish swimming is a unsteady flow process, and the swimming performance and fea-
tures are closely related to wake structure generated in fish swimming. Fish can efficient-
ly take advantage of the mechanism of unsteady flow. In order to reveal the efficient
swimming mechanism of fish, it is necessary to analyze clearly the three-dimensional
flow field around the swimming fish body using the advanced experimental techniques
and numerical simulation methods. The experimental studies of fish swimming have
made many important progress, for example, Lauder et al. [5, 6] performed a large num-
ber of experiments of fish swimming, and systematically analyzed how different fishes
use body and appendages to effectively implement flow control both actively and pas-
sively. Triantafyllou et al. [7,8] studied the relationship between the propulsive efficiency
and the Strouhal number, and described the wake characteristics corresponding to the
optimum propulsive efficiency. Due to the enormous difficulties in controlling fish swim-
ming in the experiment, the numerical simulation is more effective in comparison with
the experiment. The impact of various physical parameters and swimming patterns on
the swimming mechanism, even evolutionary process and the geometry optimization of
fish, can be carried out in the numerical simulation. Anderson and Wolfgang et al. shown
the generation of the vortex around the fish body and the wake vorticity control during
fish turning maneuver. Liu et al. [9] simulated tadpoles swimming by CFD, and analyzed
the process of vortex shedding in the undulatory swimming. Wu and Wang [10]imple-
mented numerical simulations of self-propelled swimming of the 3D bionic fish school
based on the three-dimensional Navier-Stokes equations, and founded that fish control
the swimming direction mainly by the swing of the head.

Fish are very diverse in the nature, and various types of fish have different shapes and
swimming maneuvers. Generally, swimming locomotion can be divided into periodic
swimming at a almost constant speed and transient movements, such as rapid maneu-
vers and turn etc. According to the swimming propulsors of fish, swimming modes are
classified into the body and/or caudal fin swimming (BCF) and median and paired fin
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swimming (MPF). About 15% of the fishes employ MPF modes as the routine swimming
means, while most fishes use BCF modes to generate the thrust [11]. Thus the caudal fin
plays a key role in the fish locomotion. Most of the thrust is provided by the caudal fin for
tuna and other large fishes. However, not many studies of shape and function of the fish
tail are performed. Using digital particle image velocimetry (DPIV) flow visualization
data, the vortex structure and force balance of two types of fishes with the heterocer-
cal and homocercal tail during steady swimming are comparatively analyzed, and the
characteristics of morphology and function of the two types of the tail are described [12].
Lauder [13] found that scomber japonicus and other fishes use the symmetrical fork tail
fin to achieve efficient swimming. Heo et al. [14] found that the tail with a distributed
thickness makes the bionic robotic fish swim faster and save more energy. Compared
with whales and dolphins, the tail fin of tuna has a higher swimming efficiency [15].

It is actually a process of flow control, that a variety of fishes employ the tails with d-
ifferent morphologies for propulsion. The optimal flow control has already attracted the
interests of the majority of researchers, due to its great application value. Great progress
is made in the shape optimization, and the biggest demand is for the wing shape op-
timization, which always aims at smaller resistance and the largest lift. However, the
shape optimization can only change the shape of the boundary given in initial design.
The topology optimization methods in solid mechanics can be applied to flow problem
to overcome this limitation. The topology optimization can produce complex and no-
intuition optimal structure. The initial geometry is not necessarily close to the optimal
geometry. Bendsøe Sigmund [16] detail the main concepts of the topology optimization.

The topology optimization goal is to find the optimal topology in the feasible region,
which makes objective function reach the maximum or minimum. While the topology
optimization has achieved considerable development in the structural optimization, the
topology optimization of fluid problems is just in the exploration stage. Borrvall and Pe-
tersson [17] varied the distribution of porous materials by changing Darcy permeability
tensor in the topology optimization of the Stokes flow. Guest and Prevost [18] developed
a Darcy-Stokes finite element method to solve the topology optimization of creeping fluid
flows. Distinguished from the previous literature, there are only two extreme cases, the
pure solid and fluid, in the optimization domain. It can be seen that the methods in two
articles are just for Stokes flow problems. Olesen and Okkels [19] studied the topology
optimization problem of the steady Navier-Stokes flow. Zhou and Li [20] demonstrated a
variational level set method for the topology optimization of steady Navier-Stokes flow,
and shown several 2D and 3D examples using this method. Duan and Ma [21] developed
a topology optimization algorithm method, which is also based on the variational level
set method, but can handle the Navier-Stokes flow problem.

The topology optimization of the caudal fin of the three-dimensional self-propelled
swimming bionic fish in the unsteady Navier-Stokes flow is carried out in the present
study. The adaptive mesh refinement method, the immersed boundary method and the
volume of fluid (VOF) method are used to portray the moving boundary of the three-
dimensional self-propelled swimming bionic fish. The caudal fin is assumed to a perme-
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able region, in which the water permeability is a coefficient varying between 0 and 1. The
water permeability of the fish body and the fluid are two extreme cases, corresponding
to 0 and 1, respectively. Based on the boundary vorticity-flux (BVF) theory [22, 23], the
underlying fluid physical sources can be traced to the moving body surface, where all the
vorticity is generated in fish swimming. The distributions and variations of the BVF on
the fish body before and after the topology optimization are studied, and the comparative
analysis of the swimming performance and the 3D vortex structures of the 3D topology
optimization bionic fish and the lunate tail fish are also investigated in the present study.

2 Computational fluid dynamics numerical algorithm with

the moving boundary

2.1 Governing equations and numerical algorithm

The governing equations for the fluid flow systems are the incompressible continuity
equation and 3D unsteady Navier-Stokes equations defined by

∇·u=0, (2.1a)

∂u

∂t
+(u·∇)u=−∇

( p

ρ
+gz

)

+ν∇2u, (2.1b)

where u, p, ρ, g and ν=µ/ρ are fluid velocity, pressure, density, gravity acceleration and
kinematic viscosity, respectively. µ is dynamic viscosity.

The finite volume method is employed to solve the unsteady Navier-Stokes equation-
s. The Poisson equation of pressure is solved using the projection method and the multi-
grid method. The second-order Godunov type scheme is used to discretize the convec-
tion terms. The diffusion terms are discretized with the implicit Crank-Nicolson scheme
that removes the viscous stability constraint. The fractional-step projection method is
employed for integrating the equations in time. Computational domains are discretized
using the adaptive multi-grid finite volumes. In the self-propelled swimming of the 3D
bionic fish, the fish body boundaries are treated with the immersed boundary method
and the volume of fluid (VOF) method. The vorticity and ∇Tr are together used as adap-
tive refinement criteria, where Tr is the tracking scalar of VOF (Volume of Fluid). The
foregoing methods are described in detail as follow, according to [10].

