
African Journal for Industrial and Applied Mathematics 

Afr. J. Ind. Appl. Math., Vol. 1 , No. 1 , pp. 1-19

Mathematical Study of Fractional

Magnetohydrodynamic Blood Flow Nanofluid

in Activation of Thermal Radiation with Wright

DOI: 10.4208/ajiam.2025-0001 

June                                                                                           2025

Function

R. Essono1,*, T. C. Kofané2 and C. B. Tabi3
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Abstract. A study of magnetohydrodynamics model of blood flow is made with
single walls carbon nanotubes, copper (Cu), tin (TiO2), and alumina (Al2O3) and 
Cu as base nanoparticles through a circular cylinder. The fluid inside the tube is 
acted by an oscillating pressure gradient and an external constant magnetic field. 
The whole study is based on a mathematical model that includes Caputo fractional-
order derivatives. Solutions for the blood velocitie, blood temperature distribution, 
and blood concentration distribution are obtained through the Laplace transform 
and expressed by the Wright function. Effects of the fractional-order parameter, 
magnetic field, the magnetic parameter M, the Grashof numbers Gr and Gm, the 
dimensionless time t, and the Prandtl parameter Pr are addressed using numerical 
simulations. Results show that the applied magnetic field reduces the velocities of 
the fluid and particles. However, under long time intervals, particles seem to be ac-
celerated, but their velocity is suitably controlled by the fractional-order parameter.

AMS subject classifications: 35422, 44A10, 33E99, 76-10, 34K38
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1 Introduction

Biomagnetic fluid dynamic (BFD) is a new area of research in mechanical fluid [30].
The transportation of drugs, cell separation devices, control of bleeding during surg-
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eries and treatment of cancer tumors are efficiently done by biomagnetic fluids [12,21].
The inclusion of nanomaterials in the base fluid is an attracting technique that have
been invented by scientists to improve the thermal efficiency [30]. In 1995, nanofluids
introduced by Choi and Eastman [6] have received a considerable attention in current
times. Nanofluids are essentially a combination of nano-sized objects contained in
a fluid, name base fluid, that increases the thermal characteristics due to the collabo-
ration of these nanomaterials [13].

Blood is a biomagnetic fluid, due to the strong presence of the erythrocytes playing
the role of magnetic particles and the plasma as liquid carrier. The magnetization of
blood can be augmented by adding artificially created nanoparticles to the flow as usu-
ally done in drug targeting delivery. One of the work addressed to the aspect of drug
targeting was done in [11], where they studied the mechanism of magnetic targeting of
carrier particles in the microvasculature for therapeutic uses. Biofluids should be con-
sidered as a medium that exhibits high electrical conductivity [10,15], especially when
additional magnetic particles are injected in blood to carry drugs. This fact may justify
the use of the principles of magnetohydrodynamics (MHD) [8, 10], which rely on the
generation of Lorentz forces, in elaborating suitable mathematical models. Sharma
et al. [25] studied for example the effect of external uniform magnetic field on flow
parameters of both blood and magnetic particles based on a mathematical model us-
ing the MHD approach. Magnetic drug targeting (MDT) technique was used by Bose
and Banerjee [3], where fluid hydrodynamic and MHD principles were coupled to
track the magnetic particles under the effect of a magnetic field. Kefayati [17] studied
the effect of a magnetic field on non-Newtonian blood flow between two-square con-
centric duct annuli, and further extended the study to non-Newtonian blood flow in
a cavity driven by the motion of two facing lids [18]. In both cases, the results showed
that the increment of Reynolds number augments the magnetic field effect on the flow
of blood.

MDT is an interesting topic of research to be continued for discovering a better
and improved method of drug delivery by employing a new factor based on the frac-
tional calculus. Fractional calculus is one of the generalizations of classical calculus
and it has been successfully applied in the various fields of science and engineer-
ing [5, 27–29, 31]. The studies [22, 28, 29] examined the effects of the fractional-order
and magnetic fields on the flow of blood in a cylindrical domain by replacing the time
derivative of order one with the Caputo fractional derivatives.

