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Abstract. This paper introduces a novel mathematical model for capturing the
complex dynamics of drug abuse within populations. Departing from conventional
methodologies, the model employs global derivatives to integrate non-local effects,
thereby offering enhanced insight into the spread and evolution of drug abuse. The
stability analysis and numerical simulations conducted in this study reveal criti-
cal thresholds and dynamic behaviors that are instrumental in understanding the
persistence and potential escalation of abuse within communities. Numerical sim-
ulations also demonstrate the long-term behavior for different orders of α, and the
effects of the function g(x) are presented, further elucidating the intricate inter-
play of factors that govern the system’s dynamics. These findings not only shed
light on the underlying mechanisms driving the temporal and spatial patterns of
drug abuse but also provide valuable guidance for designing effective intervention
strategies aimed at mitigating its spread. By systematically manipulating key pa-
rameters, the model serves as a powerful tool for exploring the driving factors be-
hind drug abuse diffusion and control. The insights gained from this research have
significant implications for public health policy, offering a rigorous mathematical
framework to inform targeted efforts in curbing the epidemic of drug abuse.
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1 Introduction

The impact of illegal drug use remains significant, resulting in the loss of numerous
valuable lives and productive years. In 2022, drug-related deaths were estimated at
around 11.8 million [10]. Globally, between 172 million and 424 million individuals
aged 15 to 64 were estimated to have engaged in illicit drug use, [3]. Illicit drug use
refers to the non-medical consumption of substances prohibited by international law,
such as amphetamines, cannabis, cocaine, heroin, diploids, and MD-MA. The risks
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of premature death and health problems associated with illegal drug use depend on
factors such as the amount consumed, frequency of use, and method of administra-
tion, [12, 17, 19].

Studies have shown that factors such as age, gender, socio-economic status, and
mental health can all play a role in drug use and related health outcomes [1, 2, 10].
For example, younger individuals, males, and individuals with lower socio-economic
status are more likely to use drugs, and are also at higher risk for adverse health out-
comes. Additionally, individuals with mental health conditions, such as depression
and anxiety, are more likely to use drugs, and drug use can also exacerbate existing
mental health problems [12, 17].

Mathematical models have been used to better understand the dynamics of drug
use and its impact on population health. These models can help researchers identify
key drivers of drug use, as well as the relationships between drug use and various
health outcomes, [20]. In recent years, there has also been growing interest in using
fractional calculus to model drug use, as this approach allows for the exploration of
complex, non-linear relationships, [9, 15, 21]. These operators provides a more ad-
vanced mathematical approach that can capture the intricate dynamics and behaviors
involved since traditional calculus assumes exponential growth or decay and lacks the
ability to capture long-term memory effects and non-exponential behaviors [5, 7, 15].

1.1 Motivation

Substance addiction and abuse are complex public health challenges influenced by
a delicate interplay of biological, psychological, and environmental factors. These
dynamics evolve over time and across different populations, making it essential to
develop mathematical models that can capture both local and global influences on
addiction and recovery processes. Traditional models, often based on classical or frac-
tional derivatives, may not fully account for the long-range dependencies and spatial
diffusion patterns observed in real-world substance abuse cases. To address these lim-
itations, a more comprehensive framework is needed. One that integrates non-local
effects to better reflect the progression of addiction, the role of external interventions,
and the impact of social and environmental influences.

2 Fractional operators and global rate of change

Here, we present some well known fractional operators.

Definition 2.1. The Riemann-Liouville fractional-order integral operator is [22]

In
t f (t) =

1

Γ(α)

∫ t

0
(t − τ)n−1 f (τ)dτ. (2.1)
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Definition 2.2. The Riemann-Liouville fractional-order derivative is defined as

Dα
t f (t) =

1

Γ(k − α)

dk

dxk

∫ t

0
(t − µ)k−α−1 f (µ)dµ. (2.2)

As an alternative to the Riemann-Liouville fractional derivative, the Caputo-Fabri-
zio fractional derivative was introduced to overcome some of its limitations [11]. How-
ever, some scholars do not accept the use of fractional derivatives with non-singular
kernels [13].

Definition 2.3. Let f ∈ H1(a, b), b > a, α ∈ [0, 1]. The Caputo-Fabrizio derivative of frac-
tional order α is defined as

CF
a Dα

t f (t) =
M(α)

1 − α

∫ t

a
f
′
(τ) exp

[

−α
t − τ

1 − α

]

dτ. (2.3)

Here, M(α) is such that M(0) = M(1) = 1

Definition 2.4. Supposed that the function does not belong to H1(a, b). The Caputo-Fabrizio
derivative of fractional order α is defined as follows:

CF
a Dα

t f (t) =
αM(α)

1 − α

∫ t

a

(

f (t)− f (x)
)

exp

[

−α
t − τ

1 − α

]

dτ. (2.4)

Again, M(α) is such that M(0) = M(1) = 1.

Definition 2.5. The Caputo-Fabrizio fractional integral of order α is defined as

It
α

(

f (t)
)

=
2(1 − α)

(2 − α)M(α)
f (t) +

2α

(2 − α)M(α)

∫ t

a

(

f (t)− f (x)
)

dτ, (2.5)

M(α) =
2

2 − α
, 0 ≤ α ≤ 1. (2.6)

The Atangana-Baleanu fractional derivatives were introduced in 2016 by Atangana
and Baleanu [8], they proposed the following definitions.

Definition 2.6. Let f ∈ H1(a1, a2), a2 > a1, α ∈ [0, 1], the Atangana-Baleanu fractional
derivative in Caputo sense is

ABC
a Dα

t f (t) =
B(α)

1 − α

∫ t

a
Eα

[

−α
(t − τ)α

1 − α

]

f
′
(τ)dτ. (2.7)

Definition 2.7. Let f ∈ H1(a1, a2), a2 > a1, α ∈ [0, 1] not necessary differentiable, the
Atangana-Baleanu fractional derivative in Riemman-Liouville sense is given as

ABR
a Dα

t f (t) =
B(α)

1 − α

d

dt

∫ t

a
Eα

[

−α
(t − τ)α

1 − α

]

f (τ)dτ. (2.8)
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2.1 Global rate of change

Nowadays the concept non-local operators is widely used in the field of mathematics
[4, 16]. With that being said it calls for those operators to be timorously visited to
improve and modify them for a better understanding of the changing world around
us. We know that if y = f (x) then dy/dx will be the rate of change of the variable y
with respect to x. In other words, the rate of change,

m =
f (x2)− f (x1)

x2 − x1
. (2.9)