The temporal discretization is handled with the fractional-step projection method.
For any given time step n, the fluid velocity un and the fractional-step pressure ∇pn−1/2

are all known. The temporary velocity field u∗∗ is obtained by using

u∗∗−un

∆t
+∇pn−1/2=

[

−(u·∇)u
]n+1/2

+
ν

2
∇2

(

u∗∗+un
)

. (2.2)

The new velocity field un+1 and the fractional-step pressure field pn+1/2 are then yielded
by applying a projection operator to u∗∗. This projection method depends on the the
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Figure 1: Example of octree discretization and its corresponding tree representation.

Hodge decomposition of the velocity field, i.e.,

u∗∗=un+1+∆φn+1, (2.3)

where u satisfies ∇·un+1 = 0 in the computational domain Ω, and un+1 ·n = 0 on ∂Ω.
∂Ω is the boundary of the computational domain Ω. The following Poisson equation is
obtained by taking the divergence of two sides of Eq. (2.3),

∇2φn+1=
1

∆t
∇·u∗∗, (2.4)

with the boundary condition

∂φ

∂n
=0 on ∂Ω, (2.5)

where n is the unit normal vector to the boundaries. Thus, the divergence-free velocity
field can be defined as

un+1=u∗∗−∆tφn+1, (2.6)

where φn+1 is obtained by solving the Poisson equation (2.4). Eq. (2.6) defines the projec-
tion from the u∗∗ to the divergence-free velocity field u. The new fractional step pressure
is given as

pn+1/2= pn−1/2+φn+1. (2.7)

The computational domain is spatially discretized with cubic finite volumes orga-
nized hierarchically as an octree, as shown in Fig. 1. In the following, each finite volume
volume is referred to as a cell. Each cell may be the parent cell of eight children cells. Root
cell is the base of the tree structure, and leaf cell has not children cells. Each initial cube
can be divided into eight smaller cubes. Splitting each cube can be done iteratively to
meet the required refinement. Thus, the total number of cells becomes 8n after the nth
refinement.
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2.2 Adaptive moving boundaries with the Ghost-cell immersed boundary
method

In the present study, the boundaries of the self-propelled swimming fish body are treat-
ed with ghost-cell immersed boundary method (IBM), which employs discrete forcing
where the forcing is directly applied to the discretized Navier-Stokes equations. Ghost
cell is the cell located inside the solid, which has at least one adjacent cell in the fluid.
When the immersed boundaries are determined, the entire computational region is di-
vided into two parts, namely, the fluid domain and the Ghost cell domain, as shown in
Fig. 2(a). The values of flow variables at the Ghost cells are extrapolated from the infor-
mation of nearby fluid points and associated solid boundaries.

(a) Schematic of the computational domain (b) 3D ghost-cell

Figure 2: Schematics of the computational domain with an immersed boundary. (a) X represent points in the
flow region, the shaded domain represents solid region and G is ghost cell. (b) x1, x2, x3 are points in the fluid
domain, O is point on the immersed boundary, G is ghost cell.

For a variable φ, the linear interpolation in 3D,

φ= a0+a1x+a2y+a3z. (2.8)

The coefficients can be computed using the values of the variables of three nearest point
(x1, x2, x3) from the ghost cell in the fluid domain and O point on the immersed boundary,
as shown in Fig. 2(b)

A=B−1Φ, (2.9)

where

B=









1 x0 y0 z0

1 x1 y1 z1

1 x2 y2 z2

1 x3 y3 z3









. (2.10)

The linear interpolation has only first-order accuracy. For the second-order accuracy, the
quadratic reconstruction can be used,

φ= a0+a1x+a2y+a3z+a4x2+a5xy+a6xz+a7yz+a8y2+a9z2. (2.11)
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Figure 3: The 3D self-propelled swimming fish immersed in the adaptive meshes.

Accordingly, nine neighbor points are required in the interpolation. Considering the com-
putation time and accuracy together, the linear interpolation is used in the present study,
while the adaptive refinement method is employed to enhance the resolution of the im-
mersed boundaries.

The realization of the adaptive refinement method is constituted of two steps. First
of all, all the leaf cells that satisfy a refinement criterion are refined. Secondly, the parent
cells, of which all leaf cells do not satisfy the given criterion, are coarsened. In order to
ensure that meshes intersecting with moving body boundaries is always the finest grids,
the adaptive refinement criteria are based on both vorticity and ∇Tr, where Tr is a tracer
of VOF. Then the combinational refinement conditions of grids are

max
( h‖∇Tr ‖

max‖Tr ‖
,
h‖∇×u‖

max‖u‖

)

>τ, (2.12)

where h is the minimum width of meshes, and 0<τ<1 is the threshold value of adaptive
refinement. If the region surrounded by the moving boundary is Ω, then

Tr











=0 in Ω,

∈ (0,1) on ∂Ω,

=1 outside Ω.

(2.13)

In each cell, the following three cases exist:

(1) Tr=1, when the cell was completely full of fluid;

(2) Tr=0, when the cell was completely full of solid;

(3) 0<Tr<1, when the fluid-solid interface cuts the cell.

Fig. 3 is the local computation domain around the 3D self-propelled swimming fish
immersed in the adaptive meshes, of which the refinement criteria are the vorticity and
∇Tr. In Fig. 3, the (x, y) plane, the (x, z) plane, the (y, z) plane and fish body are colored
by the distribution of ωz, vorticity ω and the pressure, respectively.
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2.3 Validation cases

To verify the above adaptive grid algorithm described in the previous two sections, the
simulations of the three-dimensional flow around a sphere and the three-dimensional
flow around an oscillating foil in an unbounded uniform flow field are performed, re-
spectively. In this study, all calculations are performed using dimensionless quantities.

2.3.1 Flow around a sphere

The computational domain is 32D×8D×8D (length×width×height, D is the diameter
of the sphere). The initial fluid velocity is u∞ =1.00, and Reynolds number is ReD =100
(ReD = u∞D/ν). Fig. 5 shows the drag coefficient computed in two case, in which the
sizes of the minimum mesh are 0.125D and 0.0625D. Namely, the finest levels of adaptive
mesh refinement are taken as 6 and 7, respectively. The corresponding values of the drag
coefficient are 1.029 and 1.087, respectively. The values, especially obtained in the finest
grid, are in good agreement with the results (CD=1.1) of the experiment [24] in the same
conditions. Fig. 4 represents the vorticity field in the wake of the flow passing the sphere
at ReD=100. Fig. 6 shows the streamlines in this case. It can be seen from the two figures
that the wake is axisymmetric and steady, and the size and strength of the vortex in the
rear of the sphere are also in good agreement with the previous work. This shows that
the the adaptive refinement method with the Ghost-cell immersed boundary used in the
present study is efficient and reliable.

