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Abstract. From a 3-factor model of storable commodities discussed by Liu and
Tang (2010), we consider a cash market model such as futures exchange with a sin-
gle futures contract on one such commodities and a money market account. After
verifying that this model is arbitrage-free and incomplete in any finite time horizon
or delivery date, we show that there still exists a possibility to generate exponen-
tially growth risk-less profit in long term; a form of asymptotic arbitrage conjec-
tured by Föllmer and Schachermayer (2008) and first solved by Mbele Bidima and
Rásonyi (2012) in financial security models. And we find that works in this pa-
per generalize our recent works in Tadesse Welemical et al. (2019) on Schwartz’s
one-factor model of commodity futures.

AMS s      ubject c       lassifications: 9  1B70, 9 1G10, 9  1G15

Keywords: Asymptotic exponential arbitrage, commodity market, futures contract, large de-
viation.

1 Introduction

A key challenge for market makers and policymakers is to avoid losses while guaran-
teeing some (risk-less) profits in long-term economic trading. Such profits were first
studied under a concept named “asymptotic arbitrage” by Kabanov and Kramkov [13]
in their pioneering work. The concept gained some incredible development over
the past decade after the contributing and inspiring works of Föllmer and Schacher-
mayer [8]. It is an emerging theory in modern Mathematical Finance where authors
are analyzing existence of arbitrage opportunities (risk-less profits) in long-term trad-
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ing, i.e. when the trading time horizon T tends to infinity, in general (or typical) fi-
nancial models. This concept is discussed depending on whether classical arbitrage in
any finite time horizon appear or not in those models as guaranteed by the First Fun-
damental Theorem of Asset Pricing (stated in [4, 12]). However, the literature in this
subject is still narrow and shows that the analysis of asymptotic arbitrage has been
carried out essentially by a limited number of authors in models of financial securities
only, see for instance [3, 6, 11, 14, 16, 17].

A couple of years ago [20], we were the first to conduct analysis of asymptotic arbi-
trage in models of storable commodities, especially in the Schwartz’s one-factor model
of storable commodity futures. In that article, we carefully started with highlighting
the difference between standard securities markets and (storable) commodities mar-
ket. Indeed, unlike financial securities (such as stocks, bonds, etc.), storable commodi-
ties (like oil, gold, coffee, etc.) are characterized by an unavoidable cost of carrying
a physical good, also known as the convenience yield. And they are traded in two
interrelated markets: the storage (inventory) market where physical commodities are
assumed traded at prices called spot prices, and the cash market (typically a futures
exchange) where futures contracts on those commodities with maturity time (delivery
date) T are traded at time t ≤ T with prices known as futures prices.

In Schwartz’s one factor model of storable commodities [18], the convenience yield
is assumed constant, and this was crucial in our analysis of asymptotic arbitrage
in [20]. But in a number of other classical models of (storable) commodities such
as [10], the convenience yield is not constant and is modeled as an Ornstein-Uhlenbeck
(OU) process, which can take negative values. But Liu and Tang [15, Lemma 1, Theo-
rem 1] proved that under short-selling prohibiting, the negativity of the convenience
yield is equivalent to existence of arbitrage opportunities in the storage market in any
finite trading time horizon. To overcome such a limitation, the authors of [15] mod-
eled the convenience yield using a Cox-Ingersoll-Ross (CIR) process. As a result, they
developed a so-called semi-affine 3-factor model (with factors being the spot price of
a commodity, the convenience yield and the short interest rate) under an equivalent
martingale measure (EMM) Q existing in the cash market. Since the CIR process as-
sumes the non-negativity constraint for the underlying (the convenience yield in this
case), then this guarantees the requirement of no-arbitrage opportunity in their such
storage market model in any finite time horizon.