We can think of the above (2.9) as a proportion of a continuous function f (x) be-
tween x1 and x2 and the function g(t) = t. we can extend the idea for any function
of g(x)

m =
f (x2)− f (x1)

g(x2)− g(x1)
. (2.10)

Definition 2.8. Let f be a continuous function and g(x) be a positive non-constant and in-
creasing function, such that if a < b, then g(a) < g(b). The global rate of change between a
and b is given by

M =
f (b)− f (a)

g(b)− g(a)
. (2.11)

Definition 2.9. Let f be a continuous function and g(x) be a positive continuous increasing
function in the interval [a, b] and non-zero for all t ∈ [a, b]. The derivative of f with respect to
the function g is given by

Dg f (t) = lim
t→t1

f (t)− f (t1)

g(t)− g(t1)
. (2.12)

When g(t) = t,

Dg f (t1) = lim
t→t1

f (t)− f (t1)

t − t1
, (2.13)

we then recover the classical differential operator. To recover the fractal derivative we
let g(t) = tα

Dg f (t1) = lim
t→t1

f (t)− f (t1)

tα − tα
1

, t > 0, α > 0. (2.14)

If g(t) = t2−α/(2 − α), we get

Dg f (t1) = lim
t→t1

f (t)− f (t1)

t2−α − t2−α
1

(2 − α), t > 0, 1 ≤ α < 2. (2.15)

Also, if g(t) = tβ(t),

Dg f (t1) = lim
t→t1

f (t)− f (t1)

ttβ(t) − ttβ(t)

1

. (2.16)



Substance Addiction and Abuse Dynamics via Global Nonlocal Operators 24

If f and g are differentiable, then for g(t) = t, we get

Dt f (t1) = lim
t→t1

f (t)− f (t1)

t − t1
= f ′(t1).

For g(t) = tα we get

Dtα f (t1) = lim
t→t1

f (t)− f (t1)

tα − tα
1

= lim
t→t1

f (t)− f (t1)

tα − tα
1

×
t − t1

t − t1

= lim
t→t1

f (t)− f (t1)

t − t1
×

t − t1

tα − tα
1

= f ′(t1)×
t1−α
1

α
.

For g(t) = t2−α/(2 − α), we get

Dg f (t1) = lim
t→t1

f (t)− f (t1)

t2−α/(2 − α)
−

t2−α
1

2 − α

= lim
t→t1

f (t)− f (t1)

t2−α/(2 − α)− t2−α
1 /(2 − α)

×
t − t1

t − t1

= lim
t→t1

f (t)− f (t1)

t − t1
×

t − t1

t2−α/(2 − α)− t2−α
1 /(2 − α)

= f ′(t1)× tα−1
1 .

For g(t) = tB(t), we get

Dg f (t1) = lim
t→t1

f (t)− f (t1)

tB(t) − t
B(t1)
1

= lim
t→t1

f (t)− f (t1)

tB(t) − t
B(t1)
1

×
t − t1

t − t1

= lim
t→t1

f (t)− f (t1)

t − t1
×

t − t1

tB(t) − t
B(t1)
1

= f ′(t1)×
t−B(t1)

B′(t1) ln(t1) + B(t1)/t1
.

Definition 2.10. Let f(t) be a continuous function and g(t) be a non-constant increasing posi-

tive function. Let K(t) be a kernel singular or non-singular for 0 < α ≤ 1. A fractional global 
derivative in Caputo sense is given by [6]

C
0 Dα

g f (t) = Dg f (t) ∗ K(t),
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derivative in Caputo sense is given by

RL
0 Dα

g f (t) = Dg

(

f (t) ∗ K(t)
)

.

Here, * denotes the convolution. Now, if the kernel K(t) = t−α/Γ(1 − α), we then have the
power-law type

RL
0 Dα

g f (t) =
1

Γ(1 − α)
Dg

∫ t

0
f (τ)(t − τ)−αdτ, (2.17)

and with Caputo we get

C
0 Dα

g f (t) =
1

Γ(1 − α)

∫ t

0
Dg f (τ)(t − τ)−αdτ. (2.18)

To recover the Caputo-Fabrizio, we take K(t) = exp[−αt/(1 − α)]/(1 − α)

CF
0 Dα

g f (t) =
M(α)

1 − α

∫ t

0
Dg f (τ) exp

[

−
α

1 − α
(t − τ)

]

dτ, (2.19)

CF
0 Dα

g f (t) =
M(α)

1 − α
Dg

∫ t

0
f (τ) exp

[

−
α

1 − α
(t − τ)

]

dτ. (2.20)

We recover the Atangana-Baleanu derivative for K(t) = AB(α)/(1 − α) Eα[−αtα/(1 − α)]

ABC
0 Dα

g f (t) =
ABα)

1 − α

∫ t

0
Dg f (τ)Eα

[

−
α

1 − α
(t − τ)α

]

dτ, (2.21)

ABR
0 Dα

g f (t) =
AB(α)

1 − α
Dg

∫ t

0
f (τ)Eα

[

−
α

1 − α
(t − τ)α

]

dτ. (2.22)

3 Model formulation

The population is divided into six compartments: S(t) is the susceptible individuals,
these are individuals who are not taking drugs, but they leave among drug users. D(t)
are individuals who takes drugs at times but not addicted (casual drug users). H(t) is
the group of individuals who are taking drugs more often and are addicted and P(t)
as those individuals taking drugs (addicted and not addicted) and are in a correctional
service center due to drug related crimes. Individuals suffering mental illness due to
drug abuse are denoted by C(t) and finally, R(t) denotes those individuals that are
recovering and going to rehabilitation centers. Thus, the total population,

N(t) = S(t) + D(t) + H(t) + C(t) + R(t). (3.1)

We assume a constant size population with recruitment and a natural death rate given
by µ. The parameter β is the strength of interactions between the susceptible indi-
viduals, casual drug users and drug addicts, that is, the influence of D(t) and H(t)
on S(t); κ is a modification factor which accounts for the increased likelihood of heavy
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illicit drug users H(t) to influence more new drug users compared to casual drug
users. The parameter α is the rate at which casual drug users become heavy users;
γ, ε1, ε2 and ρ denote the rates of detection and rehabilitation of drug users in the
group, D(t), H(t), P(t) and C(t); σ and θ denote the rates at which the casual and
heavy illicit drug users develop mental illness; ψ1, ψ2, ψ3 and ψ4 denote the permanent
exit rates of casual, addicts and those in correctional services, due to either cessation
or drug use-related death.

