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Abstract. This paper is concerned with a low-dimensional dynamical system model
for analytically solving partial differential equations (PDEs). The model proposed is
based on a posterior optimal truncated weighted residue (POT-WR) method, by which
an infinite dimensional PDE is optimally truncated and analytically solved in required
condition of accuracy. To end that, a POT-WR condition for PDE under consideration
is used as a dynamically optimal control criterion with the solving process. A set of
bases needs to be constructed without any reference database in order to establish a
space to describe low-dimensional dynamical system that is required. The Lagrangian
multiplier is introduced to release the constraints due to the Galerkin projection, and
a penalty function is also employed to remove the orthogonal constraints. Accord-
ing to the extreme principle, a set of ordinary differential equations is thus obtained
by taking the variational operation of the generalized optimal function. A conjugate
gradient algorithm by FORTRAN code is developed to solve the ordinary differential
equations. The two examples of one-dimensional heat transfer equation and nonlinear
Burgers’ equation show that the analytical results on the method proposed are good
agreement with the numerical simulations and analytical solutions in references, and
the dominant characteristics of the dynamics are well captured in case of few bases
used only.

AMS subject classifications: 65M10, 78A48
Key words: Low-dimensional system model, partial differential equation, analytical solution,
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1 Introduction

Over the past few decades, scientists and engineers were considerable interest in looking
for an order-reduced method to effectively model partial differential equations (PDEs).
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One of the crucial study motivations is to seek a way to analytically solve reduction
order models of a high dimensionality system, while it is generally solved by using a
mesh-based discretization technique to investigate the constitutive equation of a physical
problem. An analytical solution for a linear low-dimensional problem is ever expected.
Unfortunately, the expectation seems to be impossible to most high-dimensional system-
s, because the nonlinear systems such as high-dimensionality may have quite complex
dynamical behaviors, ever possibly evolve into chaos. Therefore, it is extremely valuable
if a reduction dimensionality method can be built well to analytically analyze high order
dynamical systems.

At the present stage, there are several analytical methods well developed based on
the posterior and prior reduction dimensionality techniques, respectively. Locally lin-
ear embedding (LLE) [1] method approximates the local geometry by linear coefficients
that are used to reconstruct data points in neighbors, in which the reconstruction errors
are controlled by the squared distances between reconstruction data points. The crux
of ISOMAP [2] preserves the geodesic manifold distances between all pairs of the data
points. As a powerful tool, the proper orthogonal decomposition (POD), firstly intro-
duced by Lumley for studying long-term behavior of turbulence, is beyond reasonable
doubt an outstanding posterior reduced method. A set of bases is obtained by using POD
with a database of experiments or numerical simulations, and these bases on POD are
mathematically proved to be optimum in terms of energy. Other attractive property of
POD is linear processing while minimizing the average squared distance between the o-
riginal configuration space and the reduced linear one. Consequently, POD become quite
useful to reduce order of a system by construction of new bases on the information un-
der investigative objects [3–6]. Also, POD is valuable to be used by conjunction with
other techniques [7–9], for example, Galerkin projection method, to well predict complex
dynamics of an airfoil induced by unsteady transonic flow. On the other hand, POD is
developed as an order-reduced model with multiple parameters [10,11], by which unsta-
ble phenomenon [12] in numerical simulation is effectively suppressed, and computing
algorithm is more efficient [13–16]. However, it is noted that a notable shortcoming of
the POD methods is highly dependent on prior data to construct optimal bases. Thus, the
enormous computational cost of numerical simulation, and the time-consuming work
of experiment, as well as obtaining usable prior data become a challenge in application.
So, it is quite necessary to look for a way to circumvent the drawbacks of the posterior
methods.

Approaching on truncated series expansion is expected to be a good way to over-
come the shortcoming of the posterior methods, for example, the order-reduced methods
on Laguerre polynomials [17]. The methods on other orthonormal polynomials, such as
Fourier polynomials, are universal, but it is hard to mathematically deal with boundary
conditions. In order to solve the problems of boundary conditions, scientists develop
measure methodologies, for example, the proper generalized decomposition (PGD) pro-
posed by Ammar, which is able to well treat multidimensional problems. PGD separates
variables by defining a tensor product of unknown approximation basis, and then car-
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ries out an iteration procedure of three steps, which projects the solution onto a discrete
basis, and checks convergence and enrichment of the approximation basis, respective-
ly [18, 19]. A suitable iterative scheme is required to solve the nonlinear or linear system
which is decomposed with trial and test functions by projection methods. Furthermore,
the finite element method is widely used to solve the weak form of the system, or the
finite difference method for the strong form [20]. A quasi-residual term is taken as the
convergence criterion for iteration scheme. Recently, PGD has been well used to deal
with various scientific problems and made advancements for different physical models
in high dimensions.

With a relationship between coherent structures and low-dimensional dynamical sys-
tems (LLDS), Wu and Shi proposed a new method, named the optimal truncated(OT)
LDDS. LDDS OT is a posterior or prior dimensional reduced method whether a given
database is used or not [21]. The system under consideration is decomposed with a finite
term sum of time-dependent modal coefficients multiplied by spatial bases functions to
be determined. LDDS is obtained as a constraint condition on the optimal control is pro-
cessed by Galerkin projection of PDE onto the unknown spatial bases. Therefore, a set
of orthogonal spatial bases is found out by solving an extremely valued problem with
the constraint of LDDS. If LDDS is constructed on a given database, the corresponding
method is called as prior DOT (Database OT), otherwise, as posterior POT (PDE OT). These
methods can effectively reduce the dimensions of the system under consideration. But,
the error control is not well dealt with when the residue is taken as an objective of the
global optimization. It means that the error may dramatically rise and the optimization
solution fails.