In this paper, we consider in the section below the so-called Liu-Tang 3-factor com-
modity futures model (Definition 2.1) which we built on the setup of the Liu-Tang
3-factor model for a storable commodity that follows. We verify in Section 3 that this
constructed 3-factor futures model is arbitrage-free and incomplete in any finite time
horizon (future delivery date) T > 0. Next in Section 4, which is the main part of
our article, after recalling the concept asymptotic exponential arbitrage with geomet-
rically decaying failure probability which discussed in [20] for a Schwartz’s one factor
commodity futures model, we prove in Theorem 4.1 existence of such trading oppor-
tunities in the Liu-Tang 3-factor commodity futures model. And we end the paper
with a conclusion and some perspectives in Section 5.
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2 The Liu-Tang 3-factor commodity futures model

Consider the Liu-Tang 3-factor model where the three factors are respectively a spot
price process St for a single storable commodity in a storage market, the short rate
process rt of trading such a commodity and a convenience yield process δt, all assumed
continuous, adapted and verifying sufficient stochastic integrability requirements on
the same filtered probability space (Ω,F , F, P).

Next, beside this storage market, we assume there is a cash market (a futures ex-
change) with a single futures contract on the above storable commodity whose prices
process is denoted Ft ≡ F(t, T) := F(St, δt, rt, t, T) for any future delivery date (or time
horizon) T > 0. We also assume there is an accompanying money market account
serving as a numéraire (typically a risk-free bond) with deterministic price Bt at any
time t ≥ 0.

Definition 2.1 (Liu-Tang 3-Factor Commodity Futures Model). i) In our present pa-
per, we call “Liu-Tang 3-factor commodity futures model” any market model with the two
prices processes Ft (of a futures contract on the storable commodity in the Liu-Tang 3-factor
model) and Bt of the accompanying numéraire.

ii) According to [15], a trading portfolio in such a commodity futures model is a pair of
R-valued and F-adapted processes πt := (θt, ϕt) representing respectively the investor’s po-
sition in the risk-free bond and in the futures contract.

iii) The value process of such a trading portfolio (or wealth of the investor) denoted Vπ
t is

defined by

Vπ
t := θtBt + ϕtFt, ∀ t ∈ [0, T]. (2.1)

iv) Any such trading opportunity is said to be self-financing if it is a pair of predictable
processes and verifies

dVπ
t := θtdBt + ϕtdFt. (2.2)

Assumption 2.1. For computational simplicity, we assume that the risk-free interest rate on
the bond is zero, i.e. the bond price is Bt := 1 for all t ∈ [0, T].

Remark 2.1. 1) This assumption implies that the discounted futures prices process
F̃t := Ft/Bt is just Ft and the discounted value Ṽπ

t := Vπ
t /Bt of any portfolio πt is

again Vπ
t .

2) Similar to the restriction assumed in [1, Section 2.2], the assumption above hints
that we may restrict the definition of self-financing portfolios to the part ϕt of invest-
ment in the futures contract only. Hence, denoting the value process now Vπ

t ≡ V
ϕ

t ,
the self-financing relation above becomes

dV
ϕ

t = ϕtdFt, i.e. V
ϕ

t = V
ϕ

0 +
∫ t

0
ϕsdFs, ∀ t ∈ [0, T]. (2.3)
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Definition 2.2 (Admissible Strategy). A self-financing trading portfolio ϕt is said to be 
admissible, if the

ϕ
re is a constant a ≥ 0 such that its corresponding value process Vt

ϕ 
verifies

t ≥ −a, P − a.s. for all time t ∈ [0, T].

Let H be the set of admissible self-financing strategies in this model. For any time
t > 0 (in particular for time horizon T > 0), denote the set of value processes for all
admissible self-financing strategies ϕs up to time t with V

ϕ
0 = 0 as Kt, i.e.

Kt :=

{

∫ t

0
ϕsdFs : ϕs ∈ H with V

ϕ
0 = 0

}

. (2.4)

Under the no-arbitrage assumption, equivalent to the existence of an equivalent (local)
martingale measure (EMM) Q in the cash market (as provided by the fundamental
theorem of asset pricing in [4]), it is well known (see [9, p. 31]) that the (discounted)
futures price Ft at any time t ≤ T is given by the relation

Ft = EQ[ST |Ft] =: E
Q
t [ST], (2.5)

where EQ is the expectation taken under any such (local) EMM Q.