Motivated by the above investigations the present paper aims to study the com-
bined heat and mass effects on an unsteady model of MHD blood flow. The objective
of the present work is to study a mathematical model of blood flow in presence of
magnetic particles and blood temperature, using Caputo fractional derivatives [4, 23].
External magnetic effects are considered and the blood in the vessel is assumed to be
acted by a periodic pressure gradient. The mathematical model, which includes Ca-
puto fractional derivatives, is generalized from the model containing integer deriva-
tives, and solutions for the blood velocity, particle velocity and blood temperature are
obtained by only making use of Laplace transform. Since Laplace transform expres-
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sions of velocity, temperature and concentration are not classical functions, the inverse
Laplace transform is difficult to find traditionally.

This paper is organized as follows. A brief description of the problem formulation
is given in Section 2. The exact solutions of the partial differential equation govern-
ing the model are derived in Sections 3 and 4. The results are displayed in profiles
and discussion are provided in Section 5. The conclusions of the paper are given in
Section 6.

2 Description of the problem and formulation

We consider an unstable viscous transient one dimensional MHD blood and incom-
pressible nanofluid on a cylindrical vessel, together with magnetic particles Fig. 1. We
consider that magnetic particle to be uniformly distributed in the blood, the resulting
ensemble flows in the axial direction x of the vessel. It is assumed that the Reynolds
number is very small, hence the induced magnetic field is very neglected compare to
the apply magnetic field. The particles, the tube and the blood inside are supposed to
be at rest at t < 0. The particles, the tube and the blood inside are supposed to be at
rest at t = 0. Particles are subjected to an electromotive force resulting from the inter-
action of current with the magnetic field. Its expression can be found in [14, 20, 25, 28]
in the form

−→
f em = −σB2

0U(r, t)
−→
i (2.1)

with
−→
i being the unit vector in the x−direction and U(r, t) the axial velocity of the

blood, B0 is the uniform magnetic field σ the electrical conductivity. We assume that
the internal dissipation is absent and the usual Boussinesq approximation is taken
into consideration. As a result the governing equations of momentum, energy, and
concentration are derived as follows [1, 2, 19, 24, 28]:

ρn f
∂u⋆

∂t
= −

∂p⋆

∂z
+ νn f

∂2

∂r⋆2
u⋆ − σn f B2

0u

+ g(βT)n f (T
⋆ − T⋆

∞) + g(βC)n f (C
⋆ − C⋆

∞), (2.2)

(ρCT)n f
∂T⋆

∂t⋆
= kn f

∂2

∂r⋆2
T⋆ −

∂q

∂r∗
, (2.3)

∂C⋆

∂t⋆
= DB

∂2C⋆

∂r⋆2
+

DT

T⋆
∞

∂2T⋆

∂r⋆2
, (2.4)

where u⋆ stands for the axial velocity, T⋆ and C⋆are respectively the temperature and
the concentration of the solute, B0 is the applied magnetic field, g, σn f and ρn f are re-
spectively the acceleration due to gravity, electrical conductivity, and density of blood,
CTn f , kn f and νn f represent respectively the specific heat at constant pressure, thermal
conductivity and kinematic viscosity, DB and DT are respectively the molecular diffu-
sivity and the thermophoretic diffusion coefficient. In this system of equation, p is the
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Figure 1: Schematic representation of the model geometry.

blood pressure, the oscillating gradient ∂p/∂x is given by

−
∂p

∂x
= b∗0 + b∗1 cos(ωt∗), t∗> 0, (2.5)

where b0 and b1 are the amplitude of the systolic and diastolic pressure gradient, re-
spectively [19, 25, 30], with ω being the frequency. The radiative flux qr is written
assuming that blood is an optically thin fluid with a relatively low density and heat ab-
sorption coefficient. The radiative flux qr can then be simplified as proposed by [7,26]
in the form

∂q

∂r∗
= −

4σ∗

3βR

∂T∗

∂r∗
, (2.6)

where σ∗ is the Stefan-Boltzmann fluid constant and βR is the coefficient of mean ab-
sorption.

