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Abstract. With lower turbulence and less rigorous restrictions on noise levels, offshore
wind farms provide favourable conditions for the development of high-tip-speed wind
turbines. In this study, the multi-objective optimization is presented for a 5MW wind
turbine design and the effects of high tip speed on power output, cost and noise are
analysed. In order to improve the convergence and efficiency of optimization, a novel
type of gradient-based multi-objective evolutionary algorithm is proposed based on u-
niform decomposition and differential evolution. Optimization examples of the wind
turbines indicate that the new algorithm can obtain uniformly distributed optimal so-
lutions and this algorithm outperforms the conventional evolutionary algorithms in
convergence and optimization efficiency. For the 5MW wind turbines designed, in-
creasing the tip speed can greatly reduce the cost of energy (COE). When the tip speed
increases from 80m/s to 100m/s, under the same annual energy production, the COE
decreases by 3.2% in a class I wind farm and by 5.1% in a class III one, respective-
ly, while the sound pressure level increases by a maximum of 4.4dB with the class III
wind farm case.

AMS subject classifications: 34H05, 45L05, 47F05,76G25
Key words: Wind turbine design, high tip speed, multi-objective optimization, noise analysis.

1 Introduction

The tip speed of most commercially operating onshore wind turbines is usually limited
to 80m/s, based on the consideration of both the power generation cost and the aerody-
namic noise limitations of wind turbine. It is known that increasing the tip speed of wind
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turbines will increase the aerodynamic noise [1, 2]. Although wind turbine noise limita-
tions are not specified in IEC and GL standards, the tip speed is generally kept no higher
than 80m/s to avoid causing considerable harm to the human population nearby wind
farms. Nevertheless, increasing the tip speed brings a lot more benefits. For example, the
wind speed range corresponding to the optimum rotor power coefficient can be expand-
ed [3], thus promoting the power output of the wind turbine. In addition, increasing the
tip speed will reduce the rotation moment acting on the blade as well as the loads acting
on the drive train and generator, thus lowering the power generation cost [4].

The offshore wind turbine design may allow higher tip speed than onshore one. Be-
cause the sea is uninhabited by humans, there are less noise restrictions on noise propa-
gation. Moreover, vertical air convection over an open sea is less violent and less affected
by topographic factors; the turbulence intensity of offshore is much lower than that of
onshore [5, 6]. Long-term field measurements of wind over an open sea can be found in
the existing literature [7]. The characteristic value of the turbulence intensity at 15m/s
I15 is 4.9% at the height of 90 m above sea level, which is much lower than the onshore
turbulence intensity (minimum 12%) given in the IEC standard. This means that turbu-
lent inflow noise, which is the main source of aerodynamic noise, greatly decreases for
offshore wind turbines and therefore may leave much space for increasing the tip speed.

The optimization design of the wind turbine is in a process that involves many con-
straints, design variables and objectives among which there may exist conflicts with one
another, whether the wind turbine tip speed is high or not. For large wind turbine de-
sign, a delicate balance must be achieved among several objectives including power gen-
eration cost and generating capacity [8]. A large number of design variables must be
considered with respect to the aerodynamic configuration and the structural features as
key components. Additionally, constraints are also needed to satisfy the requirements
pertaining to geometry, loads, vibration and fatigue. Therefore, optimization design of
large wind turbines is a multi-objective, multi-variable and multi-constraint problem. In
the existing literature about wind turbine design [9], as many as 32 design variables and
102 constraint conditions are considered, making the optimization much challenging.

There exists no unique optimal solution for the multi-objective optimization of wind
turbine design. Rather, the purpose of multi-objective optimization is to identify a group
of trade-off solutions, known as Pareto optimal solutions, which are used to find the
Pareto Front (PF). In essence, PF is the interface separating the feasible and infeasible
solution regions in the objective space. Due to the complexity of the optimization, the
multi-objective design of wind turbine currently uses evolutionary algorithms, includ-
ing Hierarchical GA [10], PAES [11], SPEA2 [12, 13], MOGA [14], NSGA-II [15–18] and
PSO [19, 20]. These algorithms are categorized as gradient-free algorithms (GFAs) [21].
The most salient advantage of GFAs is the tolerance of random errors generated in search-
ing, which makes the algorithms suitable to optimization problems with any number of
variables, objectives and constraints. However, when applied to complex multi-objective
optimization, GFAs may have the defects of poor convergence, low efficiency and in-
ability to find the precise PF [22–24]. The reasons are two-fold. First, the optimization
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efficiency of GFAs deteriorates sharply as the number of design variables increases, as
previous studies have shown [21, 25]. As the number of design variables increases, the
number of evolutionary generations increases in a nearly quadratic manner. For wind
turbine design, which usually requires over 10 design variables, thousands of evolution-
ary generations may be needed to obtain the desired result using GFAs. Given this de-
fect, previous studies have attempted to improve the efficiency of single-objective opti-
mization for wind turbines by means of various gradient-based mechanisms [26, 27], but
gradient-based algorithms have not yet been successfully applied to the multi-objective
optimization of wind turbines. The second major shortcoming of GFAs concerns their
diversity preservation mechanisms, specifically clustering operators [10–13] and crowd-
ing distance [14–18], which have some intrinsic defects that may lead to unacceptable
population distribution. Previous studies [22, 28] have shown that both diversity preser-
vation mechanisms subject the population distribution to dynamic adjustment in each
generation. This leads to performance fluctuation and low efficiency as well as popula-
tion clustering due to failed diversity preservation mechanisms, so that a satisfactory PF
may not be obtained.