Next, under any such EMM Q, Liu and Tang [15] assumed that the three factors
St, rt and δt are governed by the following dynamics:























drt = κ1(µ1 − rt)dt + σ1
√

rtdW1
t , (2.6a)

dδt = κ2(µ2 − δt)dt + σ2

√

δtdW2
t , (2.6b)

dSt = [(rt − δt)St + w]dt + StσSr
√

rtdW1
t + StσSδ

√

δtdW2
t

+St

√

v0 + vSδδt + vsrrtdW3
t , (2.6c)

where W1
t , W2

t and W3
t are each other independent Brownian motions under Q,

µ1, κ1 > 0 are respectively the long run mean and speed of mean reversion of the
interest rate with constant volatility σ1 > 0, µ2, κ2 > 0 are respectively the long run
mean and the rate of mean reversion for the convenience yield with constant volatility
σ2 > 0, v0, vSδ and vSr are R-valued non negative constants and w is the storage cost.

According to [15], the equivalent martingale measure Q and the probability mea-
sure P are related as

d





W1
t

W2
t

W3
t



 =





η1
√

rt

η2

√
δt

η3

√
v0 + vSδδt + vSrrt



 dt + d





Z1
t

Z2
t

Z3
t



 , (2.7)

where η1, η2, η3 are real constants and Z1
t , Z2

t , Z3
t are standard Brownian motions under

the physical measure P such that

dZ1
t dZ2

t = dZ1
t dZ3

t = dZ2
t dZ3

t = 0,
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and the vector

ψt :=
(

ψ1(t), ψ2(t), ψ3(t)
)

:=
(

η1
√

rt, η2

√

δt, η3

√

v0 + vSδδt + vSrrt

)

(2.8)

is the market price of risk for the Liu-Tang 3-factor model, i.e. ψi(t) for i = 1, 2, 3, are
respectively market prices of risk of the factors rt, δt and St corresponding to respective
standard Brownian motions W i

t for i = 1, 2, 3.

Remark 2.2. Since the convenience yield δt ≥ 0 by construction of the CIR process in
the Eq. (2.6b), we may even assume in this paper that δt > 0 for all time t ≥ 0, then as
pointed out from the introduction, [15, Lemma 1, Theorem 1] imply that the Liu-Tang
3-factor commodity model (all equations in (2.6)) does not allow short-selling and is
arbitrage-free for any finite time horizon T > 0.

3 Absence of finite horizon arbitrage and model

incompleteness

Recall the following classical definitions in Mathematical Finance.

Definition 3.1 (Finite Horizon Arbitrage). i) For any finite time horizon T > 0, a (self-
financing) portfolio ϕt is an arbitrage opportunity in this futures market model if its corre-
sponding value process V

ϕ
t , t ∈ [0, T], satisfies the following conditions:

V
ϕ

0 = 0, V
ϕ
T ≥ 0, P − a.s. with P

(

V
ϕ
T > 0

)

> 0. (3.1)

ii) The model is said to be arbitrage-free for any finite time horizon T > 0 if there is no
arbitrage opportunity in the sense above.

Definition 3.2 (Model Completeness). A market model is said to be complete if every con-
tingent claim is attainable i.e. there is a self-financing strategy whose final value equals the
payoff of the claim, otherwise it is said to be incomplete.

In the specific case of their model, Liu and Tang [15] derived the following explicit
formula for the futures prices.

Proposition 3.1 ([15, Proposition 4]). Assume (for computational simplicity) that the stor-
age cost w = 0. Then the (discounted) futures price process Ft for the Liu-Tang 3-factor
commodity model is given as

Ft = St exp
(

A(t, T) + B(t, T)rt + C(t, T)δt

)

, (3.2)

where

A(t, T) =
2κ2µ2

σ2
2

[

(T − t)b1 + ln

(

1 − b1

b2

)

− ln

(

1 − b1

b2
exp

(

(b1 − b2)(T − t)
)

)]
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+
2κ1µ1

σ2
1

[

(T − t)b3 + ln

(

1 − b3

b4

)

− ln

(

1 − b3

b4
exp

(

(b3 − b4)(T − t)
)

)]

,

B(t, T) =
2b1

σ2
2

[

1 − exp
(

(b1 − b2)(T − t)
)

1 − b1 exp
(

(b1 − b2)(T − t)
)

/b2

]

,

C(t, T) =
2b3

σ2
1

[

1 − exp
(

(b3 − b4)(T − t)
)

1 − b3 exp
(

(b3 − b4)(T − t)
)

/b4

]

with

b1 = −1

2
(σ2σSδ − κ2)−

1

2

√

(σ2σSδ − κ2)2 + 2σ2
2 ,

b2 = −1

2
(σ2σSδ − κ2) +

1

2

√

(σ2σSδ − κ2)2 + 2σ2
2 ,

b3 = −1

2
(σ1σSr − κ1)−

1

2

√

(σ1σSr − κ1)2 − 2σ2
1 ,

b4 = −1

2
(σ1σSr − κ1) +

1

2

√

(σ1σSr − κ1)2 − 2σ2
1 .