In the present paper, a new optimal control criterion is proposed to solve the problem
in reference [21]. The paper is outlined as follow. Firstly, the fundamentals and establish-
ments of the method proposed are described with details, Then, solutions of the linear
and nonlinear PDEs are taken as examples to validate the proposed method by compar-
isons with the results from references. Finally, a summary of the study is arranged as
conclusion.

2 Formulations

Considering a well-posed operator equation is as follow,
∂u⃗
∂t

+L(u⃗)=0, x⃗∈Ω, t>0,

u⃗(x⃗,0)= u⃗0(x⃗), x⃗∈Ω,
u⃗(x⃗,t)

∣∣
∂Ω = g⃗(x⃗,t), x⃗∈∂Ω, t>0.

(2.1)

Where, for all t> 0, L :H⊂V→F is a linear or nonlinear operator, H, V and F are the
Hilbert spaces. H is the linear subspace of V . The inner products on H, V and F are
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represented by (·,·)H, (·,·)V and (·,·)F , respectively.The corresponding norms on V are
defined as ∥u⃗∥2=(u⃗,u⃗)1/2

V and ∥(u⃗,v⃗)∥1=(u⃗,v⃗)V for all u⃗,v⃗∈V
Since a space-time separation is applied to the variables, the spatial function of each

time t belongs to an appropriate space,ℜ, defined over the domain Ω, and written as

ℜ△
=
{

ξ=
(
ξ⃗1(x⃗),··· , ξ⃗Nt(x⃗))T∣∣ ξ⃗i ∈H, ξ⃗i

∣∣
∂Ω =0, (ξ⃗i, ξ⃗ j)=δij

}
. (2.2)

It is noted that the boundary conditions of the operator function are included in Eq. (2.2),
and the orthogonal conditions are satisfied. Decomposing variables in equation as a finite
term sum of time-dependent modal coefficients multiplied by elements of a suitable basis
of ℜ, it yields

u⃗(x⃗,t)= u⃗Nt +u⃗R ≈
Nt

∑
k=1

ak(t)ξ⃗k(x⃗), (2.3)

where, the coefficient ak is subjected to the Galerkin projection of the equation which is
constructed by projecting Eq. (2.1) onto the unknown basis ξ⃗l , and Gl denotes the project-
ing equation as follow:{

Gl =F(al ; ȧl ; ξ⃗1,··· , ξ⃗Nt ; ∇ξ⃗1,··· ,∇ξ⃗Nt ,···),
al(0)=(u⃗0(x⃗), ξ⃗l),

(2.4)

where, l = 1,2,3,··· ,Nt. The specific form of Eq. (2.4) depends on the problem under
investigation.

In order to make the remainder ∥u⃗R∥ approach to zero, and to construct an authentic
LDDS, a control function J(ξ⃗) is built as follow,

J(ξ⃗)=µ1

∫ T

0
∥u⃗R∥2

2dt+µ2∥u⃗0(x⃗)−
Nt

∑
k=1

ak(0)ξ⃗k(x⃗)∥2
2

+µ3

∫ T

0

∥∥∥∂u⃗Nt

∂t
+L(u⃗Nt)

∥∥∥2

2
+µ4

∫ T

0

∥∥∥(∂u⃗Nt

∂t
+L(u⃗Nt), ξ⃗l

)∥∥∥
1
dt, (2.5)

where, µi (i=1,2,3,4) is the weighted coefficient. The optimal control search is described
as follow,

Find ξ⃗∗∈ℜ, such that J(ξ⃗∗)=min
ξ∈ℜ

J(ξ⃗), where al satisfies Eq. (2.5). (2.6)

The first three terms at the right hand side of Eq. (2.5) were studied by Wu and his col-
leagues. For the DOT method, u⃗ is a given data. Thus, u⃗R is determined once u⃗Nt is set.
Hence, the control function has a form as follow,

J(ξ⃗)=µ1

∫ T

0
∥u⃗R∥2

2dt+µ2

∥∥∥u⃗0(x⃗)−
Nt

∑
k=1

ak(0)ξ⃗k(x⃗)
∥∥∥2

2
+µ3

∫ T

0

∥∥∥∂u⃗Nt

∂t
+L(u⃗Nt)

∥∥∥2

2
. (2.7)
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However, u⃗ is unknown for the POT method. Consequently, u⃗R is unknown as well.
It is noted that the first and the second terms at the right hand side of Eq. (2.5) can be
simplified if some conditions are subjected to it. To do that and to minimize the error of
the global ”energy” of the system, the first term is written as,

J(ξ⃗)=µ1

∫ T

0
∥u⃗R∥2

2dt=µ1

∫ T

0
(u⃗R,u⃗R)dt

=µ1

∫ T

0
(u⃗−u⃗Nt ,u⃗−u⃗Nt)dt=µ1

∫ T

0
[(u⃗,u⃗)−(u⃗Nt ,u⃗Nt)−2(u⃗R,u⃗Nt)]dt, (2.8)

where the integration of
∫ T

0 2(u⃗R,u⃗Nt)dt is omitted if assuming that u⃗R is very small.
But, the value of u⃗R is generally not estimated in advance. So, it takes risk of omitting∫ T

