
African Journal for Industrial and Applied Mathematics
Afr. J. Ind. Appl. Math., Vol. 1 , No. 1 , pp. 141-157

The Genetic Algorithm for Interoperability Cost
Optimization: A Case Study of GIMAC Business
Network

Eyenga Ovono Tatiana*

University of Yaounde I, BP 176 Yaoundé, Cameroon

Received 2 January 2025; Accepted (in revised version) 25 April 2025

Abstract. Interoperability cost analysis is a continuous trend in enterprise infor-
mation systems. Researchers have made the most significant contributions in this
field. The problem we address is to show how to optimize interoperability costs
within a networked enterprise. To overcome this issue, we have used a genetic
algorithm in which, the fitness function that we have defined is a new model for
optimizing the interoperability cost. To show how organizations validate and ver-
ify the solutions obtained through interoperability cost analysis and what measures
are taken to ensure the accuracy and reliability of the results, we have conducted
a case study within a networked enterprise. The results of the interoperability cost
analysis show that the inter-organizational business process studied is not adapted
to the interoperable information system and does not allow the evolution of the
network after a certain number of years.

AMS subject classifications: 0 5C50, 05C78, 65K10

Keywords: Genetic algorithm, interoperability cost analysis, model for optimizing interoper-
ability cost, inter-organizational business process.

1 Introduction

Interoperability in socio-technical systems describes the ability of discrete and tech-
nically or organizationally heterogeneous systems to share services or resources with
other systems [2]. The interoperability of information systems is defined as the abil-
ity of two or more information systems to interact based on multiple understandable
requests initiated by useful web services which perform tasks of inter-organizational
business processes, to achieve common goals defined by the networked enterprises.
This collaboration is putting in place through an interoperable information system.
With the rapid growth of industry, enterprises need to collaborate to improve their

∗Corresponding author. Email: tatiana.eyenga@facsciences-uy1.cm (E. O. Tatiana)

http://www.global-sci.org/ajiam 141 ©2005 Global Science Press

DOI: 10.4208/ajiam.2025-0007
June 2025

142 E. O. Tatiana

benefits and conquer new markets. This is done through the establishment of a set
of partnerships for creating a networked enterprise. During the running time of the
networked enterprises information systems for executing an inter-organizational busi-
ness process, a lot of resources are consumed. This consumption of resources has a cost
named: the overall cost of interoperability [3]. We consider that the overall cost of in-
teroperability of information systems represents the total consumption of resources
when the interoperation mechanism is carried out at the level of web services, which
perform the tasks of an inter-organizational business processes in a network of en-
terprises, despite the environmental risks associated with their information systems.
To improve the interoperability of information systems of networked enterprises in
order to add a new partner to the network, the overall interoperability cost must be
optimized for establishing and maintaining inter-enterprises collaboration. The opti-
mization of the overall cost of interoperability is the issue that we intend to address
in this paper. For that, in the second section we provide a set of basic definitions to
clearly understand our work. Section 3 gives the problem description and the math-
ematical model. In Section 4, we describe the CostGA optimizer based on a genetic
algorithm for interoperability cost optimization. In Section 5, we define the procedure
of the program that runs inside the optimizer. Section 6: We conduct our case study,
and we conclude our paper by the list of perspectives of our work.

2 Definitions

Genetic algorithm (GA) is an optimization algorithm that is inspired by natural selec-
tion and is a population-based search algorithm that utilizes the concept of survival
of fittest [7]. The general principle behind genetic algorithms is to randomly select
a population of individuals from a solution space. This population serves as candi-
date solutions for optimizing the given problem. The individuals in this population
are evaluated using a fitness function. A selection mechanism is used to choose the
individuals that will serve as parents for the next generation. These individuals are
crossed and mutated to form an offspring. Finally, the next generation is formed by
a learning mechanism combining the parent and child individuals. This procedure
is repeated until a stopping condition is satisfied. In the next section, we provide
the genetic algorithm basic concepts and the encoding schemes for most optimization
problems.