From this we state the following useful result.

Proposition 3.2. 1) The (discounted) futures prices process Ft in (3.2) obeys the dynamics

dFt = DtFt · dWt (3.3)

under any EMM Q in the cash market, where

Dt :=
(

(σSr + σ1Bt)
√

rt, (σSδ + σ2Ct)
√

δt,
√

v0 + vSrrt + vSδδt

)

,

Wt :=
(

W1
t , W2

t , W3
t

)

.

2) Assuming v0 = vSr = vSδ = 0 (again for calculation simplicity), then under the physical
measure P the (discounted) futures price in (3.3) is expressed as

dFt = DtFt ·





ψ1dt + dZ1
t

ψ2dt + dZ2
t

0 + dZ3
t



 , (3.4)

where the market price of risk for the futures contract is the same as the market price of risk

ψt :=
(

ψ1(t), ψ2(t), ψ3(t)
)

=
(

η1
√

rt, η2

√

δt, 0
)

of the original Liu-Tang three factors in (2.8) and depends on the two factors rt and δt only.

3) Hence, according to (2.3) a trading strategy ϕt in the Liu-Tang commodity futures model
is self-financing if and only if its (discounted) value process satisfies

dV
ϕ

t = ϕtDtFt ·





ψ1dt + dZ1
t

ψ2dt + dZ2
t

0 + dZ3
t



 . (3.5)

Proof. It is an application of Itô lemma on Ft. �
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Next, what Liu and Tang [15] missed to highlight and which is crucial to our anal-
ysis of asymptotic arbitrage in the next subsection is that the equivalent martingale
measure Q in the cash market is no longer unique in the case of their 3-factor model.
Indeed.

Proposition 3.3 (No-Arbitrage and Model Incompleteness). The cash market model (the
Liu-Tang commodity futures model) is arbitrage-free and incomplete in any finite time horizon
T > 0.

Proof. The dynamics in (3.4) shows that the (discounted) futures contract, which
is the only risky asset in that cash market, is driven by three independent random
sources i.e. by the three Brownian motions Z1

t , Z2
t and Z3

t . This implies by [2, Meta-
Theorem 8.3.1] that the Liu-Tang commodity futures model is incomplete and arbi-
trage-free for any finite delivery date (time horizon) T > 0. �

4 Existence of asymptotic exponential arbitrage

Recall first that the futures prices of the underlying commodity is Ft ≡ F(t, T) for all
times t ∈ [0, T], where T > 0 is a fixed time horizon, and that for any admissible
self-financing portfolio ϕt in H, the investors’ wealth in the futures contract in (3.2) is

V
ϕ

t = V
ϕ

0 +
∫ t

0
ϕsdFs

at any time t ∈ [0, T].

Notice that unlike in financial security models, since the futures price depends
on two time parameters t and T, to discuss the asymptotic behavior of the wealth
process V

ϕ
t i.e. from long-term trading in the futures contract when the delivery date T

becomes larger and larger, it is enough to discuss it when the running time t is getting
larger and larger since t ≤ T.

Next, Mbele Bidima and Rásonyi [16,17] gave a better mathematical formulation of
the following form of asymptotic arbitrage inspired by Föllmer and Schachermayer [8]
and which we adapt here in our present modeling setting of commodity futures.