Base on the above descriptions, convergence performance and optimization efficien-
cy, the two crucial factors for optimization, are significantly challenging in cases where
conventional GFAs are applied in multi-objective design of wind turbine. Making this
issue worse, however, both of these factors tend to be ignored in wind turbine design.
In this article, based on uniform decomposition and positive-gradient evolution, a high
performance gradient-based differential evolution algorithm named as the MODE/D &
P is proposed and described in detail. Using this algorithm, optimization is conducted
for the design of several 5MW offshore wind turbines under different tip speeds. Fur-
thermore, the effect of tip speed on power generation cost and annual energy production
is discussed, followed by a noise analysis. To the best of our knowledge, this is the first
time that gradient-based differential evolution algorithms have been used in the multi-
objective design of wind turbines.

2 Overview of wind turbine multi-objective optimization
process

The multi-objective optimization of large wind turbines under different tip speeds is com-
prised of four parts: input, simulation, optimization and validation, as shown Fig. 1.

In the input part, the shape, structure and material of each component of wind tur-
bines, different tip speeds, design standard, as well as the basic parameters of the opti-
mization algorithm are provided for commencing the optimization. In the part of simu-
lation, the parametric modelling for the optimized components of wind turbines is car-
ried out to generate the design variables. This modelling part will be described in detail
in Section 3, where the aerodynamic performance of the wind turbine is also calculat-
ed using the blade element momentum theory. Determination of the extreme loads on
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Figure 1: Workflow of a high-tip-speed wind turbine design.

the wind turbine, prerequisite for structural design, is a complicated and complex task
involved in nonlinear simulations of aero-elastic-hydro-servo interactions in thousand-
s of design load cases. In this study, the extreme loads are evaluated using the FAST
codes [29] based on the IEC standard. The FAST codes are professional-grade and widely-
used software packages for wind turbine performance analysis. The codes have been
extensively tested and validated by many kinds of wind turbines [30, 31] and the cal-
culation accuracy and reliability are widely recognized. In the part of optimization, a
high-performance multi-objective optimization algorithm, named as MODE/D & P, is
developed to deal with the complex optimization, based on decomposition and differen-
tial evolution. The algorithm will be described in detail in Section 4. In the validation
part, comparative analyses of noise levels and propagation pattern to the two optimized
wind turbines with the tip speeds of 80m/s and 100m/s, respectively, are launched based
on a reliable semi-empirical noise prediction model.

The optimization procedures are as follows. First, the basic parameters of optimiza-
tion are input; parametric modelling of the blades and tower of the wind turbine is per-
formed and the design variables are determined. Then, the initial population for the
optimization algorithm is generated randomly and a mechanical analysis of the entire
wind turbine is performed in order to obtain the values of objectives and constraints.
Then they are introduced into the MODE/D & P algorithm to generate a new popula-
tion. Convergence is judged based on convergence criteria. If convergence is reached,
the optimized result is obtained and the noise analysis is subsequently conducted for
the optimized wind turbine; otherwise, the population is updated and the optimization
continues for the (t+1)-th generation.

3 Modelling of wind turbine
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3.1 Objective functions

3.1.1 Minimum cost of energy

Cost of energy (COE), defined as the ratio of the total annual cost CTA to the annual
energy production (AEP), is calculated using the model of the NREL CSM [32]. NREL
CSM is the most extensively used cost analysis model for wind turbines [32]. It has been
applied with high reliability to the cost analysis of several types of wind turbines, ranging
from 750kW to 5MW [33, 34]. In the model, loads on each component are translated into
costs by various pre-constructed empirical cost models. The calculation of the COE is
given by

f1=minCOE=min
Fr ·(TCC+BOS)+(1−β)·OPEX

AEP
,

where TCC represents the turbine capital cost, BOS the balance-of-station costs and OPEX
the operational expenditures; Fr is the financing rate and the tax deduction rate.