2.1 Genetic algorithm concepts

Referring to the fact that a genetic algorithm is an algorithm inspired by the natural
sciences, it is important to give a clear understanding of the concepts used like popula-
tion, chromosome, individual, and gene, for solving a problem in another field differ-
ent from computational science. So, a population is defined as a set of N individuals
representing solutions to a given problem. Each individual can be represented by one
or more chromosomes. When an individual is represented by a single chromosome,

The Genetic Algorithm for Interoperability Cost Optimization 143

the individual merges with the chromosome. A chromosome is one of the solutions
to the problem, and each chromosome is made up of a set of genes. The genes corre-
spond to the variables to be optimized or decision variables, whose values are called
alleles. In genetic algorithms, we have many techniques for initializing the popula-
tion, namely: randomness, compositionality, and generality. For more information
about population initialization techniques for evolutionary algorithms, the reader can
be referred to [8]. In this paper, we will use generality population initialization tech-
nique.

2.2 Encoding schemes

The encoding schemes serve to represent an individual in a genetic algorithm. The
information of an individual can be represented by a bit or string according to the
problem domain. We distinguish several encoding schemes: real, binary, octal, hex-
adecimal, permutation, value-based, and tree [7]. In this paper, we are interested in
real encoding schemes. A real encoding scheme helps to design genetic algorithms
whose chromosomes are vectors of floating-point numbers and whose alleles are real
numbers [11]. Real parameter vectors are used in our proposed genetic algorithm.
Each chromosome in a population is represented by a vector. A vector consists of a set
of decision variables. These decision variables are the web services implementing the
tasks of an inter-organizational business process. Thus, for each instance of an inter-
organizational business process execution corresponds a service utility vector at the
end of the execution. After multiple business process executions, we have multiple
business process instances, which also correspond to multiple service utility vectors.
Therefore, we build an interoperability cost optimizer that, for these multiple service
utility vectors, identifies the best vector, i.e. the components of this vector where the
services have the best service utility percentages, and the overall interoperability cost
of the business processes which is the final scalar obtained at the end of the proce-
dure, is minimized. Let us provide the mathematical description of the problem of
interoperability cost analysis in which decision variables can be identified.

3 Problem description and mathematical model

The problem of analyzing the overall cost of interoperability aims to determine the
set of useful services needed to execute business process instances in networked en-
terprise information systems. More significantly, the aim is to determine the set of
services useful for executing inter-organizational business process instances, knowing
that the aim is to minimize exchanges between services and resource consumption.
The set of services executing the instances of an inter-organizational business process
can be represented in the form of a dependency graph between services. Services
will be represented as nodes in a dynamic weighted directed graph. A web service
is linked to other services via its ports. A web service receives messages through its
input ports and sends messages through its output ports. The orientation of the arc

144 E. O. Tatiana

indicates the direction of the message flow exchanged, and the weighting of the arc re-
flects the usefulness or otherwise of the information exchanged for the target service.
Thus, depending on the type of interaction between services when exchanging mes-
sages and resources, we distinguish three types of interaction as we can see in Fig. 1:
those based on usable (exploitable) message exchanges, encoded by the number 1, i.e.
a successful interaction; those based on non-usable exchanges, i.e. a failure, encoded
by the number −1; and the absence of interaction, encoded by the number 0.

Let MI ∈ {−1, 0, 1}θ×θ be the interaction matrix derived from the dependency
graph between services executing business process instance tasks in interoperable net-
worked enterprise information systems after one time step. MIij represent the type of
interaction between service i and service j. Fig. 1 represents this mechanism. For each
interaction between two services, an unforeseen event may occur in the information
system, disrupting data transmission on either the source or target service side.These
unforeseen events can include organizational contingencies (power cuts, low band-
width), security contingencies (network attacks disrupting service operation), and or-
ganizational culture and governance structures, which have an impact on the overall
cost of interoperability. In this paper, we have materialized these risks using the col-
umn vector R of size θ. θ represents the order of the dependency graph between
services G = (V, E). An element Ri of R denotes the probability of the interruption
associated with service i; Ri ∈ [0; 1]. For the sake of simplicity and in order to avoid
privileging one disruption over another, the different elements of this vector will be
equal to 0.5.

Problem description: The problem of analyzing the total cost of interoperability can
be defined as follows: let us consider θ interacting services of inter-organizational
business processes of an interoperable information system of networked enterprises.
Each service j ∈ {1, 2, 3, . . . , θ} is subject to a perturbation Rj associated with the infor-
mation system environment and has an interoperability cost Cj defined by its response
time and throughput.