Definition 4.1 ([16, Definition 1.1]). We say that the futures prices process Ft generates
asymptotic exponential arbitrage (AEA) with geometrically decaying failure probability
(GDFP), if there are constants C, λ1, λ2 > 0 and a trading strategy ϕt ∈ H such that the
value process V

ϕ
t satisfies the following conditions:

(i) V
ϕ

t ≥ −e−λ1t, P − a.s.,

(ii) P[V
ϕ

t ≥ eλ1t] ≥ 1 − Ce−λ2t for large enough time t > 0, or equivalently

(ii)’ P[V
ϕ

t < eλ1t] ≤ Ce−λ2t for large enough time t > 0.
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This definition presents a better economic interpretation: It says that the maximal
loss of the investor’s wealth at any time t is exponentially bounded in (i) by e−λ1t

and (ii) means that, even from zero initial capital, an investor may generate a profit
that grows exponentially fast in time with probability converging to 1 exponentially
(geometrically) fast. And (ii)’ states that failing to achieve such a growth profit can be
controlled in time by a probability converging to 0 exponentially fast.

Our main goal as announced in this paper is to find trading opportunities ϕt gen-
erating that form of asymptotic arbitrage in the Liu-Tang 3-factor commodity futures
model (3.4) despite classical arbitrage opportunities do not exist in any finite time
horizon as highlighted in Proposition 3.3. For this purpose, note that Proposition 3.3
entitles existence of several equivalent (local) martingale measures in our constructed
Liu-Tang 3-factor commodity futures model i.e. probability measures Q ∼ P (i.e.
equivalent to P) and under which the (discounted) futures prices process is a (local)
martingale. We denote Me

t the set of such measures Q in the model up to any future
trading date t > 0 (in particular any delivery date T > 0).

As similarly argued in [6, Section 1] and [11, Section 2.2], we may consider this
class Me

t defined in terms of the Radon-Nikodym densities

Lt :=
dQ

dP
= exp

{

−
∫ t

0
ψs · dWs −

1

2

∫ t

0
‖ψs‖2ds

}

(4.1)

for any time t > 0, where ψt is the market price of risk vector for the futures prices
given in (3.4) (or for the 3-factor model as given in (2.8)),

dWt =
(

dW1
t , dW2

t , dW3
t

)

,

and ‖ψt‖ is the Euclidean norm of ψt given by

‖ψt‖ :=
√

ψ2
1(t) + ψ2

2(t) + ψ2
3(t).

We state below the main theorem of this paper.

Theorem 4.1. There exists an admissible self-financing strategy ϕt that allows the futures
prices process Ft to generate asymptotic exponential arbitrage with geometrically decaying
failure probability in the Liu-Tang 3-factor commodity futures model.

The proof of this theorem is based on a technical mid-way result to asymptotic
arbitrage stated in a general semi-martingale setting in [8] and on the following pre-
liminary set of results which we prove applying those on Large Deviations Theory
from [5, 7]. First, we state and prove the key lemma below.

Lemma 4.1. Let Yt and Xt be the stochastic processes defined for all time t > 0 by

Yt :=
1

t

(

γ1δt + γ2

∫ t

0
δsds

)

, Xt :=
1

t

(

α1rt + α2

∫ t

0
rsds

)

, (4.2)
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where γ1, γ2, α1, α2 are R-valued constants, but assuming γ2, α2 > 0. Then Yt and Xt satisfy
the large deviations principle in R respectively with good rate functions I2 and I1 defined on
R as follows, for x ∈ R∗ := R \ {0},

I2(x) =
(κ2x − κ2µ2γ2)2

2σ2
2 γ2|x|

, I1(x) =
(κ1x − κ1µ1α2)

2

2σ2
1 α2|x|

, I2(0) = ∞ = I1(0). (4.3)

Proof. Solving the second stochastic differential equation in (2.6), we get

δt = δ0e−κ2t + µ2(1 − e−κ2t) + σ2

∫ t

0
e−κ2(t−s)

√

δsdW2
s , δ0 > 0. (4.4)

For any t > 0, let Mt(y) be the moment generating function of Yt at some y ∈ R, then
analogously to the computations made in the proof of [7, Lemma 4.1] and using the
definition of the confluent function of the first kind R(c, d, z), for complex numbers
with Re(c), Re(d) > 0,

R(c, d, z) :=
Γ(b)

Γ(d − c)Γ(c)

∫ 1

0
ezttc−1(1 − t)d−c−1dt (4.5)

with Γ being the gamma function defined on R as

Γ(x) :=
∫

∞

0
tx−1e−tdt, x ∈ R,

we get

Mt(y) = E

[

exp

(

γ1δty + γ2y

t

∫ t

0
δsds

)]