0 2(u⃗R,u⃗Nt)dt without guarantee that u⃗R is small enough. Therefore, Wu took the second
term at the right hand side of Eq. (2.5) as a compensation for omitting

∫ T
0 2(u⃗R,u⃗Nt)dt

J(ξ⃗)=µ2

∥∥∥u⃗0(x⃗)−
Nt

∑
k=1

ak(0)ξ⃗k(x⃗)
∥∥∥2

2

=µ2

(
u⃗0(x⃗)−

Nt

∑
k=1

ak(0)ξ⃗k(x⃗),u⃗0(x⃗)−
Nt

∑
k=1

ak(0)ξ⃗k(x⃗)
)

=µ2

[
(u⃗0(x⃗),u⃗0(x⃗))+

( Nt

∑
k=1

ak(0)ξ⃗k(x⃗),
Nt

∑
l=1

al(0)ξ⃗l(x⃗)
)
−2

(
u⃗0(x⃗),

Nt

∑
k=1

ak(0)ξ⃗k(x⃗)
)]

. (2.9)

Taking account of the orthogonal property of ξ⃗k in Eq. (2.8) and Eq. (2.9), and
∫ T

0 (u⃗,u⃗)dt
and (u⃗0(x⃗),u⃗0(x⃗)) are constant for a specific system, hence they can be omitted among
optimization process. Therefore, Eq. (2.5)is simplified as follow,

J(ξ⃗)=µ3

∫ T

0

∥∥∥∂u⃗Nt

∂t
+L(u⃗Nt)

∥∥∥2

2
dt−µ2

Nt

∑
k=1

a2
k(0)−µ1

∫ T

0

Nt

∑
k=1

a2
k(t)dt. (2.10)

However, it is noted that summation of the first two terms of Eq. (2.7) is not global energy
of the system. LDDS based on the corresponding basis fails to show long-term behaviors
of the system because the compensation term introduces the initial information. For im-
provement, the first term of Eq. (2.10) is only taken as the control function, by which the
error of the system under the condition of minimizing the residue of the system is inves-
tigated. Unfortunately, as mentioned in the above, the error of the system is still out of
the control when the residue is taken as the convergent criterion. It means that LDDS
based on the corresponding basis is not optimal; on the contrary it could become worse.
To solve this problem, a novel optimal functional condition is proposed. The forth ter-
m at the right hand side of Eq. (2.5) is the solution that put forward to improve the OT
method. The new optimal functional condition on weighted residue is a kind of the POT
methods. It is referred to the POT-WR method in this paper.
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The optimal function conditions are subjected to the orthogonal constraints of the
basis and the Galerkin projection of Eq. (2.4). In variational process, the Lagrangian mul-
tiplier is introduced to release the constraints due to the Galerkin projection, and the
penalty function is used to remove the orthogonal constraints. Then, a generalized opti-
mal function is constructed as follow,

J(ξ⃗)=µ1

∫ T

0
∥u⃗R∥2

2dt+µ2

∥∥∥u⃗0(x⃗)−
Nt

∑
k=1

ak(0)ξ⃗k(x⃗)
∥∥∥2

2
+µ3

∫ T

0

∥∥∥∂u⃗Nt

∂t
+L(u⃗Nt)

∥∥∥2

2

+µ4

∫ T

0

∥∥∥(∂u⃗Nt

∂t
+L(u⃗Nt), ξ⃗l

)∥∥∥
1
dt+

∫ T

0

Nt

∑
l=1

λlGl+µ
Nt

∑
k,l=1,k≤l

[(ξ⃗k, ξ⃗l)−δkl ]
2. (2.11)

By the variational operation of Eq. (2.11), a set of the ordinary differential equations is
obtained 

ȧk = f
(
ak,ξ1,··· ,ξNt ,ξ

′
1,··· ,ξ ′Nt

,···
)
,

λ̇k =y
(
λk,ak,ξ1,··· ,ξNt ,ξ

′
1,··· ,ξ ′Nt

,···
)
,

∇Jg =
∂H
∂ξ⃗k

,
(2.12)

where, H is the Hamiltonian function, which is defined as follow,

H=L
(
ak, ξ⃗k, ξ⃗ ′k,t

)
+λlGl , k,l=1,2,··· ,Nt. (2.13)

in which L is the specified control function.

3 Examples

In order to verify the POT-WR method proposed by the present paper, one-dimensional
heat transfer and nonlinear Burgers’ equations are taken as examples with Fourier, Leg-
endre, and Chebyshev polynomials, respectively.