Figure 1: A dependency graph between services and interaction matrix.

The Genetic Algorithm for Interoperability Cost Optimization 145

• Objects to be analyzed: Interaction matrices between services MI of size θ × θ.

• Question: How to determine the services of inter-organizational business pro-
cess instances with the best utility percentages U that minimize the overall cost
of interoperability f val?

• Solution: Model the overall interoperability cost analysis problem as a con-
strained nonlinear optimization problem. The solution to this problem is de-
fined by the interoperability cost optimization model as follows:

min f (U)U∈ℜθ =
θ

∑
j=1

Cj × Uj (3.1)

sc























θ

∑
j=1

MIij × Uj ≥ Ri,

0 ≤ U ≤ 1,

i, j ∈ {1, 2, 3, . . . , θ}.

3.1 Literal translation of the mathematical model and definition of model
properties

• min f (U)U∈ℜθ = ∑
θ
j=1 Cj × Uj: This means that we want to find a service utility

vector U that minimizes the overall cost of interoperability.

• ∑
θ
j=1 MIij × Uj ≥ Ri; i, j ∈ {1, 2, 3, . . . , θ}: This constraint means that the dis-

ruptions induced by the information systems environment must be less than
the interactions between the services of inter-organizational business processes
instances.

• 0 ≤ U ≤ 1. The utility percentage of the service can be 0% or 100%, so the
vector’s components are bounded between 0 and 1.

• U: Column vector, representing the service utility vector,dimension θ.

• f : ℜ → ℜ, the objective function.

• Cj components of service interoperability cost vector. This value can be cal-
culated using the QoS attributes; in our work, we only use response time and
throughput.

• If Uj ∈ [0, 50[, the service j is not useful for business process interoperability.

• If Uj ∈ [50, 80[, the service j is partially useful for business process interoper-
ability.

• If Uj ∈ [80, 100], the service j is completely useful for business process interop-
erability.

• The f val value of the objective function represents the overall cost of interoper-
ability.

E. O. Tatiana146

3.2 Calculation of service interoperability cost vector components

We calculate the components of service interoperability cost vector C using QoS at-
tributes that emphasize exchanges between services: response time (Re) and through-
put (Th). Rej and Thj represents respectively the response time and the throughput
of the service j. We have: Rej ∈ [Re0; Remax] and Thj ∈ [Th0; Thmax] represents the
theoretical minimum response time that we aim to achieve, which improves the busi-
ness process interoperability performance. Remax represents the theoretical maximum
response time that degrades the business process interoperability performance. Th0
represents the theoretical minimum flow rate or throughput that degrades the busi-
ness process interoperability performance. Thmax represents the theoretical maximum
throughput that we aim to achieve, which improves the business process interoper-
ability performance. To compensate for the different units of measurement between
the different QoS attribute values, the values need to be normalized to lie within the in-

terval [0, 1]; for example, response time should be normalized by minimization, while
throughput should be normalized by maximization [1]. The interoperability cost Cj of
the service j is given by the formula

Cj =

(

VmaxRe − Rej

VmaxRe − VminRe
+

Thj − VminTh

VmaxTh − VminTh

)

, (3.2)

where V maxRe represents the maximum response time of all services participating in
the interoperability mechanism. V minRe represents the minimum response time of all
services participating in the interoperability mechanism. VmaxTh represents the maxi-
mum throughput value of all services participating in the interoperability mechanism.
VminTh represents the minimum throughput value for all services participating in the
interoperability mechanism. θ: is the number of services. Rej represents the effective
response time of service j. Thj represents the effective throughput of service j. Finally,
the steps taken to determine the overall cost of the interoperability are:

• Transform the dependency graph between services into a matrix, which we
have named the service interaction matrix.

• Define the risks associated with the interoperable information system environ-
ment that could disrupt exchanges between the web services implementing the
business process tasks like a vector R.

• Calculate the interoperability cost associated with each service Cj (see Eq. (3.2)),
taking into account response time and throughput, which are service quality
attributes.

• Take into consideration the components of the service utility vector U, which
are the problem variables.