(a) Vorticity field (b) Adaptive grids

Figure 4: The vorticity contours and the corresponding adaptive grids of the flow past the sphere at ReD=100.

2.3.2 Flow around around an oscillating foil

The computational domain is 12c×8c×4c (length×width×height, c is the length of the
chord). The oscillating foil takes the shape of NACA 0012 in chord-wise sections. The
oscillating foil perform a heave motion h(t) and a pitch motion θ f (t). The pitch motion
has a phase difference ψ f with the heave motion. The specific oscillating rule is defined
by

{

h(t)=h0 sin(ω f t),

θ f (t)= θ0 sin(ω f t+ψ f ),
(2.14)

where h0 is the amplitude of the heave motion, θ0 is the amplitude of the pitch motion,
and ω f is the frequency of the oscillating motion.
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Figure 5: The drag coefficients of the sphere at ReD =100.

Figure 6: The axisymmetric streamlines past the sphere at ReD =100.

The initial fluid velocity is u∞ = 1.00, and Reynolds number is Rec = 40000 (Rec =
u∞c/ν). The simulations are performed for different Strouhal numbers (St f =ω f h0/νπ)
0.1, 0.2, 0.3, 0.4 and 0.5. For each Strouhal number, the heave amplitude, the pitch ampli-
tude, and the relative phase angle are taking values of h0/c=0.75, θ0 =30◦ and ψ f =90◦,
respectively. The results of the present CFD simulations are compared with the experi-
mental values given by Anderson [25]. The thrust coefficient is defined as

CT =
FT

1
2 ρU2

∞S0

, (2.15)

where FT is the thrust, S0= sc is the area of the foil, and s denotes the span. Fig. 7 shows
that the values of our numerical simulations are in good agreement with the results of
the [25]. It can be seen from Fig. 8 that the meshes around the surface of the oscillation
foil and in the region with high vorticity are the finest.
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Figure 7: Thrust coefficient CT.

(a) Vorticity field (b) Adaptive grids

Figure 8: The vorticity contours and the corresponding adaptive grids of the flow around an oscillating foil.

3 Motion equations and swing parameters of a 3D bionic fish

3.1 The geometry of three-dimensional bionic fish

In the study of self-propelled swimming of the three-dimensional bionic fish, two sets
of coordinates are used, as shown in Fig. 9, namely, the global coordinates (x,y,z) and
the local coordinates (xl, yl , zl), also called as the fish body coordinate that is settled on
the centre of the mass of the fish body. The global coordinates and fish body coordinates
can be converted to each other. The geometry of the three-dimensional tuna given by
Wu [10] is used in the present study. The fish body mainly consists of two parts, namely,
the body trunk and the lunate caudal fin. The profile of the three-dimensional bionic fish
is defined by











zl(xl)=±0.152tanh(6xl+1.8), −0.3≤ xl ≤0.1,

zl(xl)=±[0.075−0.076tanh(7xl−3.15)], 0.1< xl ≤0.35,

zl(xl)=±[1.749tanh(xl)−3.331tanh(2xl)+1.976tanh(3xl)], 0.35< xl ≤0.7.

(3.1)

At each horizontal position xl, the body cross-sections are ellipses with a major to minor
ratio, which equals 1.5. The leading edge and trailing edge profile of the lunate caudal
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fin are defined by

{

xl(zl)LE=39.543|zl |
3−3.685(zl)

2+0.636|zl |+0.7, −0.15≤ zl ≤0.15,

xl(zl)TE=−40.74|zl |
3+9.666(zl)

2+0.77, −0.15≤ zl ≤0.15.
(3.2)

Where LE and TE indicate the leading edge and trailing edge, respectively. The caudal
fin takes the shape of NACA 0040 in chord-wise sections. The profile and geometry of
the three-dimensional bionic fish are shown in Fig. 10 and Fig. 11. In the present study,
the finest level of adaptive mesh refinement is 7. Thus the minimum height of the chord-
wise section of the caudal fin is 1.2 times larger than the width of the finest grid, with
the method of adaptive multi-grids. The body and caudal fin of the 3D bionic fish can be
distinguished by the immersed boundary method, as shown in Fig. 3.

Figure 9: The local coordinate and the global coordinate.

Figure 10: The profile of the 3D bionic fish.

Figure 11: The geometry of the 3D bionic fish.
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3.2 Dynamics equations

The dynamics equations for the 3D self-propelled swimming fish are

m
du

dt
=F,

dL

dt
=M, (3.3)

where m is the mass of the 3D bionic fish; u is the velocity vector; F is the hydrodynamic
force; M is the moment and L is the moment of momentum. The hydrodynamic force
and moment exerted on fish body are given as

F=−
∫

∂B
(−pn+µω×n)ds, (3.4a)

M=−
∫

∂B
x×(−pn+µω×n)ds+M sB, (3.4b)

F=−
∫

∂B
ρx(1/2σ p+σvis)ds, (3.4c)

M=−
∫

∂B
ρ[1/2x2(σ p+σvis)−xx·σvis]ds+M sB, (3.4d)

where Eq. (3.4a) and Eq. (3.4b) are force and moment expressions derived directly from
the momentum balance, respectively. Eq. (3.4c) and Eq. (3.4d) are force and moment
formulas based on the boundary vorticity flux, respectively [22, 23]. ∂B is the surface of
the 3D bionic fish body, n is the unit outward-pointing normal vector of fish body surface;
ρ, µ, ω are fluid density, dynamic viscosity and vorticity, respectively; σ p = n×∇p/ρ,
σvis =ν(n×∇)×ω are the boundary vorticity flux components caused by the tangential
pressure gradient and the viscous vortical effect, respectively. MsB=−2µ

∫

B ωBdV, where
ωB is angular speed of the fish body.

The moment of momentum is defined by

L=∑
i

miri×vi, (3.5)

where mi is the mass of segment i on fish body, ri is the position vector of the gravity
center of segment i in the local coordinates, as shown in Fig. 9. vi is the velocity segment
i, and include two parts,

vi=v f i+ωi×ri, (3.6)

where v f i is the part determined by the given flapping rule. ωi is the angular speed of
segment i. Hence,

L=∑
i

miri×v f i+∑
i

mir
2
i ωi−∑

i

mi(ri �ωi)ri. (3.7)

To get the unique solution of Eq. (3.3), the sufficient and necessary condition is

ω1=ω2= ···=ω. (3.8)
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Therefore,










m
du

dt
=F,

d

dt

(

∑i miri×v f i

)

+
d

dt

[

ω∑i mir
2
i −∑i mi(ri ·ωi)ri

]

=M.