3.1 Algorithm

A FORTRAN code on the conjugate gradient algorithm is compiled and carried out to
solve the set of the ordinary differential equations obtained by the variational operation
of Eq. (2.11). The solving scheme is as follow,

Step 1 Initialing the bases ξ(0), and specifying maximum iteration number imax, penalty
µ(0), and accuracy requirement ε;

Step 2 For i=0, with the ξ(i), integrating the ordinary partial differential equations of ak

to obtain a(i)k ; and reversal integrating the ordinary partial differential equations

of λk to obtain λ
(i)
k ;
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Step 3 Calculating the generalized optimal functional gradient ∇Jg, which is defined as

Jg(ξ∗+δξ)− Jg(ξ∗),
∫

Ω
∇Jgδξdx+o(∥δξ∥);

and letting g(i)(ξ)=h(i)(ξ)=−∇Jg, if g(i)(ξ)=0, and then go to Step 7;

Step 4 Carrying out the one dimensional search to find ρ(i)>0, such that

Jg(ξ(i)+ρ(i)h(i))=min
ρ

[Jg(ξ(i)+ρ(i)h(i))|ρ>0];

Step 5 Letting ξ̃= ξ(i)+ρ(i)h(i);

Step 6 Executing Step 2 and Step 3 to get ∇ J̃g;

Step 7 If ∇ J̃g = 0, and the accuracy ε is satisfied, the results are obtained and stop the
program. Otherwise, letting µ(i+1)=20∗µ(i)

, and go to Step 3 and let

g(i+1)=−∇ J̃g, h(i+1)= g(i+1)+βih(i), βi =
(g(i+1)−g(i),g(i+1))

∥g(i)∥2
;

Step 8 If i>imax, a failing solution, and stop operating; Otherwise, letting i=i+1, ξ(i+1)=ξ̃
and go to Step 6.

3.2 Solving one-dimensional heat transfer equation

The governing equation of one-dimensional heat transfer problem with boundary and
initial conditions is written as,

∂u
∂t

= ε
∂2u
∂x2 , t>0, 0< x<1,

u(0,t)=u(1,t)=0, t>0,
u(x,0)=u0(x), t=0, 0< x<1,

(3.1)

where, ε is the coefficient that depends on density, thermal conductivity and capacity of
material. u(0,t)= u(1,t)= 0 is the boundary conditions, and u(x,0)= u0(x) is the initial
conditions. As a potential case, the initial condition is as follow,

u0(x)=sinπx+m2 Asinmπx. (3.2)

Thus, the analytical solution of Eq. (3.2) is written in an explicit form,

u(x,t)= e−επ2t sinπx+m2 Ae−m2επ2t sin3πx. (3.3)

Here, m=3, A=0.06 is specified in all cases in this paper.
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Decomposing the variable of u(x,t) is stated as follow,

u⃗(x⃗,t)=
Nt

∑
k=1

ak(t)ξ⃗k(x⃗), (3.4)

where, ak is the coefficient that is subjected to the Galerkin projection,

Gl = ȧl+ε
Nt

∑
k=1

ak

∫ 1

0
ξ ′lξ

′
kdx, (3.5)

and ξl∈ℜ is the unknown basis to be determined. By the initial condition, al(0) is satisfied
as

al(0)=
∫ 1

0
u0ξldx. (3.6)

The residue of the one-dimensional heat transfer equation is taken as,

Rk =
Nt

∑
k=1

ȧkξk−ε
Nt

∑
k=1

akξ ′′k . (3.7)

According to the methodology proposed in Section 2, the forth term at the right hand
side of Eq. (2.5) is taken as optimal functional condition, and let µ4=1, such that,

J(ξ)=
∫ T

0

Nt

∑
l=1

|(ξl ,Rk)|dt=
∫ T

0

Nt

∑
l=1

∣∣∣ȧl+ε
Nt

∑
k=1

ak

∫ 1

0
ξ ′lξ

′
kdx

∣∣∣dt. (3.8)

Two solving strategies, A and B, are used, namely,

JA(ξ)=
∫ T

0

( Nt

∑
l=1

ȧl+ε
Nt

∑
k,l=1

ak

∫ 1

0
ξ ′lξ

′
kdx

)
dt, (3.9a)

JB(ξ)=
∫ T

0

(
−

Nt

∑
l=1

ȧl−ε
Nt

∑
k,l=1

ak

∫ 1

0
ξ ′lξ

′
kdx

)
dt. (3.9b)

The Lagrangian multiplier λ and the penalty function µ are introduced to remove the
constrains of the Galerkin projection equation and the orthogonal condition, respectively.
The generalized optimal functional is obtained as follow,

JgA(ξ)= JA+
∫ T

0

Nt

∑
l=1

λlGldt+
Nt

∑
k,l=1, k≤l

µ
(∫ 1

0
ξkξldx−δkl

)2
, (3.10a)

JgB(ξ)= JB+
∫ T

0

Nt

∑
l=1

λlGldt+
Nt

∑
k,l=1, k≤l

µ
(∫ 1

0
ξkξldx−δkl

)2
. (3.10b)



762 J. Sha, L. X. Zhang and C. J. Wu / Adv. Appl. Math. Mech., 7 (2015), pp. 754-779

(a) Exact solution for m = 3, A = 0.06 corre-
sponding to Eq. (3.3)

(b) POT-WR solution for Fourier polynomials

Figure 1: Exact solutions of Eq. (3.3) and POT-WR solutions of Eq. (3.1) for strategy A.

By using the extreme principle, taking variational operation of JgA(ξ), JgB(ξ), and letting
δJgA(ξ)=0, δJgB(ξ)=0, thus, the corresponding terms for the strategy A are obtained as

λ̇l =
Nt

∑
k=1

(ε+ελk)
∫ 1

0
ξ ′kξ ′ldx,

4µξl

(∫ 1

0
ξ2

l dx−1
)
+

Nt

∑
k=1, k ̸=l

2µξk

(∫ 1

0
ξkξldx

)
−(λl(0)+1)u0

−
Nt

∑
k=1

ξ ′′k

∫ T

0
(εal+εak)dt−

Nt

∑
k=1

εξ ′′k

∫ T

0
(λkal+λlak)dt=0,

ȧl+ε
Nt

∑
k=1

ak

∫ 1

0
ξ ′lξ

′
kdx=0.