3.1.2 Maximum annual energy production

Annual energy production (AEP) under a given wind farm condition is calculated using
the following equation [8]:

f2=max
N−1

∑
i=1

(
1
2
(P(Vi+1)+P(Vi))× f (Vi <V<Vi+1)×T

)
,

f (V)=
K
C

(
V
C

)K−1

e−(
V
C )

K

,

where, P(V) is the output power at the wind speed V, f (V) the Weibull distribution
function, T the annual hours, K the scale parameter and C the shape parameter.

In order to validate the methods of power calculation and AEP calculation used in
this study, the NREL Phase VI wind turbine [35] and the AERODYN-1.5MW wind tur-
bine [18] are chosen as test samples. Fig. 2 provides a comparison of the calculated and
experimental results of power output for the NREL Phase VI wind turbine. The power
is calculated based on the blade element momentum (BEM) theory codes, which is de-
veloped by the authors and had been embedded into the optimization. As can be seen,
the calculated results agree well with the experimental results over the entire wind speed
range. This BEM method is then used to calculate the AEPs for the AERODYN-1.5 MW
wind turbine at different annual mean wind speeds, which are compared with the re-
sults from the GH BLADED software, as shown in Fig. 3. The commercial software GH
BLADED is widely used for wind turbine certification [25] in wind energy industry. The
AEPs obtained from the aerodynamic model used in this optimization agrees well with
the GH BLADED results with a maximum error of 0.8% at the annual mean wind speed
of 10m/s.
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Figure 2: Comparison of calculated and measured output power on the NREL Phase VI wind turbine.

Figure 3: Comparisons of calculated AEP on the AeroDyn-1.5MW wind turbine.

3.2 Design variables

The optimizations in this study are conducted based on the NREL 5 MW baseline wind
turbine [36]. Therefore, other than the blade and tower, the machine configuration, struc-
tures and materials of major components are all kept consistent with the NREL 5MW
wind turbine. A total of 32 variables are constructed and expressed in the following

X={c,θ,trelt,dpre,tspar,tte,dtower}.

The blade aerodynamic shape variables are used to describe the geometrical features of
the blade including the distributions of chord (c), twist (θ), relative thickness (trelt) and
pre-bending (dpre). These variables determine the blade aerodynamic performance. In
this study, the blade chord, twist and relative thickness distributions are, respectively,
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(a) Thickness distribution of the spar cap (b) Thickness distribution of trailing edge panel

Figure 4: Definition of the structural variables of the blade.

defined with five control points as design variables at the locations of 0.2R, 0.4R, 0.6R,
0.8R and 0.96R in the spanwise direction (R represents the blade length). The relative
thickness is fixed as 100% at the blade root. Third-order spline fitting is applied for the
distributions of chord, twist and relative thickness. The pre-bending distribution is fitted
by an exponential function with three variables at the locations of 0.5R, 0.75R and R in
the spanwise direction.

The complex structure of the blade is simplified based on engineering experience to
allow optimization [29]. The thickness distributions of the spar cap (tspar) for the inboard
part before the location of the maximum chord length and the part from the location
of the maximum chord length to the blade tip are fitted using linear and three-order
spline, respectively. Fig. 4(a) shows the thickness distribution of the spar cap with eight
variables. Four variables are arranged at designated positions in the spanwise direction
of the blade and connected to each other in a linear pattern, to determine the thickness
distribution of the trailing edge panel (tte), as shown in Fig. 4(b).

The external radii of the tower top and bottom are kept unchanged and the thickness
of the tower wall (dtower) is the variable to be optimized. Linear fitting is adopted with
two variables.

3.3 Constraints

The distributions of the chord, twist and relative thickness decrease gradually from the
location of maximum chord length to the blade tip. In addition, the strength and stiffness
of the blade are also restricted.

3.3.1 Strength constraint

According to the requirements of the IEC 61400-1 (2015) standard, the safety factor (SF),
defined as the ratio of the maximum stress allowed in the local area ([σi]) to the stress at
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the location i (σi), must be greater than 1 on the entire blade [8], as follows:

SF=min
[σi]

σi
≥1,

where  [σi]=
fk,i

γmγn
,

σi =γ f Fk,i,

Fk is the characteristic value for the load. fk is the characteristic value of material prop-
erties. γk is the partial safety factor for loads, γm is the partial safety factor for materials
and γn is the failure factor. These coefficients are all given according to the IEC standard.