Also, λ1 and λ2 denotes the rate at which the casual and heavy illicit drug users be-
comes identified and go to a correctional service facility. Individuals in rehabilitation
recover at rate ω and are assumed to permanently exit the model. Mentally ill individ-
uals permanently exit the model at rate δ due to drug use-related death. Further, we
assume that the mentally ill population does not influence the susceptible individuals
to become illicit drug users.

The model mechanism based on the above assumptions is then

dS

dt
= π −

β(D + κH)S

N
− µS + ωR, (3.2)

dD

dt
=

β(D + κH)S

N
− (α + γ + σ + µ + λ1 + ψ1)D, (3.3)

dH

dt
= αD − (ρ + θ + µ + ψ2 + λ2)H, (3.4)

dP

dt
= λ1D + λ2H − (ǫ1 + τ + µ + ψ3)P, (3.5)

dC

dt
= σD + θH + τP − (ǫ2 + µ + ψ4 + φ)C, (3.6)

dR

dt
= γD + ρH + ǫ2C + ǫ1P + φC − (µ + ω)R (3.7)

with the initial conditions given as

S(0) = S0, D(0) = D0, H(0) = H0,

P(0) = P0, C(0) = C0, R(0) = R0.
(3.8)

Using the assumption made above, the schematic diagram is given in Fig. 1.

N(t) = S(t) + D(t) + H(t) + P(t) + C(t) + R(t). (3.9)

Differentiating (3.9) with respect to t, we get

dN(t)

dt
=

dS(t)

dt
+

dH(t)

dt
+

D(t)

dt
+

P(t)

dt
+

C(t)

dt
+

R(t)

dt
= π − µN + ψ1D + ψ2H + ψ3P + ψ4C, (3.10)

dN(t)

dt
≤ π − µN. (3.11)
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This is an ordinary differential equation, which has the solution

N(t) ≤
π

µ
+

(

N0 −
π

µ

)

e−µt. (3.12)

Furthermore,

N(t) ≤
π

µ
+

(

N0 −
π

µ

)

e−µt ≤
π

µ
. (3.13)

S

H

D

C

P

R

ρα

ω

β1
γ

λ2

σ

λ1

ǫ2

τ
θ

ǫ1

Figure 1: Flow diagram, with β1 = β(D + κH)/N.

4 Positiveness and boundness of solutions

Assuming that the initial conditions are positive for all t > 0, we show that the system
remains positive. Firstly, we consider the D(t) class

dD

dt
=

β(D + kH)

N
S − (α + γ + σ + λ1 + ψ1)D

> −(α + γ + σ + λ1 + ψ1)D, ∀ t > 0

⇒ D(t) > D0e−(α+γ+σ+λ1+ψ1)t, ∀ t > 0,
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dH

dt
= αD − (ρ + θ + µ + ψ2 + λ2)H

> −(ρ + θ + µ + ψ2 + λ2)H, ∀ t > 0,

⇒ H(t) ≥ H0e−(ρ+θ+µ+ψ2+λ2)t, ∀ t > 0.

Using the same procedure

P(t) > P0e−(ε1+τ+µ+ψ3)t, ∀ t > 0,

C(t) > C0e−(ε2+µ+φ+ψ4)t, ∀ t > 0,

R(t) > R0e−(µ+ω)t, ∀ t > 0,

S(t) = π −
β(D + kH)

N
− µS + ωR, ∀ t > 0,

S(t) > −

(

δ(D + kH)

N
+ µ

)

S, ∀ t ≥ 0

> −

(

β

N
(kH + D) + µ

)

S, (Ht > 0)

> −

(

β

N
(k|H|+ |D|) + µ

)

S

≥ −

(

β

N

(

k sup
t∈[t0,T]

|H|+ sup
t∈[t0,T]

|D|

)

+ µ

)

S

> −

(

β

N
(k‖H‖∞ + ‖D‖∞) + µ

)

S, ∀ t ≥ 0,

S(t) > S0e−( β
N (k‖H‖∞+‖D‖∞)+µ)t, ∀ t ≥ 0.

We can now define the following feasible region:

Ω =

{

(S, D, H, P, C, R) ∈ R : 0 ≤ S + D + H + P + C + R = N ≤
π

µ

}

.

4.1 Reproduction number

The reproduction number, also known as the basic reproduction number or R0, is
a measure of the average number of secondary cases generated by a single infected
individual in a population that is entirely susceptible to a disease, [14, 18]. In the
context of a drug use mathematical model, the reproduction number would represent
the average number of individuals who start using a drug as a result of one individual
already using the drug.
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We use the next generation matrix to derive the reproduction number using the
following system:

dD

dt
=

β

n
(D + kH)S − (α + γ + σ + λ1 + ψ1)D,

dH

dt
= αD − (ρ + θ + µ + ψ2 + λ2)H,

dP

dt
= λD + λ2H − (ε1 + τ + µ + ψ3)P,

dC

dt
= σD + θH + τP − (ε2 + µ + φ + ψ4)C.

Use above equation, we have

F =













0
β

N

(

π

µ

)

0
β

N
k

(

π

µ

)

0 0 0 0
0 0 0 0
0 0 0 0













,

and

F =









α + γ + σ + λ1 + ψ1 0 0 0
−α ρ + θ + µ + ψ2 + λ2 0 0
−λ1 −λ2 ε1 + τ + µ + ψ3 0
−σ −φ −τ ε2 + µ + φ + ψ4









.

Thus, the reproduction number is given by

R0 =
π

µ

(

β

N

)

[

σ
(

k(ρ + θ + µ + λ2 + ϕ2)
)

A1A2A4
+

α

A1A2

]

,

where

A1 = α + γ + σ + λ1 + ψ1,

A2 = ρ + θ + µ + λ2 + ψ2,

A4 = ε2 + µ + φ + ψ4.

5 Steady states analysis

dD

dt
=

dS

dt
=

dH

dt
=

dP

dt
=

dC

dt
=

dR

dt
= 0. (5.1)
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5.1 Equilibrium points

Here we investigate all the possible equilibrium points.
Case 1: If S = 0,

D = 0, H = 0, P = 0, C = 0, or R = 0.

Case 2: If D, H, C, P, R = 0,

E∗
0 =

(

π

µ
, 0, 0, 0, 0, 0

)

drug-free equilibrium.