• Determine the solution of Eq. (3.1), which is the extreme vector U∗ such that
f (U∗) ≤ f (U) for any U ∈ Rθ. So, it is the optimal solution of the problem
f (U∗) that gives the optimal value f val, f (U∗) = f val, which in our work rep-
resents the overall cost of interoperability.

The Genetic Algorithm for Interoperability Cost Optimization 147

4 The CostGA optimizer

When we decide to use a genetic algorithm as a linear program that would run inside
of an optimizer, it is important to know what we want the genetic algorithm to do.
To answer this question, the literature review offers us two points of view on the use
of genetic algorithms: on the one hand, for design problems and, on the other, for
repetitive problems. As mentioned by the authors [6] , in design problems, the genetic
algorithm is used to develop an optimizer to find the right solution. In this case, we
have many trials, and it is not a worry if some executions end up with bad results.
In repetitive problems, on the other hand, the genetic algorithm is an optimizer in its
own right, and in this case, we aim to reduce the probability of obtaining bad results
by carrying out a single execution very often. In this scenario, the algorithm can then
be used later in different problem instances to compare different versions of this algo-
rithm experimentally, taking into account their performance measures. In our work,
we present the practical aspect of using the genetic algorithm to develop the CostGA
optimizer used to solve the global interoperability cost optimization problem. In the
next section, we present the detailed description of the algorithm.

4.1 Code scheme and the fitness

Real coding scheme is used in CostGA. Each chromosome in the population represent
the service utility vector. In the code of a solution Uti = {Uti,1, Uti,2, . . . , Uti,θ}, θ repre-
sent the number of web services implementing the inter-organizational business tasks.
Uti,j ∈ [0%; 100%[= [0; 1[, j ∈ [1, θ] refers to the utility percentage of the service j.
So that Uti is a vector where each component represents the utility percentage of
a service when the i-th-instance of the inter-organizational business process is exe-
cuted. For example, the service with identifier θ − 1 in the Ut1 vector is said to be
useful for the interoperability of business process instances. Fig. 2 represents an ex-
ample of solution. Initial solutions are randomly generated according to the encod-

Figure 2: A chromosome.

148 E. O. Tatiana

ing rules of solutions, that is, the service utility vector is chosen randomly for each
inter-organizational business process instance. A service utility vector is made up
of a set of decision variables. These decision variables are the web services imple-
menting the tasks of an inter-organizational business process. So, for each instance of
an inter-organizational business process execution corresponds a service utility vec-
tor at the end of the execution. After multiple business process executions, we have
multiple business process instances, which also correspond to multiple service utility
vectors. In the case of the initial population, these service utility vectors are derived
from service interaction matrices. This variability of the interaction matrix is due to
the different screenshots made on the interacting information system at given instants
t1, t2, . . . , tn; these screenshots represent an instant of execution of the business process
studied. This means that at one instant t1, we film or capture exchanges between the
services of a business process under study, and then at another instant tn, we capture
yet more exchanges; we thus obtain different interaction matrices. In other words,
at one instantt1 of the interaction of interoperable information systems, we can obtain
the interaction matrix MIt1, and at another instant tn, we can obtain another interaction
matrix MItn. And the fitness value is defined by the interoperability cost optimization
model like a penalized function

Fitness(Uti) = f (Uti) + R × ∑〈gi(Uti)〉, (4.1)

R is the penalty factor and f is the objective function. By defining our fitness function
using penalties, the idea of this method is to transform a constrained optimization
problem into an unconstrained one by adding (or subtracting) a certain value to the
objective function depending on the degree of constraint violation present in a certain
solution. More information about penalty functions can be found in [6].

4.2 Genetic operators

4.2.1 Selection operator

Tournament selection is used to choose characteristics for the next generation. To ap-
ply this operator, the fitness value is calculated for each individual and the choice rate
for each individual according to the formula

p(i) =











(

k −1

n −1

)

/

(

k

n

)

, if i ∈ [1, n − k − 1],

0, if i ∈ [n − k, n]

(4.2)

with k the number of individuals selected from a large population of size n.