3.3.2 Deflection constraint

The deflection of blades must be controlled to avoid striking the tower. According to
the IEC standard, the minimum clearance (Dc,min) of the blade is greater than 30% of the
initial clearance (Dc), as in the following:

Dc,min≥0.3·Dc.

4 Proposed optimization algorithm

In order to overcome the problems of poor convergence and low efficiency in the multi-
objective optimization of a wind turbine, a new gradient-based multi-objective evolu-
tionary algorithm, named as MODE/D & P, is proposed based on uniform decomposi-
tion and differential evolution. The procedure of the proposed algorithm is shown in
Fig. 5. Uniformly distributed reference vectors are established in the objective space so
that populations can approach the PF by surrounding these vectors and eventually con-
verge at the intersections of these points and PF. A gradient-based differential evolution
method is developed to significantly improve optimization efficiency.

4.1 Uniform decomposition mechanism for diversity preservation

At the initiation of MODE/D & P, a series of uniformly distributed reference vectors are
set up in the objective space. These vectors are established in a hyper-cube with a unit
size of 1 and thus are called normalized reference vectors (NRVs), as shown in Fig. 6.
Anchor points are fixed at locations on axes with an intercept of 1 and a Utopia plane
is established by connecting these points. Then, uniformly distributed Utopia points are
identified on the Utopia surface and a series of lines that are perpendicular to the Utopia
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Figure 5: The MODE/D & P procedure.

Figure 6: Schematic of multiple NRVs in two-objective optimization.

surface are identified to pass through the Utopia points. The quantity of NRVs (NV) can
be obtained using the following equation:

NV =CNS
m+NS−1,

where NS is the number of divisions of each objective axis.
During the process of optimization, some vectors may not be linked to the individuals

of the algorithm, while others may be linked to several, which can lead to degraded
algorithm performance and even failure. In MODE/D & P, the concept of multiple NRVs
is introduced to overcome this drawback. For two consecutive ranks of NRVs in two-
objective optimization (see Fig. 6), NPVs in the second rank (A2, B2, C2, etc.) are obtained
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by doubling the NS in the first rank (A1, B1, C1 etc.). The vector rank (VR) of each rank
is defined as 0 for the first rank and increased by 1 for each successive rank. More than
two ranks are generated if necessary, but each rank is generated only once.

After the construction of the multiple NRVs needed, the association of populations
with NRVs is achieved through three steps. First, the Euclidean distances between each
individual and NRVs in the 0th rank are obtained and the label of the NRV corresponding
to the minimum Euclidean distance is considered as a variable of the individual. Then,
all the individuals associated with one specific reference vector (j) are categorized in a
subset. Finally, the individual with the shortest Euclidean distance in each subset is se-
lected and the current VR value is attributed to that individual. The other individuals
are then associated to the NRVs in the next rank until every individual is associated with
a unique vector.

4.2 Positive-gradient differential evolution

4.2.1 Converging direction

Ideally, the Pareto optimal solutions should converge at the points where the reference
vectors intersect with the PF (see Fig. 6). Therefore, the most effective converging pattern
involves individuals approaching the PF along reference vectors. For minimization, the
converging directions of each individual are defined as the direction toward the origin
along the respective reference vectors.

4.2.2 Positive-gradient constraints

The positive-gradient constraint is a novel scheme proposed in this study in order to en-
hance the searching ability of the algorithm. The advance vector Vi,adv,g in the objective
space is mapped from the trial vector Vi,trial,g in the variable space. If the direction of the
advance vector deflects from the converging direction of the reference vector Ui, the most
likely reason is the performance degradation of the reference individual and the failure of
this evolution. Therefore, constraining the angle between the trial vector and the positive
converging direction to below 90 degrees is the best way to guarantee the positive evolu-
tion of the individual. Subsequently, the positive-gradient mutation is established based
on a classical ”DE/best/1” scheme and a neighbourhood cross-generation scheme [37]:

Xi,g =Xi,best,g+F ·Vi,tial,g,

Vi,adv,g =Yi,rn1,g−Yi,rn2,g−1,

which satisfies: {
Vi,tial,g =Xi,rn1,g−Xi,rn2,g−1, if Vi,adv,g ·Ui ≥0,
Vi,tial,g =Xi,rn2,g−Xi,rn1,g−1, if Vi,adv,g ·Ui <0,

where Xi,rn1,g is an individual that is randomly selected from the NSP of the current gen-
eration associated with the vector i, Xi,rn2,g−1 is an individual that is randomly selected
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from the NSP of the previous generation and Yi,rn1,g and Yi,rn2,g−1 corresponding to Xi,rn1,g
and Xi,rn2,g−1 are the vectors of the objective values. F is the scale factor.