(3.9)

After u and ω were obtained from Eq. (3.9), the new position and attack angle of fish
body can be yielded by











dx

dt
=u,

dθ

dt
=ω,

(3.10)

where θ=θxi+θy j+θzk, θx, θy and θz are the angles of the projection of the central line of
fish body on the planes of y−z, z−x and x−y to the positive directions of y, z and x axis,
respectively.

3.3 The flapping rule and kinematic parameters

The motion of the 3D bionic fish consists of two parts, namely, the undulation of the body
trunk and the oscillation of the tail. It is assumed that the bending of 3D fish body is fully
specified by the undulation of its backbone. The undulation, which is characterized by a
traveling wave, only happens within the (xl ,yl) plane

yl(xl,t)= a(xl)sin(kwxl−ωt),a(xl)= c1xl+c2x2
l , −0.3≤ xl ≤0.7, (3.11a)

θl =αsin(kwxlp−ωt+ψ). (3.11b)

Where kw = 2π/λ is the wavenumber, λ is the corresponding wavelength, ω = 2π/T is
the circular frequency corresponding to the beat period T. xl = 0 is the mass centre of
fish body. The front point of the caudal, attached to the peduncle, follows the path of the
peduncle. At the same time, the caudal fin can undergo a pitch motion around the front
point. The angle of attack θl with respect to the xl-axis is defined by Eq. (3.11b). Where
α is the maximum angle of attack, xlp = 0.7 is the coordinate of the peduncle in the fish
body coordinates, and ψ is the phase difference between the pith motion of the caudal fin
and the undulation motion of the fish body. In this study, the kinematic parameters of
the self-propelled swimming fish are taken as T=1.0, λ=1.22, α=30◦, ψ=90◦, c1 =0.0,
c2=0.155.

3.4 Boundary and initial conditions

In the topology optimization process of the 3D self-propelled swimming fish, the average
physical variables in one period of steadily flapping are used to evaluate swimming per-
formance. The distance which the 3D bionic fish travels is not long. So the computational
domain is 4×1×1 in the topology optimization process. All boundaries of the compu-
tational domain are assumed to be no-slip boundary conditions, ub = vb =wb = 0. Thus,
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the computational region is equivalent to a flume without inflow and outflow. The initial
condition is: u=v=w=0. The dimensionless length of the three-dimensional bionic fish
is 1. The kinematics viscosity coefficient of fluid is ν=1.0×10−6. Reynolds number and
Strouhal number are two important non-dimensional numbers in relation to swimming
of fish. Reynolds number is defined as Re=Ul/ν, where U is the motion velocity of the
fish, l is the length of the fish. The Strouhal number is St= f A/U, where f is the frequen-
cy of oscillation, A is often approximated by the lateral total excursion of the first point of
the caudal fin, and U is also the motion velocity. However, for self-propelled swimming
fish, Reynolds number and Strouhal number are only determined until the calculation
is finished, because the speed of fish change constantly in the process of self-propelled
swimming.

Immersed boundary conditions on the body surface of the fish is shown as follows.
The velocity on the body boundary is Vb =V0+Vr+Vf .

(1) Velocity V0 arises from hydrodynamic force

V0=u0i+v0j+w0k. (3.12)

(2) Linear velocity V r arises from rotation

V r =ω×(x−x0), (3.13)

where x is the coordinate of a point on the surface of the fish body, and x0 is the
coordinate of the center of gravity.

(3) Velocity V f arises from flapping.

The motion of the fish body only exists within xl−yl plane, in the fish body coordinates.
Therefore, the components wl f of V l f in the direction of zl is wl f =0. The velocities arising
from the flapping of the body trunk and the caudal fin should be considered separately.
According to Eq. (3.11a), the flapping of the body trunk only occurs in the direction of yl .
In the local body coordinate system, the velocity of the fish body caused by the flapping
is
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

























ul f =

{

0, −0.3≤ xl ≤0.7,

−ωl f (yl−ylp), xl >0.7,

vl f =

{

−ωa(xl)cos(kwxl−ωt), −0.3≤ xl ≤0.7,

vlp+ωl f (xl−xlp), xl >0.7,

wl f =0.

(3.14)

Where the velocity of the peduncle is vlp = ẏlp(t)=−ωa(xlp)cos(kwxlp−ωt) and the an-
gular velocity of the caudal fin is ωl f =−ωαcos(kwxlp−ωt+ψ).
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If the angle of attack of fish body is θ, the boundary velocity of the fish body arising
from the flapping in the global coordinate system is defined by











u f =ul f cos(θ)−vl f sin(θ),

v f =ul f sin(θ)+vl f cos(θ),

w f =wl f .

(3.15)

4 Algorithm of the topology optimization of the caudal fin of

the 3D self-propelled swimming fish

The optimization method used in the present study is a algorithm to handle nonlinearly
constrained minimax problems, which has good robustness [26]. The problem considered
in this method is as follows. Choose the optimal values of (x1,··· ,xn) to



















Minimize ω subject to
∣

∣ fi−gi(x1,··· ,xn)
∣

∣≤ω, 1≤ i≤m1,

gi(x1,··· ,xn)≤ω, m1+1≤ i≤m2,

gi(x1,··· ,xn)≤0, m2+1≤ i≤m3,

(4.1)

where m1, m2, m3 are integers satisfying 0<m1 <m2 <m3, the fi are given real numbers,
and the gi are given smooth functions. The detailed optimization algorithm is referred
to [26]. The adaptive optimal control of unsteady separated flow with a smart body
surface and the adaptive optimal control of the flapping rule of a fixed flapping plate are
successfully carried out by this optimization algorithm [27, 28].

4.1 The objective functional of the topology optimization

The evaluation of swimming performances is determined by the swimming efficiency,
the swimming speed and direction control. The strategy of the swing of the fish head is
used for the direction control [29]. The swimming speed and the swing of the fish head
are easy to calculate. However, there is no proper methods to evaluate the swimming
efficiency of fish, because it is impossible to separate the thrust from the drag exerted on
a swimming fish body by now.

The Froude efficiency is generally used to measure the swimming efficiency and is
defined as

η f r =
〈F〉U

〈P〉
, (4.2)

where U is the average speed of forward swimming of fish, 〈F〉 is the time average of
thrust, and 〈P〉 is the time average of power needed. Several methods are suggested
for the evaluation of thrust, but these methods are not perfectly reasonable. So there
has been much dispute over the thrust for self-propelled body [30]. Since the thrust of
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self-propelled fish is undetermined, the total force in the forward direction is used when
evaluating the Froude efficiency in the present study. Thus, the Froude efficiency is lower
than the real swimming efficiency, and only is used to compare the swimming efficiency
of different kind of fish in the optimization process in this study. The Froude efficiency,
which are calculated using the total force, can not be used for absolute evaluation of
swimming efficiency. In order to overcome the shortages of the Froude efficiency, the
energy transformation efficiency can be taken in the measure of swimming efficiency [31].