4.2.2 Mutation operator

We use the polynomial mutation operator. The authors [5] proposed a polynomial
mutation operator with a user-defined indexing parameter (ηm). Based on a theoreti-
cal study, they concluded that (ηm) induces a perturbation effect of O((b − a)/(ηm))

The Genetic Algorithm for Interoperability Cost Optimization 149

in a variable, where a and b are the lower and upper bounds of the variable. They
also found that a value ηm ∈ [20, 100] is adequate in most optimization problems. In
this operator, a polynomial probability distribution is used to perturb a solution in the
neighborhood of a parent. The probability distribution to the left and right of a vari-
able value is adjusted so that no value outside the specified interval [a, b] is created by
the mutation operator. For a given parent solution p ∈ [a, b], the mutated solution p′
for a particular variable for a random number u created in [0, 1] is defined by [5]

p′ =

{

p + œL(p − x
(L)
i) for u ≤ 0.5,

p + œR(x
(U)
i − p) for u > 0.5.

(4.3)

4.2.3 Crossover operator

We use the simulated binary crossover (SBX) real crossover operator. The authors [4]
was inspired by the single-point crossover operator applicable to two bit strings to
develop this operator. Indeed, when in a genetic algorithm, we want to create child
chromosomes from two binary parent strings P1 and P2 knowing that the crossover
point lies between [1, l − 1], with l the common length of the two bit strings, each
of the child chromosomes C1 and C2 will have a sub-string from both parents. We
can see that the child chromosomes lie inside or outside the region delimited by the
parent points and the location of the crossover point. By finding the actual decoded
value of the child chromosomes, we can see that there is a dispersion between values.
Therefore, the authors define the spread factor as the ratio between the spread of the
child points and that of the parent points as β = |(C1 − C2)/(P1 − p2)| which is used
to define the probability distribution as a function of β. More information about the
SBX operator can be find in [4]

4.3 Elite-based learning mechanism and termination condition

The principle of elitism states that an individual’s probability of reproduction is pro-
portional to its relative fitness. Elitism refers to the fact that the best individuals must
always participate in reproduction [10]. The learning strategy therefore enables the
genetic algorithm to define a movement for exploring the best solutions in the search
space. In our case, the learning strategy consists of reserving utility vectors for services
where at least half of the genes have alleles with a percentage utility of the service
greater than 50%. The termination condition of CostGA is defined when the number
of generations is reached.

5 Procedure of the algorithm CostGA

Process of CostGA is described below.

(a) Initialization: generate an initial population whose size corresponds to the num-
ber of execution instances of the business process under study, given that θ is the num-
ber of services used by this process.

150 E. O. Tatiana

(b) Calculate the value of the fitness function for each service utility vector of the
current generation and retain the best vectors.

(c) Select the parent vectors using the stochastic tournament selection operator.

(d) Modify the current generation by applying the SBX crossover operator with
probability pc to the vectors.

(e) Modify the generation by applying the mutation operator with probability pm
to the vectors.

(f) Use the learning mechanism to obtain the best utility vectors for the services of
the current generation.

(g) Replace the vectors reserved in step (b.) with the best vectors obtained after the
elitism mechanism to create a new generation.

(h) Count the number of generations Ng. If Ng reaches the predefined threshold
Ngmax, the algorithm ends, otherwise, go to step (b).

This genetic algorithm enabled us to code an optimizer called CostGA in the C lan-
guage. This optimizer optimizes the overall cost of interoperability for business pro-
cesses whose tasks are implemented by web services with quality of service attributes
such as response time and throughput.

6 Case study

The aim of this case study is to optimize the overall cost of interoperability in an en-
terprise network by analyzing the inter-organizational business process of cash with-
drawal. The goal is to identify the set of unnecessary services that consume the most
resources and obscure the execution of several process instances. To this end, we
present the case study, define and apply the interoperability cost optimization ap-
proach, analyze the results obtained, and verify the convergence properties of the
CostGA optimizer.