4.3 Parameter adaptation scheme

In classical differential evolution algorithms, the scale factor and crossover rate (Cr), both
of which are constant, are the two key factors reflecting the evolution step of individuals
in every generation. The self-adaptability of these two factors can boost optimization
efficiency and universal capability of the algorithm because of its significant effects on
the differential evolution algorithms. A highly effective parameter adaptation scheme,
which has been reported elsewhere [37] is employed in this study. The equation is as
follows:

Fi,g =meanA(NFi,n,g
∪

NFi,n,g−1)+θF ·Gaussian(0,1),

Cri,g =meanA(NCri,n,g
∪

NCri,n,g−1)+θCr ·Gaussian(0,1),

where Fi,g and Cri,g are, respectively, the scale factor and crossover rate that correspond to
the ith vector in differential evolution, MeanA (NFi,n,g∪NFi,n,g−1) and MeanA (NCri,n,g∪
NCri,n,g−1) are the mean value of the scale factor and the crossover rate of all of the
individuals in NSPs of the two consecutive generations, respectively, Gaussian (0,1) is
the Gaussian distribution function and θF and θCr are the constant coefficients of the scale
factor and crossover rate, respectively.

5 Results and analysis

The 5MW wind turbine designs are conducted for Class I and Class III wind sites with
the annual mean wind speed of 10m/s and 7.5m/s, respectively. The tip speeds are 80,
90 and 100m/s, respectively. The optimization objectives are the minimum COE and
maximum AEP. The population size and evolution generation for the optimization are
set to be 20 and 300, respectively. The wind turbine basic parameters are set the same as
the NREL 5MW baseline wind turbine except for the design variables to be optimized, as
mentioned in Section 3.2.

5.1 performance of optimization algorithm

To demonstrate the performance of the optimization algorithm, the results of the 5MW
wind turbine designs are analysed here only for Class I wind site and the tip speed of
80m/s. A comparison of the MODE/D & P is made with the NSGA-II [15], which is
the most widely used algorithm in multi-objective optimization of wind turbines. The
hypervolume indicator (IHV) [38] is used to quantitatively evaluate the convergence and
diversity of optimization algorithms. A higher IHV value indicates a good approximation
of the optimal solutions to PF and an excellent distribution of the optimal solutions.
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Figure 7: IHV values obtained by 5 runs using the two algorithms.

(a) MODE/D & P run 3 (b) NSGA-II run 2

Figure 8: Comparison of the distribution of optimal solutions with the two algorithms.

Fig. 7 shows the IHV values of 300 generations obtained for different 5 runs using
MODE/D & P and NSGA-II algorithms, respectively. Although the starting point of
evolution differs, the IHV values basically coincide at the 120th generation in the all 5
runs using the MODE/D & P algorithm. Thereafter, they remain stable, indicating that
the algorithm can reach convergence quickly and stably. In contrast, with the NSGA-II
algorithm, the IHV values differ significantly in the 5 runs, demonstrating that the conver-
gence of the NSGA-II algorithm is very unstable. The IHV value is obviously lower using
the NSGA-II algorithm than that using MODE/D & P algorithm after 300 generations,
indicating that the NSGA-II algorithm is difficult to reach a convergence.

The best results achieved for the 5MW wind turbine optimization using the MOD-
E/D & P algorithm and the NSGA-II algorithm, respectively, are given in Fig. 8, where
the distributions of the optimal solutions are compared in the objective space. Each point
on the curve represents an optimal design. The optimal solutions compose a monoton-
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ically increasing curve (represented by the solid line, called approximate PF), which in-
dicates the conflict of the two objectives; as COE is reduced, AEP will inevitably decline.
The MODE/D & P algorithm obtains a set of approximately uniformly distributed op-
timal solutions. However, the optimal solutions obtained by the NSGA-II algorithm are
slightly clustered, without converging to the approximate PF. Correspondingly, the lower
value of IHV with the NSGA-II algorithm results from its poor convergence and diversity
preservation performance. Therefore, compared to the NSGA-II algorithm, the MODE/D
& P can significantly improve the convergence performance and diversity of optimal so-
lutions.

5.2 Design results at different tip speeds

Two-objective optimizations for the 5MW wind turbine under three tip speeds of 80, 90
and 100m/s are given and the effect of tip speed on power generation cost and power
output is discussed here.

The distributions of optimal solutions for the 5MW wind turbine under the three tip
speeds are compared in Fig. 9, where the AEP and COE of the NREL-5MW wind turbine
are also marked. The most significant trend is that, as the tip speed increases, PF shifts
towards lower COE in the objective space.