(3.11)

For the strategy B as

λ̇l =
Nt

∑
k=1

(ελk−ε)
∫ 1

0
ξ ′kξ ′ldx,

4µξl

(∫ 1

0
ξ2

l dx−1
)
+

Nt

∑
k=1, k ̸=l

2µξk

(∫ 1

0
ξkξldx

)
+(1−λl(0))u0

+
Nt

∑
k=1

ξ ′′k

∫ T

0
(εal+εak)dt−

Nt

∑
k=1

εξ ′′k

∫ T

0
(λkal+λlak)dt=0,

ȧl+ε
Nt

∑
k=1

ak

∫ 1

0
ξ ′lξ

′
kdx=0.

(3.12)

For the sake of convenience to compare with the exact solution, the order number of
the truncation is taken as two, namely, Nt = 2. The results of the local solutions for the
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(a) POT-WR solution for Legendre polyno-
mials

(b) POT-WR solution for Chebyshev poly-
nomials

Figure 2: Exact solutions of Eq. (3.3) and POT-WR solutions of Eq. (3.1) for strategy A.

(a) Exact solution for m=3, A=0.06 corresponding to
Eq. (3.3)

(b) POT-WR solution for Fourier polynomials

Figure 3: Exact solutions of Eq. (3.3) and POT-WR solutions of Eq. (3.1) for strategy B.

strategies A and B are shown in Figs. 1-4, respectively. Fig. 1(a) and Fig. 3(a) illustrate
the exact solutions corresponding to Eq. (3.3). Figs. 1(b) to 2(b) illustrate the local optimal
solutions of Eq. (3.1) for the strategy A. Figs. 3(b) to 4(b) are solutions for the strategy B.
It is clear from Figs. 1-4 that the local optimal solutions based on the POT-WR method
converge well into the exact solutions for two strategies. For the strategy A, the error
on the Legendre polynomials is 3.0935%, which concentrates on the boundary as shown
in Fig. 2(a). Fig. 1(b) denotes that the solution on the Fourier polynomials is more flat
in curves. For the strategy B, the error on the Legendre polynomials is the same to the
Fourier polynomials for the strategy A. The details of the comparisons are listed in Table
1.

From Figs. 5-7, it is seen that the relationships between the different initial bases and



764 J. Sha, L. X. Zhang and C. J. Wu / Adv. Appl. Math. Mech., 7 (2015), pp. 754-779

(a) POT-WR solution for Legendre polyno-
mials

(b) POT-WR solution for Chebyshev polyno-
mials

Figure 4: Exact solutions of Eq. (3.3) and POT-WR solutions of Eq. (3.1) for strategy B.

their local optimal bases are in contrast. The curves with solid symbol represent the ini-
tial basis, and others are the local optimal basis. The local optimal basis is totally different
from the initial one. Especially, the first and second order optimal bases are almost sym-
metry in Figs. 5(b), 6(a), 7(a), and 7(b) for the Legendre and Chebyshev polynomials for
two strategies. For the local optimal search, the different initial basis results in the differ-
ent shape of the local optimal basis. It demonstrates that the local optimal basis is very
sensitive to the initial basis.

It is necessary to obtain the global optimal basis for constructing a model of the op-
timal low-dimensional dynamical system, and eliminating the sensitivity to the initial
basis. Figs. 8-14 show the investigations of the global optimal search. Figs. 8-10 shows
that a tendency of the error and residue of Eq. (3.1) with the number of search. The red
lines represent the residue of Eq. (3.1) in meaning of time averaging, and converge to
zero when the error of the solution of Eq. (3.1) tends to be stable for two strategies. The
tendency is the same to other cases.

The global optimal basis in different cases is shown in Figs. 11-14. The curve with
solid square symbol is the first order basis, and the other is the second order one. The
optimal bases in the Fourier polynomials are shown in Figs. 11(a) and 12(b), and they

Table 1: Local and global errors of heat transfer equation for different initial bases (%).

Case N Initial Basis Local Error (%) Global Error (%)
2 Fourier 0.4950 0.3196

A 2 Legendre 3.0935 0.6532
2 Chebyshev 1.0100 0.5328
2 Fourier 0.2592 0.1890

B 2 Legendre 2.5522 0.5278
2 Chebyshev 0.6514 0.5542
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(a) Fourier polynomials versus corre-
sponding local optimal bases for strate-
gy A

(b) Legendre polynomials versus corre-
sponding local optimal bases for strate-
gy A

Figure 5: Initial bases versus corresponding local optimal bases of Eq. (3.1) for two strategies.

(a) Chebyshev polynomials versus cor-
responding local optimal bases for strat-
egy A

(b) Fourier polynomials versus corre-
sponding local optimal bases for strate-
gy B

Figure 6: Initial bases versus corresponding local optimal bases of Eq. (3.1) for two strategies.

converge exactly on the boundary, comparing with the Legendre and Chebyshev poly-
nomials. So, it is concluded that the error on the Fourier polynomials is smallest, and the
global optimal basis is insensitive to the iterative initial basis.