In this study, the base fluid is blood with single walls carbon nanotubes (SWC-
NTs), copper, tin, and alumina and copper as base nanoparticles [16, 22], Table 1. The
coefficient of thermal of thermal expansion the density of nanofluid are taken to be

νn f =
ν f

(1 − φ)2.5
,

kn f

k f
=

(

kp + (m − 1)k f

)

− (m − 1)φ(k f − kp)
(

kp + (m − 1)k f

)

+ φ(k f − kp)
,

ρn f = (1 − φ)ρ f + φρp,

σn f

σf
= 1 +

3(σp/σf − 1)φ

(σp/σf + 2)− φ(σp/σf − 1)
,

(ρβ)n f = (1 − φ)(ρβ) f + φ(φβ)p,

ρn f = (1 − φ)ρ f + φρp,

(ρCt)n f = (1 − φ)(ρCt) f + φ(ρCt)p,

(2.7)

where φ is the solid volume fraction. The indexes n f , f and p denote respectively
nanofluid, fluid and nanosolid particles. We have
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Table 1: Thermophysical properties of blood and nanoparticles.

Physical properties Blood/base fluid SWCNTs Al2O3 TiO2 Cu

ρ (kg/m3) 1080 2600 3970 4250 8933

Cp (J/kgK) 3500 425 765 686.2 385

k (W/mK) 0.59 6600 40 8.953 401

σ (s/m) 0.6 106-107 35×106 2.6×106 59.5×106

β × 10−5 (1/K) 0.18 27 0.85 0.9 1.67

A0 = 1 − φ + φ
ρp

ρ f
, A5 = 1 − φ + φ

(ρCC)p

(ρCC) f
,

A1 =
1

(1 − φ)2.5
, A6 =

kn f

k f
,

A2 =
σp

σf
, b0 =

b∗0ν f

A0ρ f U0
,

A3 = 1 − φ + φ
(ρβT)p

(ρβT) f
, b1 =

b∗1ν f

A0ρ f U0
,

A4 = 1 − φ + φ
(ρβC)p

(ρβC) f
, ω =

U2
0

ν f
ω∗,

where

Gr =
ν f g(βT) f (T

⋆

1 − T⋆

∞)

U3
0ρ f

is the thermal Grashof number,

Gm =
ν f g(βT) f (C

⋆

1 − C⋆

∞)

U3
0ρ f

is the mass Grashof number,

Pr =
ν f CT

k f
is the Prandtl number,

Q =
QMν2

f

k f U0
is the heat source,

Nt =
τDT(T

⋆

1 − T⋆

∞)

ν f T⋆
∞

is the thermophoresis parameter,

Nb =
τDB (C

⋆

1 − C⋆

∞)

ν f
is the Brownian motion,

Le =
ν f

Dbρ f
the Lewis number.

In what follows, we make use of the special functions

L−1

{

1

Sa + m

}

= Fa(−m, t) =
∞

∑
n=0

(−m)nt(n+1)a−1

Γ
(

a(n + 1)
) a > 0, (2.8)
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L−1

{

Sγ

Sa + m

}

= Ra,γ(−m, t) =
∞

∑
n=0

(−m)nt(n+1)a−1−γ

Γ
(

a(n + 1)− γ
) Re(a − γ) > 0, (2.9)

where Fa(. , .) is the Robotnov-Harley’s function, and Ra,γ(. , .) is the Lozenzo-Hartly’s
function. In the particular case a = 1,

F1(−m, t) = e−mt, R1,−1(−m, t) =
1 − e−mt

m
.