To explain the reasons for this shift, the AEP of the NREL-5MW wind turbine is taken
as a reference and three optimization designs (A, B and C corresponding to the tip speeds
of 80, 90 and 100m/s, respectively) with very similar AEP are chosen from the three PFs
for further analysis. The operational parameters and performance of the three designs
are given in Fig. 10. As can be seen, the COEs of all the three designs are significantly
lower than the COE of the real NREL-5MW wind turbine. The NREL 5MW wind tur-
bine is not considered as an optimal design [36] since its high chord distribution leads to
considerable extreme load and therefore increases the COE.

Figure 9: Optimal solutions for the 5MW wind turbines in Class I wind farm.
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(a) Power coefficient (b) Rotation speed

(c) Rotor torque (d) Chord distribution

(e) Component mass (f) Extreme flapwise moment on the blade

Figure 10: Operational parameters and performance of the designs A, B and C.

The power coefficients are almost identical for Design A and C (Fig. 10(a)). As the
tip speed increases from 80m/s in Design A to 100m/s in Design C, the rated rotational
speed of the rotor increases from 12.1rpm to 15.1rpm (Fig. 10(b)), while the rotor torque
remarkably decreases from xx to xx kNm (Fig. 10(c)). Nevertheless, the rated power of
5MW is achieved for the designs. This brings about two major benefits. First, the blade
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Figure 11: Optimal solutions for the 5 MW wind turbines in Class III wind farm.

chord can be shortened at a lower rotor torque (Fig. 10(d)), which is very important for
reducing the loads on the turbine. Second, the gearbox speed ratio and gearbox weight
can be greatly reduced at higher blade rotational speed. The gearbox weight in Design C
is lower than that in Design A by 25.7% (Fig. 10(e)), resulting in a considerable reduction
of the total turbine cost. However, the extreme loads of the turbine will increase at higher
tip speed. The blade root flapwise moment in Design C is increased by 6% compared to
that in Design A (Fig. 10(f)), which results in a 4.7% increase in blade weight (Fig. 10(e))
and a 3.4% increase in the weight of the tower. The compromise of the advantages and
the adverse impact of increasing the tip speed ultimately results in a decrease of COE in
Design C by 3.2% compared to that in Design A.

Design A can be compared with design B in the same way and the COE of Design B
decreases by 1.2% compared to that of Design A.

The similar optimization is conducted for a Class III wind farm, where the annual
mean wind speed is 7.5m/s. The distribution of optimal solutions obtained at different
tip speeds is given in Fig. 11 and the operational parameters and performance of the
designs D, E and F, chosen from the optimal solutions corresponding to the tip speeds of
80, 90 and 100m/s, respectively, are compared in Fig. 12.

Increasing the tip speed can also reduce the COE in the Class III wind farm; the trend
observed is very similar to that in the Class I wind farm given above, except for two
major differences. First, the COE of the turbine in Class III wind farm is considerably
higher than that in Class I wind farm. This is because the masses of the blade, tower and
gearbox, which are closely related to the COE (Fig. 12(d)), as well as the extreme load
acting on the turbine (Fig. 12(f)) only decrease slightly as compared with those in Class I
wind farm. In contrast, the AEP decreases dramatically in Class III wind farm due to the
low annual mean wind speed. On the other hand, increasing the tip speed in Class III
wind farm causes a more significant decrease in the COE. The COE of Design F is lower
than that of Design D by 5.1% for this Class III wind farm, while this decrease is 3.2% in
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(a) Power coefficient (b) Rotation speed

(c) Rotor torque (d) Chord distribution

(e) Component mass (f) Extreme flapwise moment on the blade

Figure 12: Operational parameters and performance of the turbine in designs D, E and F.

Class I wind farm as mentioned above, when the tip speed is increased to 100m/s from
80m/s. Therefore, increasing tip speed is more favourable for reducing the COE in a
low-speed wind farm.
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6 Noise analysis

6.1 Noise prediction model

A semi-empirical aerodynamic noise prediction model [39] is used to analyze the effect
of tip speed on wind turbine noise. The model consists of three independent submodules
to analyze noise sources with different characteristics. Total aeroacoustic noise from the
wind turbine is then obtained by superposition.