3.3 Burgers’ equation

The Burgers’ equation with nonlinear term is taken as the second example, and it is stated
as 

∂u
∂t

+u
∂u
∂x

=ν
∂2u
∂x2 , t>0, 0< x<1,

u(0,t)=u(1,t)=0, 0< t≤1,
u(x,0)=u0(x), 0< x<1,

(3.13)
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(a) Legendre polynomials versus corre-
sponding local optimal bases for strategy
B

(b) Chebyshev polynomials versus corre-
sponding local optimal bases for strategy
B

Figure 7: Initial bases versus corresponding local optimal bases of Eq. (3.1) for two strategies.

(a) Fourier error and weighted residue of
Eq. (3.1) for strategy A

(b) Legendre error and weighted residue
of Eq. (3.1) for strategy A

Figure 8: Error and weighted residue of Eq. (3.1) for different convergent criterions.

where, ν is the viscosity coefficient. u(0,t)= u(1,t)= 0 is the boundary conditions, and
u(x,0)=u0(x) is the initial conditions. As a potential case under consideration, an initial
condition is applied as follow,

u0(x)=0.5sinπx+sin2πx+1.5sin3πx. (3.14)

According to the Cole-Hopf transformation, the analytical solution of Eq. (3.13) with the
initial condition of Eq. (3.14) is yielded in form,

u(x,t)=2νπ
∑+∞

n=1 nAne−n2π2νt sinnπx
A0+∑+∞

n=1 Ane−n2π2νt cosnπx
, (3.15)
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(a) Chebyshev error and weighted residue
of Eq. (3.1) for strategy A

(b) Fourier error and weighted residue of E-
q. (3.1) for strategy B

Figure 9: Error and weighted residue of Eq. (3.1) for different convergent criterions.

(a) Legendre error and weighted residue of
Eq. (3.1) for strategy B

(b) Chebyshev error and weighted residue
of Eq. (3.1) for strategy B

Figure 10: Error and weighted residue of Eq. (3.1) for different convergent criterions.

in which, 
A0=C

∫ 1

0
exp

[
− 1

2ν

∫ x

0
u0(ξ)dξ

]
dx,

An =2C
∫ 1

0
exp

[
− 1

2ν

∫ x

0
u0(ξ)dξ

]
cosnπxdx, n=1,2,··· .

(3.16)

As an approximation of the solution, the variable of u(x,t) is expanded as,

u≈
Nt

∑
k=1

ak(t)ξk(x), (3.17)
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(a) Global optimal basis of Fourier polyno-
mials for strategy A

(b) Global optimal basis of Legendre poly-
nomials for strategy A

Figure 11: Error and weighted residue of Eq. (3.1) for different convergent criterions.

(a) Global optimal basis of Chebyshev poly-
nomials for strategy A

(b) Global optimal basis of Fourier polyno-
mials for strategy B

Figure 12: Error and weighted residue of Eq. (3.1) for different convergent criterions.

where, ak is the coefficient. By using the Galerkin projection, a formulation is obtained as

Gl = ȧl+
Nt

∑
k,m=1

akam

∫ 1

0
ξkξlξ

′
mdx+ν

Nt

∑
k=1

ak

∫ 1

0
ξ ′kξ ′ldx, (3.18)

and ξl∈ℜ is the unknown basis to be determined. By the initial condition, al(0) is satisfied
as,

al(0)=
∫ 1

0
u0ξldx. (3.19)

Moreover, the residue of the Burgers’ equation is taken as,

Rk =
Nt

∑
k=1

ȧkξk+
Nt

∑
k,m=1

akamξkξ ′m−ν
Nt

∑
k=1

akξ ′′k . (3.20)
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(a) Global optimal basis of Legendre
polynomials for strategy B

(b) Global optimal basis of Chebyshev
polynomials for strategy B

Figure 13: Global optimal bases of Eq. (3.1) for different convergent criterions.

(a) Fourier polynomials versus corre-
sponding local optimal bases for strate-
gy A

(b) Legendre polynomials versus corre-
sponding local optimal bases for strate-
gy A

Figure 14: Initial bases versus corresponding local optimal bases of Eq. (3.13) ν=0.02 for two strategies.

According to the method proposed in Section 2, the forth term of the right hand side of
Eq. (2.5) is taken as the optimal functional condition, and set µ4=1, such that,

J(ξ)=
∫ T

0

Nt

∑
l=1

|(ξl ,Rk)|dt=
∫ T

0

Nt

∑
l=1

∣∣∣ȧl+
Nt

∑
k,l=1

akam

∫ 1

0
ξkξlξ

′
mdx+ν

Nt

∑
k=1

ak

∫ 1

0
ξ ′lξ

′
kdx

∣∣∣dt. (3.21)

By the same way, two solving strategies, A and B, are used, respectively,

JA(ξ)=
∫ T

0

( Nt

∑
l=1

ȧl+
Nt

∑
k,l=1

akal

∫ 1

0
ξkξlξ

′
mdx+ν

Nt

∑
l,k=1

ak

∫ 1

0
ξ ′lξ

′
kdx

)
dt, (3.22a)

JB(ξ)=
∫ T

0

(
−

Nt

∑
l=1

ȧl−
Nt

∑
k,l=1

akal

∫ 1

0
ξkξlξ

′
mdx−ν

Nt

∑
l,k=1

ak

∫ 1

0
ξ ′lξ

′
kdx

)
dt. (3.22b)
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(a) Chebyshev polynomials versus corre-
sponding local optimal bases for strategy A

(b) Fourier polynomials versus correspond-
ing local optimal bases for strategy B

Figure 15: Initial bases versus corresponding local optimal bases of Eq. (3.13) ν=0.02 for two strategies.