Case 3: If S, D, H, P, C and R are greater than 0,

π − µS − ωR − d1D = 0,

D =
h1H

α
,

H

(

λh1

α
+ λ2

)

− p1P = 0 ⇒ P =

(

λh1/α + λ2

p1

)

H,

h1H

α
+φH+τ

(λh1/α+λ2)

p1
H−c1C=0 ⇒ C=

[

h1/α+φ+τ(λh1/α+λ2)/p1

c1
H

]

,

H

(

γ

α
h1+ρ+(ε2+φ)

[

h1

α
+φ+τ

(

λh1/x+λ2

P1

)]

+
ε2(λh1/α + λ2

p1

)

−(µ+ω)R = 0.

Also
(

β
(h1H/α + kH)

N

)

S −
d1h1

α
H = 0,

H

(

β(h1/α + k)S −
Nd1h1

α

)

= 0.

Thus,

H = 0 or S∗ = Nd1h1

(

α

β(h1/α + k)

)−1

,

π −
µ(d1h1N/α)

β(h1/α + k)
−

(

ω −
h1d1

α

(

µ + ω)

k1

))

R = 0, (5.2)

R∗ =

(

π −
µ(αh1/α)

β(h1d1/α + k)

)(

ω −
h1d1

α

(

µ + ω

k1

))−1

, (5.3)

where

k1 =
γ

α
h1 + ρ + (ε2 + φ)

[

h1

α
+ φ + τ

(

λh1

α
+ λ2

)]

+
ε2(λh1/α + λ2)

p1
, (5.4)

H∗ =
µ + ω

k1
R =

µ + ω

k1
R∗, (5.5)
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D∗ =
h1

α

(

µ + ω

k1

)

R∗, (5.6)

C∗ =

[

(

h1/α + φ + τ
(

(λh1/α + λ2)/p1

)

c1

)

H∗, (5.7)

P∗ =
(λh1/α + λ2)

p1
H∗, (5.8)

E∗
1 = (S∗, D∗, H∗, P∗, C∗, R∗) endemic equilibrium. (5.9)

6 Stability analysis

Here we will study the stability nature of our two equilibrium points (E0, E∗), we first
discuss the drug-free equilibrium point then later the endemic point the Jacobian ma-
trix for our model is given by

J =

























−µ −
β

N
S −

β

N
kS 0 0 ω

0 −
(

A1 +
β

N
S
)

−
β

N
kS 0 0 0

0 α −A2 0 0 0
0 λ1 λ2 −A3 0 0
0 σ φ τ −A4 0
0 γ ρ ǫ1 θ + ǫ2 −(µ + ω)

























.

6.0.1 Local stability drug-free equilibrium point

The Jacobian drug-free equilibrium J(E0)

J(E0) =

















−µ 0 0 0 ω

0 −A1 0 0 0
0 α −A2 0 0 0
0 λ1 λ2 −A3 0 0
0 σ φ τ −A4 0
0 γ ρ ǫ1 θ + ǫ2 −(µ + ω)

















.

The trace and the determinant of the Jacobian matrix are

tr
(

J(E0)
)

= −(µ + A1 + A2 + A3 + A4 + (µ + ω)) < 0,

Det
(

J(E0)
)

=
(

µ × A1 × A2 × A3 × A4 × (µ + ω)
)

> 0.

We can conclude that the drug-free equilibrium E0 of the model is locally asymp-
totically stable if the tr(J(E0)) < 0 and Det(J(E0)) > 0.

Theorem 6.1. The Drug-free equilibrium of the proposed model for illicit drug abuse is glob-
ally asymptotically Stable within the feasible region if R0 < 1 and unstable if R0 > 1.
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Proof. Lets consider the following Lyapunov function:

L =
1

α + γ + σ + λ1 + ψ1
D +

1

ρ + φ + µ + α2 + ψ2
H

+
1

ε1 + τ + µ + ψ3
P +

1

ε2 + µ + θ + ψ4
C

such that

dL

dt
=

1

α + γ + σ + λ1 + ψ1

dD

dt
+

1

ρ + φ + µ + λ2 + ψ2

dH

dt

+
1

ε1 + τ + µ + ψ3

dP

dt
+

1

ε2 + µ + θ + ψ4

dC

dt

=
1

α + γ + σ + λ1 + ψ1

[

β

N
(D + KH)S − (α + γ + σ + λ1 + ψ1)D

]

+
1

ρ + θ + µ + ψ2
[αD − (ρ + θ + µ + ψ2)H]

+
1

ε1 + τ + µ + ψ3
[λ1D + λ2H − (ε1 + τ + µ + ψ3)P]

+
1

ε2 + µ + φ + ψ4
[σD + φH + τP − (ε2 + µ + φ + ψ4)C] .

Then simplifying, we get

dL

dt
=

β(D + kH)S

N (α + γ + σ + λ1 + ψ1)
− D +

αD

ρ + φ + µ + 1 + ψ2
− H

+
λ1D + λ2H

ε1 + τ + µ + ϕ3
− P +

θD + ψH + τP

ε2 + µ + ψ + ϕ4
− C,

=
β(D + kH)S

N(α + γ + σ + λ1 + ψ1)
+

αD

ρ + φ + µ + 1 + ψ2

+
λ1D + λ2H

ε1 + τ + µ + ϕ3
+

θD + ψH + τP

ε2 + µ + ψ + ϕ4
− [D + H + P + C].

Also

dL

dt
=

[

β(D + kH)S

N(α + γ + σ + λ1 + ψ1)
+

αD

ρ + φ + µ + 1 + ψ2

+
λ1D + λ2H

ε1 + τ + µ + ϕ3
+

θD + ψH + τP

ε2 + µ + ψ + ϕ4

]

1

D + H + P + C
− [D + H + P + C]

6

{

π

µ

β

N

[

(1 − ρ)α(φ + K(ε1 + ττ1 + ψ3)

(α1γ + σ + t1 + ϕ1)(p + φ + µ + γ2 + ϕ2)(ε1 + τ + µ + ϕ3)

+
ρα

(α+γ+σ+H1+ϕ1)(ε1+τ+µ++ϕ3)

]

1

D+H+C+P
−1

}

(D+H+P+C)

≤ (D + H + C + P) ≤ 0,
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if R0 6 1,
D + H + C + P > 0, ∀ t.

As we assumed initially that all parameters are positive, then dL/dt decreases if R0<1
and increases if R0 > 0. However, when L = 0, then D = H = P = C = 0.