ηpower =
1
2 mU2

Pout
, (4.3)

where m is the mass of fish, and Pout is the total output power of fish. Using the energy
transformation efficiency can avoid the difficulty as described above, but the change of
swimming efficiency with the different parameters is not as remarkable as the Froude
efficiency. Therefore, the Froude efficiency is employed for the topology optimization to
save computing cost, and these two efficiencies are used together to analyze swimming
performance.

The output power of swimming fish is the time integral of dot product of force with
the speed on the fish body [9,32]. The time average of output power of swimming fish in
one period is defined by

P=
1

T

∫ t+T

t

[{

s(t)

−(−pn+µω×n)·uds
]

dt, (4.4)

where T is the period of flapping, S(t) is the outer surface of fish, n is the outward di-
rection vector on the body surface of fish, p is the pressure of fluid flow, ω is the angular
velocity, µ is the dynamics viscosity of fluid, and u= [u,v,w] is the speed on the surface
of fish.

The average Froude efficiency of fish in one period is defined as

ηFr =
Fxu

P
, (4.5)

where Fx=
1
T

∫ T
0

Fxdt is the average total force in swimming direction (the negative direc-

tion of x) in one period, u= 1
T

∫ t+T
t udt is the average swimming speed in the x direction

within one period.
The work of total force in swimming direction is

W=
∫ t+T

t
Fxudt. (4.6)

The control strategy of the swing of the fish head proposed by Wu is used in direction
control of the 3D bionic fish [29]. The swing amplitude of the head of the fish is

Ch(t)=
1

2

{

Cθc
Lc tan(θ(t))+Cy[y(t)−y0]

}

, (4.7)
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where θc is the angle between fish body and target swimming direction, Lc is the body
length used in the direction control, y(t) is the ordinate of the centre of gravity of fish
body, and y0 is the ordinate of the target trajectory. Cθ and Cy are adjustment coefficients,
taking values of Cθ =−1.5 and Cy=−1.0, respectively. Ch(t) can be positive or negative.
The average amplitude of the head of the fish in one swimming period is

C=
1

T

∫ t+T

t
Ch(t)dt. (4.8)

The topology optimization functional of the caudal fin of the three-dimensional bionic
fish is the function of the swimming efficiency, the swimming speed and the amplitude
of the fish head. The objective of the optimization study is to find the optimal geometry
of the caudal fin, which can make fish swim more efficient, faster and more flexible. The
objective functional of topology optimization is

J=
ηFr0

ηFr

+
W0

W
+

C

C0

, (4.9)

where ηFr0 is the swimming efficiency before topology optimization, ηFr is the swimming
efficiency after topology optimization; W0 and W are the work of total force before and af-
ter topology optimization in one swimming period, respectively; C0 and C are the swing
amplitude of the 3D fish head before and after topology optimization, respectively.

4.2 The parameters of topology optimization

The caudal fin is divided into 12 regions, as shown in Fig. 12. The width of each region
is 2 or 3 times the minimum size of grid at the maximum number of refinement levels 7.
The coefficient of water permeability of each region is the optimization parameter coe[i].
It is impossible that the optimal caudal fin has many small holes whose sizes are about
equal to the width of computational grids. So the optimization parameter based on each
mesh are not necessary. In order to save computing time, the optimization parameter-
s coe[i] chosen in the above are not the best, but feasible and efficient for the topology
optimization of the caudal fin. The region, which is favorable to the swimming perfor-
mance, is impermeable. Otherwise it is permeable and is removed from the tail. With

Figure 12: The partitions of caudal fin (at the central section).



Z. Q. Xin and C. J. Wu / Adv. Appl. Math. Mech., 6 (2014), pp. 732-763 749

the immersed boundary method, the coefficients of water permeability of all regions are
applied to the 3D bionic fish body in the process of topology optimization. Provided the
region of the caudal fin is permeable, the coefficients of water permeability are coe[i]=0.0.
In the opposite, the coefficients of water permeability are coe[i]=1.0

4.3 The procedure of topology optimization of the caudal fin

Take the triangular caudal fin as the initial shape, as shown in Fig. 13, calculate the aver-
age swimming efficiency, average swimming speed and the swing amplitude of the head
of the fish within one swimming period; Then do the topology optimization to adjust the
coefficient of water permeability; Apply the optimized parameters to the CFD, until the
realization of optimal functional. The pseudo-procedures of the process of the topology
optimization are as follows:












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


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




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






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















iter=0,
set initial coe0[i], call for CFD module to get the initial functional J0, Jmin= J0;
DO

Call for topology optimization program to get coe∗[i];
If coe∗[i]<0.3, then coe∗[i]=0.0;
Apply coe∗[i] to the 3D caudal fin and call for CFD module to calculate J∗;
If J∗≤ Jmin Then Jmin = J∗;
iter= iter+1;

ENDDO WHILE Jmin is smaller than a small number.

Figure 13: The body shape of the bionic fish before the optimization.

5 Results of topology optimization

5.1 The comparison of the swimming performances before and after topology
optimization

According to the study of vorticity dynamics of self-propelled swimming of the three-
dimensional fish [33], the contribution to the thrust by the caudal fin is gradually re-
duced with the increase of the swimming speed. Therefore the topology optimizations
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Figure 14: The geometry of the 3D bionic fish before optimization.

Figure 15: The geometry of the 3D topology optimized bionic fish.

of the caudal fin of the 3D bionic fish are investigated at four different types of initial
swimming speeds u=−0.1, u=−0.2, u=−0.3, u=−0.35, respectively. Thus a variety of
moving modes, containing the low speed swimming, the moderate speed and the high
speed swimming, are considered in the present study. Corresponding to different initial
swimming speeds, Reynolds number are about Re=1.0×105, Re=2.0×105 Re=3.0×105

and Re= 3.5×105, respectively. The geometry of the 3D bionic fish before the topology
optimization is like triangle, as shown in Fig. 14. The coefficients of water permeability
before the topology optimization are coe[i]= [1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0].
This shows that the whole tail is impermeable at this time.

It can be seen from Table 1 that except the case of initial swimming speed u=−0.1, the

Table 1: The coefficients of water permeability of the caudal fin after the topology optimization.