The model Eqs. (2.2)-(2.4) are associated to the initial and boundary conditions

U∗(r∗, 0) = 0, U∗(0, t) = g(t), U∗(∞, t∗) → f (t),

T∗(r∗, 0) = 0, T∗(0, t∗) = T∗
w, T∗(∞, t∗) → 0,

C∗(r∗, 0) = 0, C∗(0, t∗) = C∗
w, C∗(∞, t∗) → 0,

(2.10)

where g(t∗) = ΨU0 cos(ω∗t∗), Ψ is a decay parameter and

f (t∗) = −b0Ra,−1

(

−
MA2

A0
, t∗
)

− b1 cos ωt ∗ Fa

(

−
MA2

A0
, t∗
)

.

The set of model Eqs. (2.2)-(2.4) can be generalized to their time-fractional versions by
multiplying each of them by λ = ν f /U2

0 . This leads to the fractional-order equations

λρn f Dα
t u∗ = −λ

∂p⋆

∂z
+ λνn f

∂2

∂r⋆2
u⋆ − λσn f B2

0u + λg(βT)n f (T
⋆ − T⋆

∞)

+ λg(βC)n f (C
⋆ − C⋆

∞), (2.11)

λ (ρCT)n f Dα
t T∗ = λkn f

∂2

∂r⋆2
T⋆ −

∂q

∂r∗
, (2.12)

λDα
t C∗ = λDB

∂2C⋆

∂r⋆2
+ λ

DT

T⋆
∞

∂2T⋆

∂r⋆2
, (2.13)

where

Dα
t m(r, t) =















1

Γ(1 − a)

∫ t

0

1

(t − τ)

∂m(r, τ)

∂τ
, 0 < a < 1,

∂ f (r, t)

∂t
, a = 1

(2.14)

is the fractional Caputo derivative [4, 23].

Introducing the dimensionless variables

U∗ = U0U, r∗ =
ν f

√
ρ f U0

, t∗ =
ν f

U2
0

t, T =
T⋆ − T⋆

∞

T⋆

1 − T⋆
∞

, C =
C⋆ − C⋆

∞

C⋆

1 − C⋆
∞

,
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we get the fractionalized set of equations

Dα
t U = b0 + b1cos(ωt) +

A1

A0

∂2

∂r2
U −

A2

A0
MU +

A3

A0
GrT +

A4

A0
GmC, (2.15)

Dα
t T =

A7

A5Pr

∂2

∂r2
T, (2.16)

Dα
t C∗ =

1

Le

∂2C

∂r2
+

Nt

LeNb

∂2T⋆

∂r⋆2
. (2.17)

The initial and boundary conditions (2.10) then become

U(r, 0) = 0, U(0, t) = g(t), U(∞, t) → f (t),

T(r, 0) = 0, T(0, t) = 1, T(∞, t) → 0,

C(r, 0) = 0, C(0, t) = 1, C(∞, t) → 0,

(2.18)

where g(t) = Ψ cos(ωt), Ψ is a decay parameter and

f (t) = −b0Ra,−1

(

−
MA2

A0
, t

)

− b1 cos ωt ∗ Fa

(

−
MA2

A0
, t

)

.

3 Calculation of temperature and concentration

We apply the Laplace transform on Eq. (2.16) to obtain

saT(r, s) =
A7

A5Pr

∂2T(r, s)

∂r2
, (3.1)

where the Laplace transform is applied on the times component

m(r, s) =
∫ ∞

0
m(r, t)e−st dt. (3.2)

Eq. (3.1) is equivalent to

∂2T(r, s)

∂r2
−

sa A5Pr

A7
T(r, s) = 0. (3.3)

By writing (3.3) equivalently, under boundary conditions (2.18), we obtain

T(r, s) =
1

s
exp

(

−r

√

sa A5Pr

A7

)

. (3.4)

By invoking the inverse Laplace transform, we get

T(r, t) = Φ

(

1,−
a

2
;−r

√

sa A5Pr

A7

)

, (3.5)
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where

Φ(α, β; t) =
∞

∑
ξ=0

τξ

ξ! Γ(α + βξ)

is the Wright function [9].
Applying the Laplace transform to Eq. (2.17), the second derivative of T(r, s) (3.4)

permits to get

∂2C(r, s)