Turbulent boundary layer trailing edge (TBL-TE) noise is generated by the spatial and
temporal fluctuations of the pressure field due to the interaction between the turbulent
boundary layer and the trailing edge. TBL-TE noise is predicted by the following equa-
tion:

SPLTBL−TE=10log(10SPLp/10+10SPLs/10+10SPLα/10),

where SPLp is the noise generated from the pressure side of the blade, SPLs is the noise
generated from the suction side and SPLα is the noise caused by boundary layer separa-
tion. These three terms are given by:

SPLp=10log

(
δp M5LDh

re2

)
+A

(
Stp

St1

)
+(K1−3)+∆K1,

SPLS=10log
(

δS M5LDh

re2

)
+A

(
StS

St1

)
+(K1−3),

SPLα=10log
(

δS M5LDh

re2

)
+B
(

StS

St2

)
+K2,

where, δp and δS are the boundary layer displacement thickness of pressure and suction
side, M is the Mach number, L is the span of the blade element, re is the effective observer
distance, A is an empirical spectral shape, Stp, StS, St1 and St2 are the Strouhal numbers
representing different empirical relations, K1, K2 are the amplitude functions and ∆K is
the level adjustment amplitude function. Dh is the directivity function for high-frequency
noise sources, as follows:

Dh(Θe,Φe)=
2sin2(Θe

2 )sin2Φe

(1+McosΘe)(1+(M−Mc)cosΘe)
2 ,

where Mc is the convective Mach number. Θe and Φe are the directivity angles, respec-
tively.

Turbulent inflow (TI) noise is generated by the interaction between atmospheric tur-
bulence and the leading edge of the turbine blade. Low-frequency and high-frequency
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Figure 13: Comparison of the LWA of two wind turbines.

TI noises are predicted with the following equations, respectively [40]

SPLH
TI
=10log

(
ρ2

oc2
o lL

2r2
e

M3U2 I2 K3

(1+K2)7/3 DL

)
+58.4,

SPLL
TI
=SPLH

in+10log
( LFC

1+LFC

)
,

where, ρ0 is the air density, c0 is the sound speed, l is the turbulence length scale, I is
the turbulence intensity, K is the local wave number, DL is a low-frequency directivity
function and LFC is a low-frequency correction factor, as follows:

LFC=10S2MK2(1−M2)
−1

,

S is the compressible Sears function, its equation is as follows:

S2=

(
2πK

1−M2 +

(
1+2.4

K
1−M2

)−1
)−1

.

Blade tip (BT) noise is a radiated noise caused by the interaction between the 3D tip
vortex and the blade tip, calculated by the following equation [41]:

SPLTip=10log
(

M2M5
maxγ2Dh

1+LFC

)
−30.5(logStd+0.3)2+126,

where, Mmax is the maximum Mach number, γ is the spanwise extent of the separation
zone and Std is the Strouhal number based on γ. More detailed introductions about the
models and parameters are in [39] to [41].

In order to validate the prediction accuracy of the noise model, a series of noise trial
calculations for the two wind turbines with different power levels (NT-72 1.5MW [42]
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Figure 14: Comparison of one-third octave band spectrum at 6m/s.

and GW-109 2.5MW [43]) are carried out. Fig. 13 shows the comparison of the calculated
and measured results for the sound power level (LWA) of the two wind turbines. The
calculated total noise level agrees well with the experimental results with maximum er-
rors being 1.9dB and 2.4dB, respectively. Fig. 14 shows the comparison of the calculated
and measured sound pressure level (SPL) spectra at the wind speed of 6m/s. It is ob-
served that minor discrepancies exist in some frequency ranges between the calculated
and measured results, possibly resulting from the mechanical noise not included in the
aerodynamic noise prediction model, as stated in [42]. Nevertheless, this has little impact
on the overall SPL of the wind turbine, resulting in a difference of only about 1.2dBA.

6.2 Noise analysis for the optimized wind turbines

Increasing the tip speed of the wind turbine definitely increase noise emission from the
turbine. To quantitatively evaluate the effect of increasing tip speed on wind turbine
noise, Design A and C in the Class I wind farm with tip speeds of 80m/s and 100m/s,
respectively, are chosen for comparison.

The changes in overall sound pressure level (OASPL) with wind speed in Design A
and C are compared in Fig. 15. The reference turbulence intensity I15 is 5%, specifically set
as same as the field measurement of an offshore wind farm [44]. The observation point
on the ground for noise prediction is located at the position of (D/2+H) downstream
from the tower (D is the rotor diameter and H is the tower height), according to the
IEC standard. Generally, the OASPL of the two turbines first increases rapidly with the
increase of wind speed. The increase of OASPL then slows down above the rated wind
speed of 11m/s because the angle of attack of the blade is essentially constant by the pitch
movement. The OASPL of Design C increases by a maximum of 4.4dB as compared with
Design A at the wind speed of 14m/s.

Fig. 16 shows the 1/3 frequency octave spectra of SPL for different noise sources at
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Figure 15: Comparison of the OASPL of design A and design C.