=
Γ
(

a + (b + 1)/2
)

Γ(b + 1)
exp

[

κ2

σ2
2

(κ2µ2t + δ0)−
βδ0

σ2
2

cosh(βt/2)

sinh(βt/2)

]

×
(

βδ0

σ2
2 sinh(βt/2)

)
1
2 (b+1)−a

×
(

κ2

β
sinh

(

βt

2

)

+ cosh

(

βt

2

))−(a+ 1
2 (b+1))

× R

(

a+
1

2
(b+1), b+1,

β2δ0

σ2
2 sinh(βt/2) [κ2 sinh(βt/2)+ cosh(βt/2)]

)

, (4.6)

where

a :=
κ2µ2

σ2
2

, b :=
2
(

κ2µ2 − σ2
2 /2

)

σ2
2

= 2a − 1, β :=

√

κ2
2 −

2σ2
2 γ2y

t
.

Next for suitable y ∈ R, define Λ(y) as

Λ(y) := lim
t→∞

1

t
ln Mt(ty). (4.7)
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Since

lim
t→∞

1

t
ln

Γ
(

a + (b + 1)/2
)

Γ(b + 1)
= 0,

lim
t→∞

1

t
ln R

(

a +
1

2
(b + 1), b + 1,

β2δ0

σ2
2 sinh(βt/2) [κ2 sinh(βt/2) + cosh(βt/2)]

)

= 0,

then similar to the derivation in the proof of [7, Lemma 4.2], we have

Λ(y) = lim
t→∞

1

t
ln Mt(ty)

= lim
t→∞

1

t

[

κ2

σ2
2

(κ2µ2t + δ0)−
βδ0

σ2
2

cosh(βt/2)

sinh(βt/2)

]

+ lim
t→∞

1

t

(

b + 1

2
− a

)

ln

(

βδ0

σ2
2 sinh(βt/2)

)

− lim
t→∞

1

t

(

a +
b + 1

2

)

ln

(

κ2

β
sinh

(

βt

2

)

+ cosh

(

βt

2

))

=
κ2

2µ2

σ2
2

− bβ

2
− β

2

=
κ2

2µ2

σ2
2

− 2

2σ2
2

(

κ2µ2 −
σ2

2

2

)

√

κ2
2 − 2σ2

2 γ2y − 1

2

√

κ2
2 − 2σ2

2 γ2y

=
κ2

2µ2

σ2
2

− 1

2

√

κ2
2 − 2σ2

2 γ2y

(

2κ2µ2 − σ2
2

σ2
2

+ 1

)

=
κ2

2µ2

σ2
2

− 1

2

√

κ2
2 − 2σ2

2 γ2y

(

2κ2µ2

σ2
2

)

=
κ2µ2

σ2
2

(

κ2 −
√

κ2
2 − 2σ2

2 γ2y

)

. (4.8)

Recalling we assumed γ2 > 0, then Λ(y) so defined is a real number only if y ∈
(−∞, κ2

2/2σ2
2 γ2]. Hence, we may extend the definition of Λ(y), for any y ∈ R, as

an extended real number by setting

Λ(y) =



















κ2µ2

σ2
2

(

κ2 −
√

κ2
2 − 2σ2

2 γ2y
)

, if y ≤ κ2
2

2σ2
2 γ2

,

∞, if y >
κ2

2

2σ2
2 γ2

.

(4.9)

Obviously the function Λ is convex and differentiable in the interior of its effective
domain

DΛ := {y ∈ R : Λ(y) < ∞} =

(

−∞,
κ2

2

2σ2
2 γ2

]

,
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which contains the origin 0. It is easy to check that it verifies the remaining conditions
of Gärtner-Ellis’ theorem (see [5, Theorem 2.3.6] and its such conditions [5, Assump-
tion 2.3.2 and Definition 2.3.5]), which implies that the process Yt satisfies the large
deviations principle (LDP) with good rate function I2 := Λ

∗, the convex conjugate
of Λ, i.e.