Let T be the biggest compact invariant set in {D, H, P, C ∈ Ω : dL/dt 6 0} is E0.
Using Lasalle’s invariant principle, all the solution of the illicit drug use model with
data in Ω yield E0 when t → ∞ and if R0 ≤ 1 Therefore E0 is globally asymptotically
stable. �

6.1 Local stability endemic equilibrium point

The Jacobean matrix for the endemic equilibrium point is

J(E*) =

























λ + µ −
β

N
S −

β

N
kS 0 0 ω

0 λ +

(

A1 +
β

N
S

)

−
β

N
kS 0 0 0

0 α λ + A2 0 0 0
0 λ1 λ2 λ + A3 0 0
0 σ φ τ λ + A4 0
0 γ ρ ǫ1 θ + ǫ2 λ + (µ + ω)

























.

We have the following characteristic polynomial:

P(λ) = (µ + λ)(A3 + λ)(A4 + λ)
(

(µ + ω) + λ
)

×

[

A2

(

A1 +
β

N
S∗

)

+ λ

(

A1 +
β

N
S∗

)

+
αβ

N
kS∗ + λA2 + λ2

]

,

which we can simplify to this form

P(λ) = λ6 + l1λ5 + l2λ4 + l3λ3 + l4λ4 + l5λ2 + l6λ

using the following equality:

P = det |IMλ − JE∗| = 0,

IM is a 4 × 4 unit matrix.
The polynomials above has the following square Routh-Hurwitz matrix:

Z =





















l1 l3 l5 0 0 0

1 l2 l4 l6 0 0

0 l1 l3 l5 0 0

0 1 l2 l4 l6 0

0 0 l1 l3 l5 0

0 0 1 l2 l4 l6





















.



Substance Addiction and Abuse Dynamics via Global Nonlocal Operators 34

The condition for stability is as follows:

Z1 = l1 > 0,

Z2 = l1l2 − l3 > 0

Z3 = −l2
1 l4 + l1l2l3 + l1l5 − l2

3 > 0,

Z4 = l2
1 l2l6 − l2

1 l2
4 − l1l2

2 l5 + l1l2l3l4 − l1l3l6 + 2l1l4l5 + l2l3l5 − l2
3 l4 − l2

5 > 0,

Z5 = −l3
1 l2

6 + 2l2
1 l2l5l6 + l2

1 l3l4l6 − l1l2
2 l2

5 − l1l2l2
3 l6 + l1l2l3l4l5 − 3l1l3l5l6

+ 2l1l4l2
5 + l2l3l2

5 − l2
1 l2

4 l5 + l3
3 l6 − l2

3 l4l5 − l3
5 > 0,

Z6 = l6Z5 > 0.

Theorem 6.2. If R0 ≥ 1, the drug abuse endemic equilibrium point is globally asymptotically
stable.

Proof. We make use of the Lyapunov function

L (S∗, D∗, H∗, P∗, C∗, R∗)

=

(

S − S∗ − S∗ log
S∗

S

)

+

(

D − D∗ − D∗ log
D∗

D

)

+

(

H − H∗ − H∗ log
H∗

H

)

+

(

P + P∗ − P∗ log
P∗

P

)

+

(

C − C∗ − C∗ log
C∗

C

)

+

(

R − R∗ − R∗ log
R∗

R

)

.

Derivating L with respect to t, gives

dL

dt
= L =

(

S − S∗

S

)

dS

dt
+

(

D − D∗

D

)

dD

dt
+

(

H + H∗

H

)

dH

dt

+

(

P − P∗

P

)

dP

dt
+

(

C − C∗

C

)

dC

dt
+ (R − R∗)

dR

dt
.

Substituting dS/dt, dD/dt, dH/dt, dC/dt, dR/dt,

dL

dt
=

(

S − Sx

S

)[

π −
β

N
(D + 1 + k)S − µS + wR

]

+

(

D + D∗

D

) [

β

N
(D + kH)− (α + γ + σ + λ1 + ψ1)D

]

+

(

H + H∗

H

)

[αD − (ρ + θ + µ + ψ2 + λ2)H]

+

(

P + P∗

P

)

[λ1D + λ2H − (ε1 + τ + µ + ψ3)P]

+

(

C + c∗

c

)

[σD + H + τP − (ε2 + µ + ψ4 + φ)C′]

+

(

R + R∗

R

)

[γD + ρH + (φ + ε2)C + ε1P − (µ + ω)R].
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Simplifying further give

dL

dt
= π − µ

βS∗

S
− k ∗ H

(S − S∗)2

S
+ kH∗ (S − S∗)2

S
− βD

(S − S∗)2

S

+ kD∗ (S − S∗)2

S
−

(S − S∗)2

S
µ −

(P − P∗)2

P
(ǫ1 + ψ1 + γ) + kSαH − k ∗ SH∗

+
P∗

P
kλ2S∗H −

P∗

P
kλS∗H∗ −

P∗

P
βSD +

P∗

P
ωS∗ +

P∗

P
τS∗D,

dL

dt
= F − Ω.

Ω = π + kβH∗ (S − S∗)2

S
+ λD∗ (S − S∗)2

S

+ αψSH + ωψ2S∗H∗ + γSH + τS∗C∗ +
P∗

P
σβSD

+
P∗

P
ωµS∗D +

P∗

P
ωSI∗ +

P∗

P
ωS∗H + ργC

H∗

H

+ τP + τθP∗ D∗

D
+ ψ2D + θP + ε1D∗ C∗

C
+ τP∗ C∗

C

+ θP∗ C∗

C
+ τH + λP∗ D∗

D
+ γH + δC

+ βD + γH∗ R∗

R
+ (µω)C∗ R∗

R
+ ωD∗ R∗

R
+ γP∗,

F = λ
S∗

S
+ ωψ3D

(S − S∗)2

S
+ kβD

(S − S∗)2

S
+

(S − S∗)2

S
µ

+
(P − P∗)2

P
(α + θ + µ) + ωµSH∗ + τKS∗C + ρµS

+ ωSD∗ + ωS∗H +
P∗

P
ωµSP +

D∗

D
ωKS∗D∗ +

C∗

C
ψ1SD

+
P∗

P
ωS∗H∗ +

(H − H∗)2

H
(ε + ρ + µ) + λ2P∗

+ βkC
D∗

D
+

(C − C)2

C
(ω + µ) + CC∗ + θC∗

+ εD
C∗

C
+ θP

H∗

H
+

(D − H∗)2

D
(ρ + γ + µ)

+ τP
C∗

C
+

(R − R∗)2

R
µ + γP∗ + τψ3P∗ D∗

D

+ ǫ1C∗ + αD∗ + γH
R∗

R
+ βC

R∗

R
+ γ

R∗

R
.