∂r2
− LesaC(r, s) +

1

s

sa−1Nt A5Pr

NB A7
exp

(

−r

√

sa A5Pr

A7

)

= 0. (3.6)

Eq. (3.5) is equivalent to

C(r, s) =
1

s
exp

(

− r
√

Le sa
)

+
A5PrNt

NB(LeA7 − A5Pr)
exp

(

−r

√

sa A5Pr

A7

)

. (3.7)

Applying the Laplace inverse transform to Eq. (3.7), we deduce

C(r, t) = Φ

(

1,−
a

2
;−r

√

Le

ta

)

+
A5PrNt

NB(LeA7 − A5Pr)
Φ

(

1,−
a

2
;−r

√

A5Pr

A7ta

)

. (3.8)

4 Calculation of velocity

By applying the Laplace transform to Eq. (2.15), we obtain

∂2U(r, s)

∂r2
−

(

A0

A1
sa +

MA2

A1

)

U(r, s) +
b0A0

sA1

+
b1 A0

A1

s

s2 + ω2
+

A3Gr

A1
T(r, s) +

A4Gm

A1
C(r, s) = 0 (4.1)

Under boundary condition and Eqs. (3.4), (3.7), Eq. (4.1) is equivalent to

U(r, s) =
Ψs

s2 + ω2
exp

(

−r

√

A0

A1
sa +

MA2

A1

)

−

(

b0 + b1
s

s2 + ω2

)

1

sa + MA2/A0

− A11
1

sa − MA2/(A1A8)
exp

(

−r
√

sa A5Pr
)

−
A4Gm

A1A9

1

sa − MA2/(A1A9)
exp

(

−r
√

Le sa
)

.
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Using series expansion, we write

Ψs

s2 + ω2
exp

(

−r

√

A0

A1
sa +

MA2

A1

)

= Ψ
s

s2 + ω2
+ Ψ

s

s2 + ω2
×

∞

∑
ζ=1

(

−r
√

A0/A1

)ζ

ζ!

×
∞

∑
ξ=0

(MA2/A0)ξΓ(ζ/2 + 1)

ξ!Γ(ζ/2 − ξ + 1)

1

saξ−aζ/2
. (4.2)

Applying inverse Laplace transform and Eq. (4.2), under boundary conditions
(2.18), Eq. (4.1) is equivalent to

U(r, t) = U1 + U2 + U3 + U4 + U5, (4.3)

where

U1 = Ψ cos(ωt) + Ψ cos(ωt)×
∞

∑
ζ=1

(−r
√

A0/A1 )
ζ

ζ!
,

U2 = t−(aζ/2+1)
∞

∑
ζ=1

(MA2/A0)ξΓ(ζ/2 + 1)

ξ!Γ(ζ/2 − ξ + 1)
Φ
(

−
a

2
ζ,−a; ta

)

,

U3 = −b0Ra,−1

(

t,−
MA2

A0

)

− b1Fa,−1

(

t,−
MA2

A0

)

× cos (ωt) ,

U4 = −
A4Gm

A1A9
Fa,−1

(

t,
MA2

A1A9

)

× Φ

(

1,−
a

2
;−r

√

Le

ta

)

,

U5 = −A10Fa,−1

(

t,
MA2

A1A8

)

× Φ

(

1,−
a

2
;−r

√

sa A5Pr

A7

)

.

5 Analysis of graphical results

An analysis is presented to investigate the effects of heat and mass transfer on the tran-
scient MHD flow on a blood. Expressions of velocity U, temperature T and concen-
tration C are obtained by using Laplace transform method. We have made numerical
simulations in order to understand the physical behavior of the magnetic parameter
M, the Grashof numbers Gr and Gm, the dimensionless time t, and the Prandtl pa-
rameter Pr.

Fig. 2 presents profiles of dimensionless temperature, concentration and velocity of
different nanoparticles. It is observed that single walls carbon nanotubes have a great
temperature effect and concentration in blood than alumina and tin, but the inverse ef-



10 R. Essono, T. C. Kofané and C. B. Tabi

fect is observed for velocity.This figure shows that the exact solutions of dimensionless
temperature concentration and velocity verify the initial and boundary conditions. We
also notes that the present results for distribution of velocity, concentration and tem-
perature profiles are displayed for both small and large times (see Figs. 6, 2-22).