(a) Design A with a tip speed of 80m/s (b) Design C with a tip speed of 100m/s

Figure 16: 1/3 octave band spectra of SPL for different noise sources at the wind speed of 12m/s.

the wind speed of 12m/s. As can be seen, within the frequency range, the turbulent
inflow noise is dominant among all the noise sources. The TBL-TE noise also contributes
significantly to the OASPL beyond 500Hz. The BT noise is small and its maximum SPL
does not exceed 20dB. Comparison of design A and design C shows that increasing the
tip speed increases the TI noise and TBL-TE noise beyond 500Hz. Though the BT noise
generally shifts towards the middle-high frequencies, the maximum SPL of the BT noise
is little influenced by increasing the tip speed.

Fig. 17 shows the footprints of OASPL at the wind speed of 12m/s for designs A and
C. Turbulent inflow noise is not included in the figures, since it do not alter with respect
of blade shape changes. It is clearly seen that the turbine noises show an approximately
symmetrical radiation pattern in both the upwind and downwind directions on the rotor
plane for the either design. The lowest noise occurs on the left and right sides of the rotor
plane. While the SPL at each position in design C is higher than that in design A, the
radiation patterns of noise do not differ significantly between the two designs.
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(a) Design A with a tip speed of 80m/s (b) Design C with a tip speed of 100m/s

Figure 17: SPL footprints at the wind speed of 12m/s (blade self-noise).

7 Conclusions

Multi-objective optimizations of wind turbine have been carried out for high tip speed
to lower the cost of energy. For the optimization, the gradient-based evolutionary algo-
rithm has been proposed with uniform decomposition and differential evolution, so that
uniformly distributed optimal solutions can be obtained with better convergence and op-
timization performance than the NSGA-II algorithm. The proposed algorithm has then
been applied to the optimization design of the 5MW turbine at three tip speeds of 80, 90
and 100m/s. The results show that increasing the tip speed can reduce the wind power
generation cost. As the tip speed increases from 80m/s to 100m/s, the COE decreases
by 3.2% in a Class I wind farm and 5.1% in a Class III wind farm, respectively, under
the same AEP. Finally, the noise analysis on the designs indicates that turbulence inflow
noise predominates among all aeroacoustic noise sources of the wind turbine. As the tip
speed increases from 80m/s to 100m/s, the noise increases by 4.4dB maximally. There-
fore, the high-tip-speed wind turbine design is beneficial to the exploitation of offshore
wind farms, which are ofmuch low turbulence intensity and usually uninhabited by hu-
man beings.

Acknowledgements

This work was funded by the National Basic Research Program of China (973 Program)
(No. 2014CB046200), the National Nature science Foundation (No. 51506089), the Jiang-
su Provincial Natural Science Foundation (No. BK20140059) and the Priority Academic
Program Development of Jiangsu Higher Education Institutions.



1482 L. Wang, G. P. Chen, T. G. Wang and J. F. Cao / Adv. Appl. Math. Mech., 9 (2017), pp. 1461-1484

References

[1] Y. GUO, T. PARSONS, K. DYKES AND R. N. KING, A systems engineering analysis of three-
point and four- point wind turbine drivetrain configurations, Wind Energy, Published online in
Wiley Online Library (wileyonlinelibrary.com), 2016.

[2] B. R. RESOR, D. C. MANIACI, J. C. BERG AND P. RICHARDS, Effects of increasing tip velocity
on wind turbine rotor design, Sandia National Laboratories: SAND2014-3136 518390, 2013.

[3] S. GANJEFAR, A. A. GHASSEMI AND M. M. AHMADI, Improving efficiency of two-type max-
imum power point tracking methods of tip-speed ratio and optimum torque in wind turbine system
using a quantum neural network, Energy, 67 (2014), pp. 444–453.

[4] A. R. NEJAD, Y. GUO, Z. GAO AND T. MOAN, Development of a 5MW reference gearbox for
offshore wind turbines, Wind Energy, 19 (2015), pp. 1089–1106.

[5] L. ARANY, S. BHATTACHARYA, J. MACDONALD AND S. J. HOGAN, Simplified critical mudline
bending moment spectra of offshore wind turbine support structures, Wind Energy, 18 (2015), pp.
2171–2197.

[6] H. WANG, R. J. BARTHELMIE, S. C. PRYOR AND H. G. KIM, A new turbulence model for
offshore wind turbine standards, Wind Energy, 17 (2014), pp. 1587–1604.
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[44] M. TÜRK AND S. EMEIS, The dependence of offshore turbulence intensity on wind speed, J. Wind
Eng. Industrial Aerodyn., 98 (2010), pp. 466–471.