0 = Ω − Ω

So have that dL/dt < 0 if F+ < Ω, however

⇒
dL

dt
= 0.
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So, the largest compact invariant set for illicit drug model in the region

{

(S∗, D∗, H∗, P∗, C∗, R∗) ∈ Γ :
dL

dt
= 0

}

.

It is the endemic point E∗.
We therefore conclude that E∗ is globally asymptotically stable in Γ if F < Ω, by

Lasalle’s principle. �

7 Existence and uniqueness for the illicit drug model

In this section, we proof the existence and uniqueness for the illicit drug model.
We simplify our model as follows:

dS(t)

dt
= f1(t, S),

dD

dt
= f2(t, D),

dH

dt
= f3(t, H),

dP

dt
= f4(t, P),

dC

dt
= f5(t, C),

dR

dt
= f6(t, R).

We show that f1, f2, f3, f4, f5 and f6 are bounded. That is

| f1(t, S1)− f1(t, S2)|
2 ≤ k1|S1 − S2|

2, ∀ t ∈ [0, T],

| f2(t, D1)− f2(t, D2)|
2 ≤ k2|D1 − D2|

2, ∀ t ∈ [0, T],

| f3(t, H1)− f3(t, H2)|
2 ≤ k3|H1 − H2|

2, ∀ t ∈ [0, T],

| f4(t, P1)− f4(t, P2)|
2 ≤ k4|P1 − P2|

2, ∀ t ∈ [0, T],

| f5(t, C1)− f5(t, C2)|
2 ≤ ks|C1 − C2|

2, ∀ t ∈ [0, T],

| f6(t, R1)− f6(t, R2)|
2 ≤ k1|R1 − R2|

2, ∀ t ∈ [0, T].

To show that f1, f2, f3, f4, f5, f6 are indeed Lipschitz

| f1(t, S1)− f1(t, S2)|
2 ≤

∣

∣

∣

∣

β

N
(D + κH)S1 − µS1 −

β

N
(D + κH)S2 + µS2

∣

∣

∣

∣

2

| ≤
(

β(1 + k) + µ
)

S1 · −
(

β(1 + k) + µ)S2

∣

∣

2

≤ |β(1 + k + µ)|2|S1 − S2|
2,
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| f2(t, D1)− f2(t, D2)|
2 ≤ |(1 + kH)S + d1(D1 − D2)− β(1 + kH)|2

≤ d1|D1 − D2|
2 ≤ K̄2|D1 − D2|

2,

| f3(t, H1)δ − f3(t, H2)|
2 = | − H1|

2|H1 − H2|
2

≤ H2
1 |H1 − H2|

2 ≤ k̄3|H1 − H2|
2,

| f4(t, P1)− f4(t, P2)|
2 = | − (ε1 + τ + µ + ψ1)|

2|P1 − P2|
2

≤ (ε2 + µ + φ + ψ4)
2|C1 − C2|

≤ (ε1 + τ+ + µ + ψ1)
2|P1 − P2|

2

≤ K4|P1 − P2|
2,

| f5(t, C1)− f5(t, C2)|
2 = | − (ε2 + 4 + φ + ψ4)|

2|C1 − C2|
2

2

≤ K̄s|C1 − C2|
2,

| f6(t, R1)− f0(t, R2)|
2 = | − (µ + ω)|2|R1 − R2|

2

≤ (µ + ω)2|R1 − R2|
2

≤ K̄6|R1 − R2|
2.

Then we show that the following hold:

| f1(t, S)|2 ≤ k1(1 + |S|2) ∀ t ∈ [0, T],

| f2(t, D)|2 ≤ K2(1 + |D|2) ∀ t ∈ [0, T],

| f3(t, H)|2 ≤ k3(1 + |H|2) ∀ t ∈ [0, T],

| f4(t, P)|2 ≤ k4(1 + |P|2) ∀ t ∈ [0, T],

| f5(t, C)|2 ≤ k5(1 + |C|2) ∀ t ∈ [0, T],

| f6(t, R)|2 ≤ k6(1 + |R|2) ∀ t ∈ [0, T].

(7.1)

For f1(t, s), we have

| f1(t, S)|2 =

∣

∣

∣

∣

π −
S

N
(D + kH)− µs + wR

∣

∣

∣

∣

2

≤ |π − f (D + k)s − µs + wR|2

≤ 3
(

π2 + ω2(1 + k)2|s|2 − µ2|S|2 + ω2|R|2
)

≤ 3
(

π2 + ω2|R|2 +
(

2R2(1 + k)2 − r2
)

|s|2
)

≤ 3

(

π2 + w2 sup
t≤T

|R|2 +
(

2β2(1 + k)2 − µ2
)

|s|2
)

≤ 3
(

π2 + ω2‖R‖∞ +
(

2β2(1 + k)2 − µ2
)

|s|2
)

≤ π2 + w2|R|∞

(

1 +
2β2u + k2 − µ2

π2 + w2‖R‖∞

|s|2
)

.
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We require that
2β2(1 + k)2 − µ

π2 + w2‖R‖∞

< 1.

For f2(1, D)

| f2(t, D)|2 =

∣

∣

∣

∣

β(0 + kH)

N
S − (α + γ + σ + φ1 + ϕ1)D

∣

∣

∣

∣

2

≤ 2β2(1 + k)2|s|2 + d2
1|D|2

≤ 2
(

β2(1 + k)2 sup
t≤T

|S|2 + d2
1|D|2

)

≤ 2
(

β2(1 + k)2‖S‖2
∞ + d2

1|D|2
)

≤ 2S2(1 + h)2‖S‖2
∞

(

1 +
d2

1

2β2(1 + k)3‖S‖∞

|D|2
)

≤ k2(1 + |D|2),

whenever
d2

1

β2(k)2‖S‖∞

< 1.

For f3(t, H)

| f3(t, H)|2 = |αD − (P + φ + µ + λ2 + ψ2)H|2

≤ 2
(

α2 sup
t≤T

|D|2 + (H1)
2|H|2

)

≤ 2
(

α2‖D‖α + h2
1|H|2

)

≤ 2α2‖D‖∞

(

1 +
h1H2

2α2‖D‖∞

‖H‖2

)

≤ k3(1 + |H|2)

when h1/(α2‖D‖∞) < 1.
For f4(t, P)

| f4(t, P)|2 = |λ1D + λ2H − (ε1 + τ + µ + ϕ3)P|2

sup
[0,T

≤ 2

(

λ2
1

t∈ ]

H2 + λ2
2 sup

t∈[0,T]

|H|

)2

+ (ε1 + τ + µ + ψ3)
2

)

≤ 2
(

λ2
1‖D‖∞ + λ2

2‖H‖2 + P1P
)

≤ 2

(

λ2
1‖D‖α + λ2

2‖H‖2(1 + P1P).