− inf
x∈U

I2(x) ≤ lim inf
t→∞

1

t
ln P[Yt ∈ U] ≤ lim sup

t→∞

1

t
ln P[Yt ∈ G] ≤ − inf

x∈G
I2(x) (4.10)

for any open subset U of R∗ and closed subset G of R∗.
Next, by definition, for all x ∈ R, we have:

1. If x = 0, then Λ
∗(0) is given by

Λ
∗(0) = sup

y∈DΛ

{0 × y − Λ(y)} = ∞ obviously. (4.11)

2. If x 6= 0, then
Λ

∗(x) = sup
y∈DΛ

{xy − Λ(y)}. (4.12)

The supremum here in (4.12) is obtained when Λ
′(y) = x. But since

Λ
′(y) =

κ2µ2γ2
√

κ2
2 − 2σ2

2 γ2y
,

then this supremum is obtained when

y =
κ2

2x2 − (κ2µ2)2γ2
2

2σ2
2 γ2x2

=
κ2

2

2σ2
2 γ2

− (κ2µ2)2γ2

2σ2
2 x2

∈ DΛ. (4.13)

Therefore,

Λ
∗(x) =

(κ2x − κ2µ2γ2)2

2σ2
2 γ2|x|

. (4.14)

This allows to obtain the exact formula for the rate function I2 := Λ
∗, taking extended

real numbers values as stated in (4.3).
Using similar arguments, the process Xt satisfies the large deviations principle

with good rate function I1 given in (4.3), ending the proof of the lemma. �

Next, since W1
t and W2

t are independent Brownian motions, then for all real con-
stants λ1, λ2 > 0, and for any time t > 0, {L1

t ≥ e−λ1t} and {L2
t ≥ e−λ2t} are indepen-

dent events, where

L1
t := exp

(

−
∫ t

0
ψ1(s)dW1

s − 1

2

∫ t

0
ψ2

1(s)ds

)

, (4.15)

L2
t := exp

(

−
∫ t

0
ψ2(s)dW2

s − 1

2

∫ t

0
ψ2

2(s)ds

)

, (4.16)

and ψ1(t), ψ2(t) are respectively market prices of risk for the interest rate rt and the
convenience yield δt.
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Then we state and prove the following result.

Proposition 4.1. Let the constants λ1, λ2 > 0 be such that

λ1 ≤ µ1η2
1

2
, λ2 ≤ µ2η2

2

2
. (4.17)

Define for all time t > 0 the event

At :=
{

L1
t ≥ e

−λ1t− η1r0
σ1

}

∩
{

L2
t ≥ e

−λ2t− η2δ0
σ2

}

. (4.18)

Then we have

lim sup
t→∞

1

t
ln P[At] ≤ −b, (4.19)

where

b := I1

(

−λ1 −
η1κ1µ1

σ1

)

+ I2

(

−λ2 −
η2κ2µ2

σ2

)

> 0.

Proof. The following holds:

ln L1
t = −

∫ t

0
ψ1(s)dW1

s − 1

2

∫ t

0
ψ2

1(s)ds

= −
∫ t

0
η1
√

rs

(

drs − (κ1µ1 − κ1rs)ds

σ1
√

rs

)

− 1

2

∫ t

0
η2

1rsds

=
η1

σ1
r0 −

η1

σ1
rt −

(

η1κ1

σ1
+

η2
1

2

)

∫ t

0
rsds +

η1κ1µ1

σ1
t

=
η1

σ1
r0 +

(

α1rt + α2

∫ t

o
rsds

)

+
η1κ1µ1

σ1
t,

where

α1 :=
−η1

σ1
, α2 := −

(

η1κ1

σ1
+

η2
1

2

)

, η1 ∈
(

−2κ1

σ1
, 0

)

,

so that α2 > 0. Which implies that

P

[

L1
t ≥ e

−λ1t− η1r0
σ1

]

= P

[

ln L1
t ≥ −λ1t − η1r0

σ1

]

= P

[(

α1rt + α2

∫ t

o
rsds

)

+
η1κ1µ1

σ1
t ≥ −λ1t

]

= P

[

1

t

(

α1rt + α2

∫ t

o
rsds

)

≥ −λ1 −
η1κ1µ1

σ1

]

. (4.20)

Using a similar argument

ln L2
t =

η2

σ2
δ0 +

(

γ1δt + γ2

∫ t

o
δsds

)