(a) Legendre polynomials versus correspond-
ing local optimal bases for strategy B

(b) Chebyshev polynomials versus corre-
sponding local optimal bases for strategy B

Figure 16: Initial bases versus corresponding local optimal bases of Eq. (3.13) ν=0.02 for two strategies.

The Lagrangian multiplier λ and the penalty function µ are used to remove the constrains
of the Galerkin projection equation and the orthogonal condition, respectively. The gen-
eralized optimal functions are obtained as follow,

JgA(ξ)= JA+
∫ T

0

Nt

∑
l=1

λlGldt+
Nt

∑
k,l=1, k≤l

µ
(∫ 1

0
ξkξldx−δkl

)2
, (3.23a)

JgB(ξ)= JB+
∫ T

0

Nt

∑
l=1

λlGldt+
Nt

∑
k,l=1, k≤l

µ
(∫ 1

0
ξkξldx−δkl

)2
. (3.23b)
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(a) Exact solution for ν=0.02 corresponding
to Eq. (3.15)

(b) POT-WR solution for Fourier polynomi-
als

Figure 17: Exact solution of Eq. (3.15) and global POT-WR solution of Eq. (3.13) for strategy A ν=0.02.

Taking variational operation of JgA(ξ), JgB(ξ), and letting δJgA(ξ)= 0, δJgB(ξ)= 0, thus,
for the strategy A, it is obtained as

λ̇l =
Nt

∑
k,m=1

(1+λk)am(
∫ 1

0
ξlξkξ ′mdx+

∫ 1

0
ξkξmξ ′ldx)+ν

Nt

∑
k=1

(1+λk)
∫ 1

0
ξ ′kξ ′ldx,

0=4µξl

(∫ 1

0
ξ2

l dx−1
)
−(1+λl(0))u0−

Nt

∑
k=1

νξ ′′k

∫ T

0
((1+λk)al+(1+λl)ak)dt

+
Nt

∑
k,l=1, k≤l

2µξk

(∫ 1

0
ξkξldx

)
+

Nt

∑
k,m=1

ξkξ ′m

∫ T

0
((1+λl)akam−(1+λm)akal)dt,

0= ȧl+
Nt

∑
k,m=1

akam

∫ 1

0
ξkξlξ

′
mdx+ν

Nt

∑
k=1

ak

∫ 1

0
ξ ′kξ ′ldx,

(3.24)

and for the strategy B,

λ̇l =
Nt

∑
k,m=1

(λk−1)am

(∫ 1

0
ξlξkξ ′mdx−

∫ 1

0
ξkξmξ ′ldx

)
+ν

Nt

∑
k=1

(λk−1)
∫ 1

0
ξ ′kξ ′ldx,

0=4µξl

(∫ 1

0
ξ2

l dx−1
)
+(1−λl(0))u0+

Nt

∑
k=1

νξ ′′k

∫ T

0
((1−λk)al+(1−λl)ak)dt

+
Nt

∑
k,l=1, k≤l

2µξk

(∫ 1

0
ξkξldx

)
+

Nt

∑
k,m=1

ξkξ ′m

∫ T

0
((1−λm)akal−(1−λl)akam)dt,

0= ȧl+
Nt

∑
k,m=1

akam

∫ 1

0
ξkξlξ

′
mdx+ν

Nt

∑
k=1

ak

∫ 1

0
ξ ′kξ ′ldx.

(3.25)

In order to catch a N-wave shock of the Burgers’ equation when ν is small, the order num-
ber of the truncation is taken as three, namely, Nt =3. Figs. 14-16 illustrates the contrast
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(a) POT-WR solution for Legendre polyno-
mials

(b) POT-WR solution for Chebyshev poly-
nomials

Figure 18: Exact solution of Eq. (3.15) and global POT-WR solution of Eq. (3.13) for strategy A ν=0.02.

(a) Exact solution for ν=0.02 corresponding
to Eq. (3.15)

(b) POT-WR solution for Fourier polynomi-
als

Figure 19: Exact solution of Eq. (3.15) and global POT-WR solution of Eq. (3.13) for strategy B ν=0.02.

between the initial bases and local optimal bases of Eq. (3.13) for the different strategies
under ν=0.02. The curves with solid symbol are the initial basis, and others are the local
optimal basis. The solutions of the local optimal bases based on the different initial bases
for the Legendre and Chebyshev polynomials are basically same for two strategies. But,
for the Fourier polynomials, it is seen from Fig. 14(a) and Fig. 15(b) that the local optimal
basis have the exactly same shape to the initial basis. The reason is that the Fourier initial
basis belongs to a part of the exact solution of the Burgers’ equation, which is optimal one.
However, it is noted that the local optimal bases are not able to catch the N-wave shock
of the Burgers’ equation, even neither for the Fourier polynomials. Thus, it is necessary
to find out the global optimal basis that can catch the main dynamical characteristics of
the Burgers’ equation.
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(a) POT-WR solution for Legendre polyno-
mials

(b) POT-WR solution for Chebyshev poly-
nomials

Figure 20: Exact solution of Eq. (3.15) and global POT-WR solution of Eq. (3.13) for strategy B ν=0.02.