The coefficients of water permeability after the topology optimization
u=−0.1 0.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 0.0 1.0 1.0 1.0
u=−0.2 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 1.0
u=−0.3 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0

u=−0.35 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0
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Figure 16: The geometry of the 3D bionic fish after optimization at the initial swimming speed u=−0.1.

permeability coefficients after topology optimizations of the other three types of swim-
ming modes are the same. The optimal parameters form a caudal fin with three small
holes at the initial swimming speed u=−0.1, which are h1, h2 near the leading edge of
the caudal fin and h3 near its trailing edge, as shown in Fig. 16. The optimal caudal fin of
other three types of swimming modes, as shown in Fig. 15, whose topology is different
from that of the natural fish tail, is a hollow tail, and the geometry of the region near the
leading edge of the caudal fin is still similar to the lunate tail. In other words, the unique
optimal caudal fin, which has good swimming performance in the most of swimming
states, exists. Because the larger the caudal fin area is, the faster the swimming speed
of fish increase at the low swimming speed. But the proportion of propulsion contribut-
ed by the tail gradually decreases with the increase of the swimming speed. Thus, the
holes of the tail fin after the topology optimization are quite small at the initial swim-
ming speed u=−0.1. Table 2 shows that all swimming indicators of the optimal bionic
fish of each swimming mode after 3D topology optimization are greatly improved, and
especially the swimming efficiency and the swimming speed increase most significantly.
Compared with the high-speed cruise, the low-speed swimming is relatively unimpor-
tant for most large fishes, such as tuna and mackerel. Therefore, through the analysis
on the optimization results of the above two table, the topology optimal tail of the most
swimming modes is chosen as the final geometry of the caudal fin of the 3D topology
optimized bionic fish.

Table 2: The comparison of swimming performances of 3D bionic fish before and after the topology optimization.

ηFr W C J

u=−0.10
before opt. 8.69% 8.68×10−5 1.76×10−2 3.00×100

after opt. 9.30% 8.20×10−5 1.49×10−2 2.84×100

u=−0.20
before opt. 14.75% 1.18×10−4 2.80×10−2 3.00×100

after opt. 22.95% 1.38×10−4 2.20×10−2 2.28×100

u=−0.30
before opt. 14.18% 9.90×10−5 3.04×10−2 3.00×100

after opt. 46.62% 1.85×10−4 2.00×10−2 1.49×100

u=−0.35
before opt. 11.61% 7.56×10−5 3.14×10−2 3.00×100

after opt. 57.95% 2.43×10−4 2.82×10−2 1.41×100
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(a) Swimming efficiency (b) Work of total force

(c) Swing amplitude of the head

Figure 17: Comparison of the swimming performances of the initial bionic fish and the 3D topology optimized
bionic fish.

The comparisons between the swimming performances of the initial bionic fish and
the 3D topology optimized bionic fish in the different swimming modes, not only show
that the 3D topology optimized bionic fish has higher swimming performance, but also
represent the variation of the swimming performances of two types of the bionic fish with
the change of swimming speed. It can be seen from Fig. 17(a) that the Froude efficiency
and energy transformation efficiency of the 3D topology optimized bionic fish are obvi-
ously higher than that of the initial bionic fish, and increases rapidly with the swimming
speed. By observing the Froude efficiency, it is found that the swimming efficiency of
the initial bionic fish slightly increase when the swimming speed is relatively low, but
its swimming efficiency begins to decline as the swimming speed exceeds a certain val-
ue. These changes can not be seen form the energy transformation efficiency. Fig. 17(b)
shows that the work of total force of the 3D topology optimized bionic fish is smaller than
the initial bionic fish just at the low swimming speed, but improve significantly with the
increase of swimming speed. The work of total force of the initial bionic fish begins to
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decrease after the swimming speed is greater than the middle speed. This is the reason
why the swimming speed of the initial bionic fish increases more slowly at the middle
and high swimming speed. Fig. 17(c) shows that the swing amplitude of the head of
the 3D topology optimized bionic fish is smaller in most cases, except low-speed swim-
ming. The 3D topology optimized bionic fish can swim more flexibly. In conclusion, the
3D topology optimized bionic fish achieves high swimming capabilities in a variety of
swimming modes. Especially the swimming efficiency and swimming speed of the 3D
topology optimized bionic fish increased significantly, compared with the initial bionic
fish with the triangular caudal fin. All indexes of the swimming performance of the 3D
topology optimized bionic fish improve obviously with the increase of the swimming
speed. The initial bionic fish is not suitable for moderate and high-speed swimming.

5.2 The BVF analysis of self-propelled swimming of the 3D bionic fish

The previous section only describes the results of the topology optimizations and the
variations of the swimming performances of the initial bionic fish and the 3D topology
optimized bionic fish with the change of swimming speed.

The boundary vorticity flux (BVF) theory gives a set of total force and moment formu-
las to which the net contributor is the first and second vector moments of BVF, respective-
ly. For a flow past a generic body surface, the total force and moment can be cast to proper
surface integrals of the vectorial moments of vorticity generation rate from the surface,
through transforming the original integrand into the moment of space derivative. Thus,
it can reveal dynamic processes of integral variables and trace their underlying physi-
cal sources. Some of the original basic physical variables are expressed in the form of
derivative. When these physical variables are used to analyze the flow field, the benefits
and shortcomings inherent in the flow can be magnified. It can tell very intuitively not
only what local peaks of BVF on the body surface are favorable (unfavorable) and should
be enhanced (minimized), but also how to do [22, 23]. In this section, the distribution of
boundary vorticity flux (BVF) on the fish body surface is analyzed to reveal the physical
mechanism of the above results.

Due to the control of fish motion, the rotation of the 3D bionic fish occurs mainly
within the x−y plane. The calculating results shows that σpz is dominant in components
of the BVF. Therefore, the analyses of the boundary vorticity flow are focused on σpz in
the present study. It can be seen from Fig. 17(a) that at the swimming speed u = 0.3,
the swimming efficiency of the initial bionic fish with the triangle caudal fin is still high
compared with that at the low swimming speed, but obviously inferior to the swimming
efficiency of the 3D topology optimized bionic fish. It is appropriate that the comparison
of the BVF distribution of two types of bionic fish is carried out at the initial swimming
speed u=0.3.

Fig. 18 and Fig. 19 show the distribution of BVF σpz on body surface of the initial
bionic fish at several moments of one flapping period. Although the BVF on the initial
bionic fish body surface varies constantly in a swimming period, the common feature



754 Z. Q. Xin and C. J. Wu / Adv. Appl. Math. Mech., 6 (2014), pp. 732-763

(a) t=0.50 (b) t=0.80

(c) t=1.00 (d) t=1.30

Figure 18: Contour of BVF σpz on the body surface of the initial bionic fish (top view).

