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Abstract. In this paper, we present two-level defect-correction finite element method
for steady Navier-Stokes equations at high Reynolds number with the friction bound-
ary conditions, which results in a variational inequality problem of the second kind.
Based on Taylor-Hood element, we solve a variational inequality problem of Navier-
Stokes type on the coarse mesh and solve a variational inequality problem of Navier-
Stokes type corresponding to Newton linearization on the fine mesh. The error esti-

mates for the velocity in the H1 norm and the pressure in the L2 norm are derived.
Finally, the numerical results are provided to confirm our theoretical analysis.
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1 Introduction

Let Ω ⊂R
2 be a bounded and convex domain with Lipschitz boundary ∂Ω. Consider

steady incompressible flows which are governed by:
{

−µ∆u+(u·∇)u−∇p= f in Ω,

div u=0 in Ω,
(1.1)

where u=(u1,u2) denotes the velocity vector of the flows, p the pressure and f=( f1, f2)
the body force vector. The constant µ= 1/Re> 0 is the viscosity with Reynolds number
Re. In this paper, the following friction boundary conditions are considered:

{
u=0 on Γ,
un=u·n=0, −στ(u)∈ g∂|uτ | on S,

(1.2)
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where Γ∩S=∅ and Γ∪S= ∂Ω. g is a scalar function. n represents the unit vector of the
external normal to S. uτ and στ(u) are the tangential components of the velocity and the

stress vector σ which is defined by σi = σi(u,p)= (µeij(u)−pδij)nj with eij(u)=
∂ui

∂x j +
∂uj

∂xi ,
i, j=1,2. The subdifferential set is defined as follows. Let ψ be a given function which is of
convexity and weak semi-continuity from below. The subdifferentialset ∂ψ(a) is defined
by

∂ψ(a)={b∈R : ψ(h)−ψ(a)≥b(h−a), ∀h∈R}.

The boundary conditions (1.2) were introduced by H. Fujita to describe some prob-
lems in hydrodynamics [5]. Some well-posedness results from the view of theory have
been studied, such as R. An, Y. Li and K. Li [1], H. Fujita [6–8], T. Kashiwabara [15], Y. Li
and K. Li [26, 28], Le Roux [31, 32], N. Saito [33] and references cited therein. Although
there are a large amount of works about the finite element methods for Navier-Stokes
equations, however, the numerical methods for the problem (1.1)-(1.2) have not been
studied as much. The reason is that the variational formulation of (1.1)-(1.2) is of the
form of variational inequality due to the subdifferential property on the boundary S. M.
Ayadi, M. Gdoura and T. Sassi studied mini-element method for Stokes problem in [3].
T.Kashiwabara studied optimal finite element error bounds by defining the different nu-
merical integration of the non-differential term on the boundary S corresponding to the
different finite element pairs [16, 17]. The penalty and stabilized finite element methods
and their two-level mesh methods for steady problem were studied in [2, 4, 22–25]. In
these works, all numerical experiments were displayed only for small Reynolds number.
It is well known that for the incompressible flows at high Reynolds number, Navier-
Stokes equations are the domination of the convection and the flows are very unstable.
Thus, it is difficult to make the numerical simulation of the incompressible flows effi-
ciently.

There are some stabilized methods to overcome the difficulty in simulating the incom-
pressible flows at high Reynolds number numerically, such as the variational multiscale
method [13, 14, 34, 35], the subgrid method [11, 21], the defect-correction method [18–20,
29], etc. The defect-correction method is an iterative improvement technique and can in-
crease the accuracy of the solution without refining the mesh, so it has been successively
applied to Navier-Stokes equations at high Reynolds number. W. Layton firstly studied
defect-correction method for the steady incompressible flows at high Reynolds number
in [19]. Recently, H. Qiu and L. Mei studied the two-level defect-correction method for
steady Navier-Stokes problem by using the stabilized finite element method [30].

In this paper, we combine defect-correction method with two-level mesh technique to
solve the problem (1.1) at high Reynolds number with friction boundary conditions (1.2)
numerically. Since the variational formulation of the problem (1.1)-(1.2) is the variational
inequality problem, there exist some differences between our method for the problem
(1.1)-(1.2) and those for Navier-Stokes equations (1.1) with Dirichlet boundary condi-
tions. The main idea of our two-level method is to solve a nonlinear variational inequal-
ity problem of Navier-Stokes type at the defect step on the coarse mesh and solve a lin-