The errors between exact and approximate solutions on POD, the Fourier polynomi-
als, DOT, and POT-WR are listed in Table 2. It is seen that the results obtained by the
POT-WR method have much better accuracy than the other methods. From Figs. 17-20,
the global optimal solutions converge well into exact solutions at ν= 0.02. Not only the
N shape shock but also the distortion along the evolution of time is well caught for two
strategies. Furthermore, it is clear in Figs. 21-23 that the third order basis represented by
a curve with circle shows the characters of the N shape shock. Comparing the results of
the local optimal bases shown in Figs. 14-16, the global optimal bases are independent of
the initial basis.

Convergent criterion is a critical condition for the global optimal search. From Figs. 24-
26, the difference between the exact and approximate solutions is taken as the convergent
criterion. The residue of Eq. (3.13) tends to stabilization as the error of Eq. (3.13) con-
verges to zero for two strategies. From Figs. 27-28, in order to investigate the margin
of the error when the smallest weighted residue is found out after 5000 times searches,

Table 2: Errors for Fourier polynomials, POD, DOT, and POT-WR (%).

Base No. Method ν=0.1 ν=0.05 ν=0.02
Fourier [19] 3.730 13.084 40.306

POD [19] 1.214 3.788 16.241
3 DOT [19] 1.061 3.418 8.799

POT-WR-A 0.105 0.172 0.343
POT-WR-B 0.105 0.172 0.343
Fourier [19] 0.897 2.955 17.650

POD [19] 0.333 1.359 7.339
4 DOT [19] 0.312 1.276 5.640

POT-WR-A 0.056 0.121 0.300
POT-WR-B 0.056 0.121 0.300
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(a) Fourier polynomials versus corresponding
global optimal bases for strategy A

(b) Legendre polynomials versus correspond-
ing global optimal bases for strategy A

Figure 21: Initial bases versus corresponding local optimal bases of Eq. (3.13) ν=0.02 for two strategies.

(a) Chebyshev polynomials versus correspond-
ing global optimal bases for strategy A

(b) Fourier polynomials versus corresponding
global optimal bases for strategy B

Figure 22: Initial bases versus corresponding local optimal bases of Eq. (3.13) ν=0.02 for two strategies.

the weighted residue based on time averaging is taken as the convergent criterion. The
margin of the error is limited when the residue is convergent for two strategies. The er-
rors indicated in Figs. 27-28 tend to be stable for both strategy A and B after about 2000
times search. Even though the error is still large, the method on the weighted residue
bounds the error effectively. However, as mentioned in Section 1, the error is divergent
when the residue is taken as the convergent criterion of the POT method. Thus, from the
view of computational mechanics, the weighted residue method seems to be better than
a method of directly making residue zero.
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(a) Legendre polynomials versus correspond-
ing global optimal bases for strategy B

(b) Chebyshev polynomials versus corre-
sponding global optimal bases for strategy B

Figure 23: Initial bases versus global optimal bases of Eq. (3.13) ν=0.02 for two strategies.

(a) Fourier error and weighted residue of E-
q. (3.13) for strategy A

(b) Legendre error and weighted residue of
Eq. (3.13) for strategy A

Figure 24: Initial bases versus corresponding local optimal bases of Eq. (3.13) ν=0.02 for two strategies.

4 Conclusions

The weighted residue of the system under consideration is taken as a changing optimal
control condition of POT to solve the system by low dimensional models, which allows to
construct a optimal basis for the solution without a given database. The conjugate gradi-
ent algorithm is used to solve the equation. One-dimensional heat transfer equation and
Burgers’ equation are taken as examples of solving the linear and nonlinear PDEs, respec-
tively. The results show that the novel method (POT-WR) proposed in this paper is quit
efficiency of approximating the exact solutions with a few truncations. The global opti-
mal searches make a great improvement of the local optimal solutions. The investigation
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(a) Chebyshev error and weighted residue of
Eq. (3.13) for strategy A

(b) Fourier error and weighted residue of E-
q. (3.13) for strategy B

Figure 25: Initial bases versus corresponding local optimal bases of Eq. (3.13) ν=0.02 for two strategies.

(a) Legendre error and weighted residue of E-
q. (3.13) for strategy B

(b) Chebyshev error and weighted residue of
Eq. (3.13) for strategy B

Figure 26: Error and the weighted residue of Eq. (3.13) for different convergent criterions.

of the convergent criterion of the global optimal searches illustrates that the application
of the weighted residue of the equation under consideration as the convergent criterion
is an effective way to bound the error of the solution. The method proposed in this paper
can be used for solving high dimensional problems for turbulence flow.
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(a) Fourier error and weighted residue of E-
q. (3.13) for strategy A

(b) Legendre error and weighted residue of E-
q. (3.13) for strategy A

Figure 27: Initial bases versus corresponding local optimal bases of Eq. (3.13) ν=0.02 for two strategies.

(a) Chebyshev error and weighted residue of E-
q. (3.13) for strategy A

(b) Fourier error and weighted residue of E-
q. (3.13) for strategy B

Figure 28: Initial bases versus corresponding local optimal bases of Eq. (3.13) ν=0.02 for two strategies.
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