(a) t=0.50 (b) t=0.80

(c) t=1.00 (d) t=1.30

Figure 19: Contour of BVF σpz on the body surface of the initial bionic fish (bottom view).

is that the BVF distributions on the tail surface are not uniformly continuous. In most
cases, the BVF in the region near the leading edge and the trailing edge is uniform, but
the BVF peak zones with opposite direction occurs in the centre region of the tail surface,
especially as shown in Figs. 18(a), (c) and Figs. 19(a), (b), (d). For fishes employing the
body and/or caudal fin swimming (BCF), the majority of the thrust is provided by the
caudal fin. Since the BVF in the centre region of the tail is opposite to the BVF in the
region near the leading edge and the trailing edge, it leads to the decrease of the total
vorticity generating on the tail. This is detrimental to swimming propulsion. If the centre
region of the tail is removed from fish body, the total vorticity creating on the caudal
fin will be greatly improved, and the thrust and the swimming efficiency will also be
increased. Based on the BVF analysis, it can be found that the optimal tail is a hollow
caudal fin, which is different from the nature caudal fin. The geometry of the natural
fish is currently a singly connected region. Through millions of years of evolution, the
natural fish do not adopt the hollow caudal fin. The main reasons may be that such a
hollow caudal fin is not conducive to the blood circulation and the growth of fish body.
In the nature, most fishes use a compromise solution by removing the central region and
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(a) t=0.50 (b) t=0.80

(c) t=1.00 (d) t=1.30

Figure 20: Contour of BVF σpz on the body surface of the 3D topology optimized bionic fish (top view).

(a) t=0.50 (b) t=0.80

(c) t=1.00 (d) t=1.30

Figure 21: Contour of BVF σpz on the body surface of the 3D topology optimized bionic fish (bottom view).

the trailing edge from the triangle tail. Thus the vorticity on the unilateral surface of the
caudal fin do not offset each other. But the bionic fish can use the hollow caudal fin to
improve the swimming performance.

Fig. 20 and Fig. 21 represents the distribution of BVF σpz on body surface of the
3D self-propelled swimming topology optimized bionic fish at several moments of one
swing period. In most cases, the BVF on each side of the caudal fin surface has the same
direction and is continuous, as seen in Fig. 20(a), (d) and Fig. 21(a), (b), (c). After the
topology optimization, the 3D topology optimized bionic fish just eliminates the central
regions of the caudal fin of the initial bionic fish, where the BVF is opposite to the BVF in
the region near the leading edge and the trailing edge of the caudal fin of the initial bion-
ic fish. The joints of the leading and trailing edges of the caudal fin of the 3D topology
optimized bionic fish appear the opposite boundary vorticity flux only in very few cases.
It has little impact on the propulsion of the 3D topology optimized bionic fish. So the
total strength of vorticity on the body of the 3D topology optimized bionic fish is much
higher than that of the initial bionic fish. Due to the special shape of the caudal fin, the
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3D topology optimized bionic fish also has stronger vorticity output than the fish with
the lunate tail. The swimming performances of the 3D topology optimized bionic fish
make great improvements.

6 Comparison between the topology optimized bionic fish and

the fish with the lunate tail

In many studies, it is found that the fishes with the lunate tail have the highest swimming
efficiency among most fishes in the nature. Through the study of the shape optimization
of the caudal fin of the three-dimensional self-propelled swimming fish [34], it is shown
that the lunate tail is not the optimal caudal fin of all swimming modes. The 3D bionic
fish with the triangular caudal fin achieves relatively high swimming efficiency at the
low swimming speed, because the larger the tail area is, the more rapidly the fish starts.
The larger the caudal fin area is, the greater the resistance applied on the fish body also is
at the cruise stage. At this time, the caudal fin, whose area is a little smaller than the area
of the nature lunate fin, has better swimming efficiency. But the swimming efficiency of
the lunate tail is the best at the close high speed, and is relatively high in a variety of
other swimming modes. Therefore, the highest swimming performance of the fish with
the lunate tail and the swimming performance of the 3D topology optimized bionic fish
in the same fluid flow conditions, namely, the identical computing domain, the identical
initial swimming speed and swing rules, are compared in this section.

6.1 Comparison of parameters related to the swimming performance

In the following discussion, the comparative analyses of the swimming performances
of the fish with the lunate tail and the swimming performance of the 3D topology opti-
mized bionic fish at the initial swimming speed u=−0.30 are performed. For the initial
swimming speed u=−0.30, Strouhal number are about St=0.43, and Reynolds number
are about Re= 3.0×105, respectively. Fig. 22(a) shows that the Froude efficiency of the
3D topology optimized bionic fish is several times the Froude efficiency of the fish with
the lunate tail, and increase significantly with the increase of swimming speed. As the
swimming speed increases, the fish with the lunate tail quickly soon reaches the highest
Froude efficiency, then the Froude efficiency of the fish with the lunate tail declines s-
lightly. This shows that the swimming efficiency of the fish with the lunate tail is highest
at the close high speed but high-speed cruise. Because the fish with the lunate tail usually
swims at high speed, and also takes into account low-speed swimming, moderate speed
swimming and rapid-starts. From Fig. 22(b), it can be seen that the energy transformation
efficiency of the topology optimized bionic fish is also higher than that of the fish with
the lunate tail, and increase more rapidly. Compared with the energy transformation effi-
ciency, the Froude efficiency better reflects the variation of the swimming efficiency in the
different swimming modes. For all fishes, the energy transformation efficiency gradual-



Z. Q. Xin and C. J. Wu / Adv. Appl. Math. Mech., 6 (2014), pp. 732-763 757

(a) Froude efficiency (b) Energy transformation efficiency

(c) Swimming speed (d) Swing amplitude of head

Figure 22: Comparison of the fish with the lunate tail and the 3D topology optimized bionic fish.

ly increases before the cruise stage, and keeps the maximum efficiency at the high-speed
cruise. But the energy transformation efficiency can overcome the difficulty of the Froude
efficiency at cruise stage, as shown in the previous discussion. It can be seen clearly from
Fig. 22(c) that the swimming speed of the 3D topology optimized bionic fish increases
more rapidly than the fish with the lunate tail in the identical conditions. Fig. 22(d) rep-
resents that the swing amplitude of the head of the 3D topology optimized bionic fish is
almost the same as that of the fish with the lunate tail. The 3D topology optimized bionic
fish not only achieves higher swimming efficiency and speed, but also swims flexible.