6.1 Presentation of the case study

The case study described here presents the collaboration and interoperability between
the GIMAC (Interbank Electronic Payment Group of Central Africa) information sys-
tem and the information systems of two partner banks, A and B. GIMAC is a banking
ecosystem made up of a group of financial institutions, banks, mobile money oper-
ators, and aggregators present in all the countries of the CEMAC (Central African
Economic and Monetary Community) sub-region. GIMAC’s main mission is to im-
plement full interoperability and interbanking for CEMAC electronic payment sys-
tems. With its GIMACPAY digital service, electronic financial transactions are feder-
ated (federated approach to interoperability), facilitating the transfer of money from
one mobile account to another mobile account (or bank account) of another operator,
and vice versa. In this study, we focus on the inter-organizational business process of

The Genetic Algorithm for Interoperability Cost Optimization 151

withdrawing money from GIMAC ATMs. This business process involves the interop-
eration of three different information systems: Bank A’s information system, Bank B’s
information system, GIMAC’s information system, and an X customer. Data collec-
tion was based on an interview with GIMAC’s mobile financial services engineer con-
cerning the GIMACPAY solution (which federates all electronic payment systems and
means in CEMAC) and the inter-organizational business process studied. Information
from the GIMAC website was also used to complete our analysis. During a period of
immersion within the company, we worked with the expert to learn more about the
business process under study.

(a) Relationships between the companies studied Customer X needs to withdraw
money from his bank account A (Bank A’s information system) at Bank B’s ATM
(Bank B’s information system) using his GIMACPAY card (GIMAC’s information sys-
tem). Although all the contextual elements (e.g. the amount to be withdrawn is less
than the account amount) are correct, the transaction failed. For this reason, we are
interested in studying the inter-organizational business process of cash withdrawal.
To find out more, let us define the process scenario.

(b) Process scenario. The process of withdrawing cash from a GIMAC ATM consists
of two sub-processes: the process of obtaining cash and the process of monitoring the
transaction. The process of obtaining cash starts when customer X inserts his card
into an authorized Bank B ATM. The ATM checks the card’s compliance with the GI-
MAC system, and also verifies the customer’s balance. If the card complies and the
required amount is less than the current balance, the ATM debits the account. It is
then up to the customer to retrieve their card and take their cash. If this is not the
case, no transaction is carried out, and the customer simply gets his card back. In
either case, the transaction is recorded in the interoperable information system. The
transaction tracking process is as follows: based on the transaction carried out by the
customer, a transaction report is drawn up for each customer making a withdrawal,
according to date (time, month, year), bank (issuing bank and receiving bank) and
location (country, city) where the transactions were carried out. When a withdrawal
fails, the bank information system associated with the ATM receives notification of the
failed transaction; it checks and identifies the origin of the card, then transmits a re-
port (an automatic transaction) to the GIMAC information system, which notifies the
bank owning the customer account.

6.2 Definition and application of the global interoperability cost optimiza-
tion approach

The approach to optimizing the overall cost of interoperability, based on a business
process analysis, consists of four stages:

(a) Model the inter-organizational business process under study.

(b) Identify the optimizer’s inputs: The services and number of services executing
the tasks of an instance of the business process under study; the response time (mini-

152 E. O. Tatiana

mum and maximum) and throughput (minimum and maximum) intervals relative to
the execution of all the process tasks.

(c) Apply the CostGA optimizer to obtain the overall interoperability cost of the
business process and the best solution vector or service utility vector.

(d) Interpretation of results: Browse the components of the solution vector to iden-
tify useful web services, and interpret the resulting global cost of business process
interoperability.

The Table 1 gives the correspondences between the concepts of genetic algorithms
and the personalization of these concepts in our work.

Table 1: Correspondence between genetic algorithm concepts and customized concepts.

Genetic algorithm concepts Customization of concepts in our work

Population size
Number of times a business process
is executed (number of instances)

Objective function Interoperability cost optimization model

Chromosome Service utility vector

Gene position Service identifier

Population Set of service utility vectors

Allele Percentage of service utility

Number of genes
Number of services executing the tasks of
an inter-organizational business process

Number of Generations Program stop condition

The business process interoperability cost optimization approach helps us to make
better use of the defined optimizer in a real environment, and even better within the
network of enterprises that is the subject of our study. It serves as a transition between
the defined theoretical model and its practical application. In the following sections,
we apply this approach to analyze the overall cost of interoperability in the cash with-
drawal process under study.