If
ε1 + τ + µ + ψ3

2d2
1‖D‖∞ + ε2

2 − ℓ3‖H‖2
∞

< 1,
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then
| f4(t, p)|2 ≤ k4(1 + |p|2) ≤ ks(1 + |C|2).

Such that
C2

1
< 1,(

σ2‖D|2∞ + D2‖H‖2
∞ + τ2‖P‖2

∞

| f6(t, R)|2 = |γD + pH + ε2C + εP + φc − (µ + ω)R|2

≤

(

γ2

≤
(

γ2|D|2 + ρ|H|2 + (ε1 + φ)2|C|2 + ε|P|+ (µ + α)2
R
)2
)

sup
t≤T

|D|2 + ρ2 sup
t≤T

|H|2 + (ε2 + φ)2 sup
t≤T

T|C|2

+ ε2 sup
t≤T

|P|2 + (µ + w)2|R|2
)

≤ γ2‖D‖2
∞ + ρ2‖H‖2

∞ + (ε2 + φ)2 ‖C‖2
∞ + ε2

1‖P‖2
∞ + (µ + ω)2‖R‖2

∞

≤
(

γ2‖D‖2
∞ + ρ2‖H‖2

∞ + (ε2 + φ)
)2
‖C‖2

∞ + ε2‖P‖2
∞

)

for
(µ + ω)2

γ2‖D‖2
∞ + ρ2‖H‖2

∞ + (ε2 + φ)2‖C‖2
∞ + ξ2

1‖P‖2
∞

< 1, (7.2)

Therefore, if the condition on linear growth holds such that

max{c1, c2, c3, c4, c5, c6} < 1, (7.3)

where

c1 =
2β2(1 + k)2 − µ

π2 + w2‖R‖∞

,

c2 =
d1

2

β2(k)2‖S‖∞

,

c3 =
h1

α2‖D‖∞

,

c4 =
ε1 + τ + µ + ψ3

2d2
1‖D‖∞ + ε2

2 − ℓ3‖H‖2
∞

(

2d2
1‖D‖∞ + ε2

2 − ℓ
3‖H‖2

∞ > 0
)

,

c5 =
1

2(σ2‖D|2∞ + D2‖H‖2
∞ + τ2‖P‖2

∞

,

c6 =
(µ + ω)2

γ2‖D‖2
∞ + ρ2‖H‖2

∞ + (ε2 + φ)2 ‖C‖2
∞ + ξ2

1‖P‖2
∞

,

then the system has a unique solution.
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8 Numerical approximation for illicit drug model

We now apply the numerical approximation to the model above.

8.1 Numerical solution of the model with two step Lagrange global scheme

Consider the illicit model below

dS

dt
= F1(t, S, D, H, P, C, R) = π −

β(D + κH)S

N
− µS + ωR,

dD

dt
= F2(t, S, D, H, P, C, R) =

β(D + κH)S

N
− (α + γ + σ + µ + λ1 + ψ1)D,

dH

dt
= F3(t, S, D, H, P, C, R) = αD − (ρ + θ + µ + ψ2 + λ2)H,

dP

dt
= F4(t, S, D, H, P, C, R) = λ1D + λ2H − (ǫ1 + τ + µ + ψ3)P,

dC

dt
= F5(t, S, D, H, P, C, R) = σD + θH + τP − (ǫ2 + µ + ψ4 + φ)C,

dR

dt
= F6(t, S, D, H, P, C, R) = γD + ρH + ǫ2C + ǫ1P + φC − (µ + ω)R.

(8.1)

Given that, S0 = s(0), I(0) = I0, R(0) = R0. Applying the above scheme

Xn+1 = Xn +
g(tn+1)− g(tn)

∆t

h

2
[3F(tn , Xn)− F(tn−1, Xn−1)], n = 1, 2, 3, . . . , (8.2)

where

Xn+1 = [Sn, Dn, Hn, Cn, Pn, Rn],

F(tn, Xn) = [F1, F2, F3, F4, F5, F6],

X1 can be calculated using the midpoint approximation that is of order 2.

8.2 Numerical solution of the model with Caputo-Fabrizio fractional
derivative

Let us consider the fractional simple drug use model defined by Caputo-Fabrizio frac-
tional derivative given by an ordinary differential equation system

CF
a Dα

gS(t) = F1(t, S, D, H, P, C, R) = π −
β(D + κH)S

N
− µS + ωR,

CF
a Dα

g D(t) = F2(t, S, D, H, P, C, R) =
β(D + κH)S

N
−(α+γ+σ+µ+λ1+ψ1)D,

CF
a Dα

g H(t) = F3(t, S, D, H, P, C, R) = αD − (ρ + θ + µ + ψ2 + λ2)H,

CF
a Dα

g P(t) = F4(t, S, D, H, P, C, R) = λ1D + λ2H − (ǫ1 + τ + µ + ψ3)P,

CF
a Dα

gC(t) = F5(t, S, D, H, P, C, R) = σD + θH + τP − (ǫ2 + µ + ψ4 + φ)C,

CF
a Dα

g R(t) = F6(t, S, D, H, P, C, R) = γD + ρH + ǫ2C + ǫ1P + φC − (µ + ω)R.

(8.3)
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Thus,

Xn+1 = Xn +
1 − α

M(α)
[g′(tn)F(tn, Xn)− g′(tn)F(tn−1, Xn−1)]

+
α

M(α)

[

(1 − α) +
3αh

(1 − α)

]

g′(tn)F(tn, Xn)

+

[

(1 − α) +
αh

(1 − α)
g′(tn)F(tn−1, Xn−1)

]

, n = 1, 2, 3, 4, 5, 6, (8.4)

where

Xn+1 = [Sn, Dn, Hn, Cn, Pn, Rn],

F(tn, Xn) = [F1, F2, F3, F4, F5, F6].