6.2 Comparison of the 3D vortex structures

Fig. 23(a) and Fig. 23(b) show the forces on fish body computed by the boundary vorticity
flux theory. The maximum thrusts (namely the x component of total forces, Fx) of the fish
with the lunate tail and the 3D topology optimized bionic fish appear at time t= 1.5 in
the flapping cycle from t = 1.00 to t = 2.00. The comparative analyses of the fluid field
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(a) The fish with the lunate tail (b) The topology optimized bionic fish

Figure 23: Comparison of the forces applied on the fish with the lunate tail and the 3D topology optimized
bionic fish.

and the 3D vortex structures at the moment are carried out. The λ2 method of Jeong
and Hussain [35] is used to identify the 3D vortical structure of the 3D fish swimming in
the present study. In order to analyze the evolution features of the 3D vortex structures
clearly, the proper signs are marked to distinguish 3D wake structures in the figures of
the 3D vortex structure of self-propelled swimming. Vortex and tip vortices attached
to the caudal fin are labelled with V and TV, respectively. Vortex ring and vortex tube
constituting vortex loop are denoted respectively with L and LV. The first digit of the
subscripts corresponds to the different half-cycles of the fish swimming and the second
digit of the subscripts indicates the different vortices or vortex loops at the same time.
The arrows show the direction of vortex or vortex loops [36, 37].

Due to the distinctive feature of the caudal fin of the 3D topology optimized bion-
ic fish, it forms the nested double vortex rings attached to the caudal fin, as shown in
Fig. 25(a), (b) and (c). At this moment, vortex V31, TV3 and V32 constitute another vor-
tex ring while vortex V31 and TV3 form a vortex ring. Vortex ring L11 and L12 are the
double vortex rings created in the preceding cycle, and vortex ring L21 and L22 are the
double vortex rings produced in the preceding half cycle. The double vortex rings pro-
duced at different moments respectively locate on the top sides and bottom sides of the
caudal fin. This kind of double vortex rings are never observed in the wake of the fish
with the ordinary caudal fin. Only Lauder [5] found the similar double vortex ring in the
wake of the shark with the heterocercal tail.

It can be seen from Fig. 24 that there are not double vortex rings in the wakes of
the fish with the lunate tail, distinguished from the wakes of the 3D topology optimized
bionic fish. The comparison of the forces from Fig. 23 shows that the forces Fx of the
fish with the lunate tail begin to slowly decrease with the increase of swimming speed,
but that of the 3D topology optimized bionic fish gradually increase under the same
conditions. The reason for this difference between swimming speeds of two types of
bionic fish is that the vortex rings generated by the lunate caudal fin slip off to the sides
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(a) front view (b) top view

(c) bottom view (d) perspective view

Figure 24: The 3D vortex structure of self-propelled swimming of the 3D bionic fish with the lunate tail at
t=1.50, shown in the isosurfaces of λ2.

(a) front view (b) top view

(c) bottom view (d) perspective view

Figure 25: The 3D vortex structure of self-propelled swimming of the 3D topology optimized bionic fish at
t=1.50, shown in the isosurfaces of λ2.
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Figure 26: Flow field and contour levels of ωz in x−y slice at t= 1.50 for the 3D bionic fish with the lunate
tail.

Figure 27: Flow field and contour levels of ωz in x−y slice at t=1.50 for the 3D topology optimized bionic fish.

of caudal fin. The directions of vortex L21 and L23, which are the components of vortex
rings L2, formed by right-handed screw rule, is parallel to the forward direction of the
fish, as shown in Fig. 24(c), (d). This is unfavorable to the propulsion. Only the vortex
rings, whose directions determined by the right-handed screw rule is not parallel to the
forward direction, can contribute to propulsion as the vortex ring L1. As the swimming
speed continues to increase, vortex L21 and L23 gradually become clear, but the vortex
L22 slowly disappears. Thus there are not vortex rings, which obviously contribute to
propulsion, in the wake of the fish with the lunate tail. This is the reason why the cruise
speed of the fish with the lunate tail is relatively lower than the 3D topology optimized
bionic fish. By comparing Figs. 24(a) with Fig. 25(a), the strength of the vortex induced by
the 3D topology optimized bionic fish is much higher than that of the fish with the lunate
tail. For the 3D topology optimized bionic fish, vortex rings shed successively in a swing
cycle interconnect, but a set of vortex contrails connect two adjacent vortex loops in the
wake of the fish with the lunate tail, as seen in Fig. 24(a) and Fig. 24(d). Thus the flow
field induced by the vortex rings in the wake of the 3D topology optimized bionic fish
makes significant improvement. It can be seen from Fig. 26 and Fig. 27 that the micro-jet
in the wake of 3D bionic fish with topology optimized caudal fin is much stronger than
that of lunate caudal fin. The stronger the jet is, the greater the thrust is. Thus the 3D
topology optimized bionic fish has higher swimming performances than the fish with
the lunate tail.
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7 Conclusions

Topology optimization of the caudal fin of the three-dimensional self-propelled swim-
ming fish show that the optimal caudal fin of all kinds of swimming modes is basically
the same. The topology optimization caudal fin, whose topology is different from that
of the natural fish tail, is a hollow caudal fin, and the geometry of the region near the
leading edge of the caudal fin is still similar to the lunate caudal fin. The 3D topology
optimized bionic fish has high swimming performances in a variety of swimming modes.
In particular, the swimming efficiency and the swimming speed of the 3D topology opti-
mized bionic fish increased obviously, compared with the initial bionic fish before topol-
ogy optimization. All indexes of the swimming capability of the 3D topology optimized
bionic fish improve significantly with the increase of the swimming speed. The initial
bionic fish with the triangular caudal fin is not suitable for moderate and high-speed
swimming. The distributions of the boundary vorticity flux on the triangular caudal fin
surface before the topology optimization are not uniformly continuous, and the most
obvious feature is that the BVF peak zones with opposite direction occurs in the centre
region of the triangular tail surface, but the BVF in the region near the leading edge and
the trailing edge is uniform. The 3D topology optimized bionic fish just eliminates the
central regions of the triangular caudal fin before topology optimization, thus the total
strength of vorticity on the body of the 3D topology optimized bionic fish is much higher
than that of the initial bionic fish. Due to the special geometry of the caudal fin, the 3D
topology optimized bionic fish also has stronger vorticity output than the fish with the
lunate tail having the highest swimming efficiency in the natural world. The micro-jet
induced by the double vortex rings in the wake of the 3D bionic topology optimized fish
is much stronger than that of the bionic fish with the lunate tail. In short, the 3D bionic
topology optimized fish has many advantages. The area of the topology optimized tail is
larger than the lunate tail, the hollow structural characteristic reduces the adverse effect
on propulsion at the high swimming speed, and the 3D bionic topology optimized fish
controls the swimming direction more easier. The swimming performances of the 3D
topology optimized bionic fish make great improvements.
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