6.2.1 Model the inter-organizational business process under study

We have used BPNM notation to model this process. Knowing that we are interested
in the interoperability of business processes, i.e. in the analysis of interoperable in-
formation systems in execution, and that we cannot access the real GIMAC execution
environment due to the sensitivity of the financial data contained in GIMAC, we pro-
ceeded to simulate the cash withdrawal process using a business process simulator
called “Bizagi Modeler” in a scenario close to the reality of the interoperable informa-
tion system analyzed. The aim of this simulation was to gain insight into the minimum
and maximum response times, and the minimum and maximum throughput associ-
ated with each service executing a task of the business process instances studied. To
this end, one hundred instances of the business process under study were simulated
in order to identify the maximum and minimum response times, bearing in mind that

The Genetic Algorithm for Interoperability Cost Optimization 153

Figure 3: Simulation of the cash withdrawal process using different resources.

the minimum and maximum throughput was considered as a resource provided by an
Internet service provider. Fig. 3 shows the process studied and the various simulations
linked to resource consumption in this process.After simulating 100 instances of the
cash withdrawal process, we deduce that the minimum response time is 11 min 54 s
and the maximum response time is 54 min 58 s. The minimum throughput is 2 Mbps
and the maximum is 622 Mbps.

6.2.2 Identify the optimizer’s inputs

The Table 2 contains the inputs values of the optimizer.

Table 2: Identify the optimizer’s inputs.

Parameters Values

Population size 100

Number of generations 150

Number of real variables or numbers of services 14

Probability of crossover Pc 0.9

Probability of mutation Pm 0.5

Exponent for polynomial crossover operator n 2

Exponent for polynomial mutation operator ηm 100

Static penalty factor R 10

6.2.3 Apply the CostGA optimizer to obtain the overall interoperability cost of the

business process and the best solution vector or service utility vector

The characteristics of the machine we used are as follows: Intel(R) Core(TM) i5-8265U
CPU @ 1.80 GHz, C language and GCC compiler (MinGW.org GCC-6.3.0-1) 6.3.0 to
develop the CostGA optimizer and perform the tests related to our case study. Thus,

154 E. O. Tatiana

after five experiments, we notice that the fourth experiment (see Fig. 4) produces bet-
ter results. These results are shown in Table 3. Analysis of these results reveals that
services 4, 10 and 11 are not useful for the interoperability of information systems with
the cash withdrawal process studied, and the overall interoperability cost of this busi-
ness process is −125.934474.

Figure 4: Results of the fourth experiment.

Table 3: Results of interoperability cost optimization of the information systems of the GIMAC business
network through the analysis of the cash withdrawal business process in a GIMAC ATM.

Service id Service percentage utility

1 0.844120

2 0.920952

3 0.968577

4 0.413687

5 0.836393

6 0.618520

7 0.912130

8 0.998228

9 0.991515

10 0.327924

11 0.317986

12 0.892030

13 1.000000

14 1.000000

6.2.4 Interpretation of results and analysis of the optimizer’s convergence

property

We have used the genetic algorithm so that, we refer to the field of biology to under-
stand how the best fitness value can be interpreted, knowing that this value represents
the overall cost of interoperability in the context of our work. Biology field distin-
guishes four types of fitness value: tautological fitness, Darwinian fitness, Thoday fit-
ness and inclusive fitness. In each of these categories, the definition of fitness divides
scientific opinion. However, in our work, we take into consideration the definitions of

The Genetic Algorithm for Interoperability Cost Optimization 155

Figure 5: CostGA optimizer convergence analysis.

Darwin’s and Thoday’s work. For Darwin, fitness is the expectation of offspring, or
rather an expectation of a system, and for Thoday, fitness is a unit of evolution [9]. On
the basis of these ideas, we note that fitness value is not a probability and has no unit
of measurement, which supports the results we have obtained. Fitness value must
therefore be understood as being relative to a particular environment at a given point
in time. The fitness value is only defined over one generation. Thus, a fitness function
that takes an input X, where X is a vector with as many elements as the number of
variables in the problem, calculates the function’s value and returns this scalar value
in its return argument Y. The fitness value of an individual is the value of the fitness
function for that individual. Thus, the best fitness value is the smallest fitness value
for any individual in the population. As we have already pointed out, the best fitness
value corresponds to the overall cost of interoperability. In the context of our work,
this value is equivalent to a mathematical definition of the fitness value. Thus, within
the framework of mathematical definitions of the fitness value, this value can take on
a series of different values. Sometimes, fitness values extend over positive real num-
bers, sometimes over real numbers between 0 and 1, sometimes over real numbers
greater than or equal to 1, and this fitness value is a dimensionless quantity [9], i.e. it
has no unit of measurement. Thus, in our work, we consider the case where the fitness
value is greater than or equal to 1 to better interpret the overall cost of interoperability,
and we define the following interpretation rules:

• If Best fitness = global cost of interoperability is less than one, then the business
process is not adapted to the information system environment and does not
allow the interoperable information system to evolve.

• If Best fitness = global cost of interoperability is greater than or equal to one,
then the business process is adapted to the information system environment
and supports the evolution of the interoperable information system.

156 E. O. Tatiana

In the case of the inter-organizational cash withdrawal business process studied,
given that the overall cost of business process interoperability is −125.934474 < 1, we
conclude that this process is not adapted to the environment of the interoperable in-
formation system. According to Fig. 5, which shows that this value is the best solution
found by the optimizer after eighteen generations, for the analysis of the global cost
of interoperability of the business process studied. The complexity of the algorithm is
of the order of O(gnm) with g the number of generations, n the population size and m
the individual size. We have g = 150, n = 100 and m = 14.

7 Conclusion

In this article, the problem we address is to show how to optimize interoperability
cost within a networked enterprise. To solve this problem, we have generated new
knowledge in our field of information systems by developing an interoperability cost
optimization model, defining and implementing in C a global interoperability cost op-
timizer for business processes using the genetic algorithm. These contributions were
validated in practice within a network of companies called GIMAC, through the study
of the inter-organizational business process of cash withdrawal in a GIMAC-approved
distributor. The results show that the overall cost of interoperability is negative, which
proves that the interoperable information system of this business network will no
longer be scalable after 18 generations. As a continuation of this work, we plan to
reconsider certain parts of the program (the genetic algorithm) running in the op-
timizer, in order to apply parallelism to the execution of in-memory tasks; to test the
optimizer by implementing other crossover and mutation operators; and to reconsider
other quality-of-service attributes such as reliability, in order to calculate the interop-
erability cost of a single service.

References

[1] J. O. Agushaka et al., Effect of weighting scheme to QoS properties in Web service discovery,
International Journal of Computer Science and Information Security, 2010.

[2] C. Berg, Interoperability, Internet Policy Review, 13(2), 2024. doi: 10.14763/2024.2.1749.
[3] N. Daclin, D. Chen, and B. Vallespir, Developing enterprise collaboration: A methodology to

implement and improve interoperability, Enterp. Inf. Syst., 10 (2014), pp. 467–504.
[4] K. Deb and R. Bhushan Agrawal, Simulated binary crossover for continuous search space,

Complex Syst., 9(2) (1995), pp. 115–148.
[5] K. Deb and D. Deb, Analysing mutation schemes for real-parameter genetic algorithms, Int.

J. Artif. Intell. Soft Comput., 4(1) (2014), pp. 1–28.
[6] A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing, in: Natural Computing

Series, Springer, 2015.
[7] S. Katoch, S. S. Chauhan, and V. Kumar, A review on genetic algorithm: Past, present, and

future, Multimed. Tools Appl., 80 (2021), pp. 8091–8126.

The Genetic Algorithm for Interoperability Cost Optimization 157

[8] B. Kazimipour, X. Li, and A. K. Qin, A review of population initialization techniques for evo-
lutionary algorithms, in: 2014 IEEE Congress on Evolutionary Computation (CEC), (2014),
pp. 2585–2592.

[9] S. Kimbrough, The concepts of fitness and selection in evolutionary biology, J. Social Biol.
Struct., 3 (1980), pp. 149–170.

[10] N. Saini, Review of selection methods in genetic algorithms, Int. J. Eng. Comput. Sci., 6(12)
(2017), pp. 22261–22263.

[11] A. H. Wright, Genetic algorithms for real parameter optimization, in: Foundations of Genetic
Algorithms, Elsevier, (1991), pp. 205–218.