The variation of dimensionless temperature profiles for different nanoparticles by
variation of Prandtl number is presented by Fig. 4. It is observed that the transfer of
mass change by the nature of nanoparticles. The increase of Prandtl number increases
temperature for copper, the inverse effect is observed for tin and alumina nanoparti-
cles.

The variation of temperature, concentration and velocity for different values of
dimensionless time is shown in Fig. 3. We observe that velocity increases with the
decreasing of time, which is the opposite effect for temperature and concentration of
blood with single walls carbon nanotubes as base particle.

Figure 2: Profiles of temperature, concentration and velocity for different nanoparticles with t=4, Pr=0.9,
a = 0.7, Le = 0.001, a = 0.7, φ = 0.05, Ψ = 0.1.

Figure 3: Profiles of temperature, concentration and velocity for SWTCs with Pr=0.9, a=0.7, Le=0.001,
a = 0.7, φ = 0.05, Ψ = 0.1.

Figure 4: Profiles of temperature for different nanoparticles with a variation of Prandtl number, t = 0.6, a =
0.7, φ = 0.05, Ψ = 0.1.
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Figure 5: Profiles temperature, concentration and velocity, a = 1, t = 3, Pr = 1, Le = 0.001, Gr = 0.001,
Gm = 0.001, φ = 0.05, Ψ = 0.1.

Figure 6: Profiles of velocity for a great value of time t = 10, Pr = 1, Gr = 0.01, Gm = 0.001, Le = 0.001,
a = 0.7, φ = 0.05, Ψ = 0.1.

Fig. 19 presents the velocity profile of blood with tin and copper nanoparticles
for different values of the mass Grashof number. It is observed that the velocity in-
creased with the decrease of the values of mass Grashof number. This parameter
creates a Lorentz force, similar to the force created by the pressure of heart, which
increase acceleration of blood flow.

Fig. 22(a) presents the velocity profile of blood with copper nanoparticles for dif-
ferent values of the magnetic parameter M. It is observed that velocity increases upon
decreasing of magnetic parameter. This effect is the result of the Lorentz force, which
accelerates the flow upon decreasing of the values of M. In the absence of magnetic
field, velocity tend to be steady. Fig. 22(b) the velocity profile with copper nanopar-
ticles for different values of the Caputo derivative parameter a. As observed by the
study made by [19], the profile of velocity increased with increasing of values of a.

The effect of variation of sphericity in velocity, concentration and temperature is
presented in Figs. 7-18. It is observed that according to the type of nanoparticle, behav-
ior of velocity change under variation of sphericity of nanoparticle. But temperature
decreases by the decrease of sphericity, the opposite behavior it observes in the profile
of concentration.
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Figure 7: Profiles of velocity for SWTcS, t = 2, Pr = 0.9, Le = 0.001, M = 0.01, b0 = 10−7, b1 = 10−2,
Gm = 0, 1, Gr = 0, 1, φ = 0.05, Ψ = 0.1.

Figure 8: Profiles of velocity for TiO2, t=2, Pr=0.9, Le=0.001, M= 0.01, b0= 10−7, b1=10−2, Gm =0, 1,
Gr = 0, 1, Ψ = 0.1.

Figure 9: Profiles of velocity for Cu, t= 2, Pr= 0.9, Le= 0.001, M= 0.01, b0 = 10−7, b1 = 10−2, Gm = 0, 1,
Gr = 0, 1, Ψ = 0.1.

Figure 10: Profiles of velocity for SWTcS, t = 2, Pr = 0.9, Le = 0.001, M = 0.01, b0 = 10−7, b1 = 10−2,
Gm = 0, 1, Gr = 0.1, Ψ = 0.1.
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Figure 11: Profiles of velocity for TiO2, t=2, Pr=0.9, Le=0.001, M=0.01, b0=10−7, b1=10−2, Gm =0, 1,
Gr = 0, 1, Ψ = 0.01.