8.3 Numerical solution of the model with midpoint Riemann-Liouville
global scheme

Let us consider the fractional illicit drug model defined by Riemann-Liouville frac-
tional derivative given by an ordinary differential equation system with the midpoint
approach

RL
a Dα

gS(t) = F1(t, S, D, H, P, C, R) = π −
β(D + κH)S

N
− µS + ωR,

RL
a Dα

g D(t) = F2(t, S, D, H, P, C, R),=
β(D + κH)S

N
− (α+γ+σ+µ+λ1+ψ1)D,

RL
a Dα

g H(t) = F3(t, S, D, H, P, C, R) = αD − (ρ + θ + µ + ψ2 + λ2)H,

RL
a Dα

g P(t) = F4(t, S, D, H, P, C, R) = λ1D + λ2H − (ǫ1 + τ + µ + ψ3)P,

RL
a Dα

gC(t) = F5(t, S, D, H, P, C, R) = σD + θH + τP − (ǫ2 + µ + ψ4 + φ)C,

RL
a Dα

g R(t) = F6(t, S, D, H, P, C, R) = γD + ρH + ǫ2C + ǫ1P + φC − (µ + ω)R.

(8.5)

y (tn+1) =
1

Γ(α)

n

∑
j=0

∫ tj+1

tj

g′(τ) f
(

τ, y(τ)
)

(tn+1 − τ)α−1dτ

=
1

Γ(α)

n

∑
j=0

∫ tj+1

tj

g
(

tj+1

)

− g
(

tj

)

∆
f

(

tj + tj+1

2
,

yj + yj+1

2

)

× (tn+1 − τ) dτ

=
∆tα−1

Γ(α + 1)

n

∑
j=0

(

g(ti+1)− g(tj)
)

× f

(

ti +
h

2
,

yj + yj+1

2

)

{(n − j + 1)α − (n − j)α},

yn+1 =
∆tα−1

Γ(α + 1)

n−1

∑
j=j

(

g(ti+1)− g(tj)
)

f

(

ti +
h

2
,

yi + yi+1

2

)

δα
n,j
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+
∆tα−1

Γ(α + 1)

(

g(tn+1)− g(tn)
)

f

(

tn +
h

2
,

yn + y
p
n+1

2

)

,

where

δα
n,j = {(n − j + 1)α − (n − j)α} ,

y
p
n+1 =

∆tα−1

Γ(α + 1)

n

∑
j=0

f (ti, yj)
(

g(tj+1)− g(tj)
)

δα
n,j.

Then

X(tn+1) =
∆tα−1

Γ(α + 1)

n−1

∑
j=0

[

g′(tj)F

(

tj +
h

2
, Xj

)]

{(n − j + 1)α − (n − j)α}

+ g′(tn)F

(

tn +
h

2
, Xn

)

{(n − j + 1)α − (n − j)α}

with

Xn+1 = [Sn, Dn, Hn, Cn, Pn, Rn],

F(tn, Xn) = [F1, F2, F3, F4, F5, F6].

9 Numerical results

Numerical simulation involves using mathematical models and computer algorithms
to simulate and analyze the behavior of physical or biological systems studied. The
system is broken down into smaller parts and equations are used to describe the be-
havior of each part. The objective is to obtain an accurate representation of the sys-
tem’s behavior through time, allowing for predictions or deeper understanding of the
underlying processes. We now simulate our drug abuse model with two step La-
grange scheme, two-step Lagrange Caputo-Fabrizio numerical scheme and Midpoint
Riemann-Liouville global scheme. we use different step sizes, and function the g(x).
The following parameters were used (Table 1).

10 Conclusion

In conclusion, this study reinforces that illegal drug use continues to be a significant
public health challenge on a global scale, despite ongoing research and educational
initiatives. The mathematical model developed herein, which leverages global deriva-
tives to capture non-local effects, provides a robust framework for understanding the
multifaceted dynamics of illicit drug use, see Figs. 2(a), 2(b), 3(a), 3(b). By integrating
both biological and social factors – including the detection of drug users-and incorpo-
rating population-specific parameters, the model is designed to reflect the diversity of
drug use dynamics rather than being limited to a single substance.
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Table 1: Parameter values.

Parameter Value Source

π 0.36 8

β 0.35 [19]

τ 0.001 8

µ 0.02 8

γ 0.01 8

ψ1, ψ2, ψ3 and ψ4 0.035 Assumed

ω 0.3 8

ρ 0.35 8

Θ 0.09 8

κ 1.25 8

α 0.01 8

ǫ1, ǫ2 0.6 8

σ 0.6 8

(a) g = 0.0001x, h = 0.001 for 150 days (b) g = 0.0001x, h = 0.05 for 150 days

Figure 2: Results found using the two-step Lagrange scheme.

(a) g = x, h = 0.001 for 150 days (b) g = x, h = 0.05 for 150 days

Figure 3: Results found using the two-step Lagrange scheme.
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The stability analysis and numerical simulations reveal critical thresholds and
long-term behaviors, particularly when examining different values of α and the influ-
ence of the function g(x). These results underscore the importance of timely, dynamic
interventions and demonstrate that control strategies sensitive to temporal changes
can effectively reduce or eliminate illegal drug use. Moreover, the use of non-local op-
erators in our model has proven instrumental in capturing complex phenomena that
traditional methods might overlook. The simulation outcomes, which highlight the
eventual dominance of the recovered group over time, shown from the simulation in
Figs. 4(a), 4(b), 5(a), 5(b), 6(a), 6(b), 7(a), 7(b), further validate the model’s applicability
and predictive power.

Numerical approximations using three global derivative schemes – the two-step
Lagrange, two-step Caputo-Fabrizio, and Midpoint Riemann-Liouville methods – pro-
vide additional insight into the system’s behavior. While the model does have limi-
tations and is not exhaustive, the results offer valuable perspectives on the dynamics
of drug abuse and the potential impact of intervention strategies. Given the serious

(a) g(x) = 0.0001x, α = 0.35 for 150 days (b) g(x) = 0.0001x, α = 0.7 for 150 days

Figure 4: Results found using Caputo-Fabrizio scheme.

(a) g(x) = x, α = 0.35 for 150 days (b) g(x) = x, α = 0.7 for 150 days

Figure 5: Results found using Caputo-Fabrizio scheme.
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(a) g(x) = 0.0001x, α = 0.35 for 150 days (b) g(x) = 0.0001x, α = 0.7 for 150 days

Figure 6: Results found using midpoint Riemann-Liouville scheme.

(a) g(x) = x, α = 0.35 for 150 days (b) g(x) = x, α = 0.7 for 150 days

Figure 7: Results found using midpoint Riemann-Liouville scheme.

health and social consequences associated with illicit drug use, these findings empha-
size the need for continued research. Future studies should aim to refine the model,
improve its accuracy, and explore additional intervention strategies to more effectively
address the pervasive issue of illegal drug use in communities worldwide.
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