Figure 12: Profiles of velocity for Cu, t = 2, Pr = 0.9, Le = 0.001, M = 0.01, b0 = 10−7, b1 = 10−2,
Gm = 0, 1, Gr = 0.1, Ψ = 0.1.

Figure 13: Profiles of temperature for SWTCs, t= 2, Pr= 0.9, Le= 0.001, M= 0.01, b0= 10−7, b1= 10−2,
Gm = 0, 1, Gr = 0, 1, Ψ = 0.1.

Figure 14: Profiles of temperature for TiO2, t = 2, Pr = 0.9, Le = 0.001, M = 0.01, b0 = 10−7, b1 = 10−2,
Gm = 0, 1, Gr = 0, 1, Ψ = 0.1.
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Figure 15: Profiles of temperature for Cu, t = 2, Pr = 0.9, Le = 0.001, M = 0.01, b0 = 10−7, b1 = 10−2,
Gm = 0, 1, Gr = 0, 1, Ψ = 0.1.

Figure 16: Profiles of concentration for SWTCs, t=2, Pr=0.9, Le=0.001, M=0.01, b0=10−7, b1=10−2,
Gm = 0, 1, Gr = 0, 1, Ψ = 0.1.

Figure 17: Profiles of concentration for Cu, t = 2, Pr = 0.9, Le = 0.001, M = 0.01, b0 = 10−7, b1 = 10−2,
Gm = 0, 1, Gr = 0, 1, Ψ = 0.1.

Figure 18: Profiles of concentration for TiO2, t= 2, Pr= 0.9, Le= 0.001, M= 0.01, b0= 10−7, b1 = 10−2,
Gm = 0, 1, Gr = 0, 1, Ψ = 0.1.
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(a)

(b)

Figure 19: Profiles of velocity of Cu and TiO2 for different mass Grashof number, t = 4, Pr = 1, Gr = 0.01,
Le = 0.001, a = 0.7, φ = 0.05, Ψ = 0.1.

(a)

(b)

Figure 20: Profiles of concentration of Cu and TiO2 for different values of Lewis number, t = 4, Pr = 1,
Gr = 0.01, Gm = 0.001, Le = 0.001, a = 0.7, φ = 0.05, Ψ = 0.1.
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(a)

(b)

Figure 21: Profiles of velocity of Cu and TiO2 for different thermal Grashof number, t = 4, Pr = 1, Gm =
0.01, Le = 0.001, a = 0.7, φ = 0.05, Ψ = 0.1.

(a)

(b)

Figure 22: Profiles of velocity of Cu, t=3, Pr=1, Gm=0.01, Le = 0.001, a = 0.7, φ = 0.05, Ψ = 0.1.
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6 Conclusion

The exact solution of a fractionalized mathematical model of unsteady concective
MHD flow of blood as base fluid with single walls carbon nanotubes, Cu (convec-
tive copper), TiO2 (tin), and Al2O3 (alumina) and Cu (copper) as base nanoparticles,
with thermal and mass transfer, is obtained through Laplace transform with respect
to time variable. The main conclusion are listed below.

(i) Single walls carbon nanotubes have a great temperature effect and concentration
than alumina and tin, but the inverse effect is observed for velocity.

(ii) The increase of Prandtl number increases temperature for copper, the inverse
effect is observed for tin and alumina nanoparticles.

(iii) The velocity increases with the decreasing of time, which is the opposite effect
for temperature and concentration of blood with single walls carbon nanotubes
as base particle.

(iv) The velocity of tin and copper as base particle increased with the decrease of the
values of mass Grashof number Gm.

(v) The velocity of copper as base particle increases upon decreasing of magnetic
parameter.

(vi) The behavior of velocity change under variation of sphericity of nanoparticle.
But temperature decreases by the decrease of sphericity, the opposite effect it
observes in the profile of concentration.
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