+
η2κ2µ2

σ2
t,
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and so

P

[

L2
t ≥ e

−λ2t− η2δ0
σ2

]

= P

[

1

t

(

γ1δt + γ2

∫ t

o
δsds

)

≥ −λ2 −
η2κ2µ2

σ2

]

(4.21)

with

γ1 :=
−η2

σ2
, γ2 := −

(

η2κ2

σ2
+

η2
2

2

)

, η2 ∈
(

−2κ2

σ2
, 0

)

,

so that γ2 > 0.
Thus,

P[At] = P

[

L1
t ≥ e

−λ1t− η1r0
σ1

]

P

[

L2
t ≥ e

−λ2t− η2δ0
σ2

]

by independence. It follows that

lim sup
t→∞

1

t
ln P[At]

= lim sup
t→∞

1

t
ln

(

P

[

L1
t ≥ e

−λ1t− η1r0
σ1

]

P

[

L2
t ≥ e

−λ2t− η2δ0
σ2

])

≤ lim sup
t→∞

1

t
ln P

[

L1
t ≥ e

−λ1t− η1r0
σ1

]

+ lim sup
t→∞

1

t
ln P

[

L2
t ≥ e

−λ2t− η2δ0
σ2

]

= lim sup
t→∞

1

t
ln P

[

1

t

(

α1rt + α2

∫ t

o
rsds

)

≥ −λ1 −
η1κ1µ1

σ1

]

+ lim sup
t→∞

1

t
ln P

[

1

t

(

γ1δt + γ2

∫ t

o
δsds

)

≥ −λ2 −
η2κ2µ2

σ2

]

. (4.22)

Next, since we chose λ2 ≤ µ2η2
2/2 and λ1 ≤ µ1η2

1/2, which imply

−λ2 −
η2κ2µ2

σ2
≥ µ2γ2, −λ1 −

η1κ1µ1

σ1
≥ µ1α2.

And since from the proof of Lemma 4.1 above, the rate function I2 := Λ
∗ for the

process Yt is strictly increasing on [µ2γ2, ∞) (and similarly, the rate function I1 for the
process Xt would be strictly increasing in [µ1α2, ∞)), then applying the upper bound
LDP inequalities in (4.10) with appropriate choice of closed sets G, we get

lim sup
t→∞

1

t
ln P[At] ≤ −I1

(

−λ1 −
η1κ1µ1

σ1

)

− I2

(

−λ2 −
η2κ2µ2

σ2

)

= −b (4.23)

with

b := I1

(

−λ1 −
η1κ1µ1

σ1

)

+ I2

(

−λ2 −
η2κ2µ2

σ2

)

.

This ends the proof. �
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Proposition 4.2. Consider again the set

At :=
{

L1
t ≥ e

−λ1t− η1r0
σ1

}

∩
{

L2
t ≥ e

−λ2t− η2δ0
σ2

}

for any time t > 0 as in (4.18). Then for λ1, λ2 > 0 verifying (4.17), we have

P[At] ≤ e−bt, Q[At] ≥ 1 − 2e−λt (4.24)

for all Q ∈ Me
t , where λ := min(λ1, λ2).

Proof. The first inequality in (4.24) is straightforward from Proposition 4.1 where

b = I1

(

−λ1 −
η1κ1µ1

σ1

)

+ I2

(

−λ2 −
η2κ2µ2

σ2

)

> 0.

Next, Radon-Nikodym theorem (see [19, Section 1.6]) yields, for all time t > 0,

Q[Ac
t ] =

∫

Ac
t

LtdP =
∫

{L1
t≥e−λ1t}c∪{L2

t≥e−λ2t}c
LtdP

≤
∫

{L1
t≥e−λ1t}c

LtdP +
∫

{L2
t≥e−λ2t}c

LtdP

≤ e−λ1t + e−λ2t ≤ 2e−λt,

which implies that Q [At] ≥ 1 − 2e−λt, for all Q ∈ Me
t , for the second inequality in

(4.24), as required. �

Proof of Theorem 4.1. From Proposition 4.2 above, for a large time t > 0, we have

P[At] ≤ e−bt =: ε1, Q[At] ≥ 1 − 2e−λt =: 1 − ε2, ∀Q ∈ Me
t .

Since ε1, ε2 > 0, then for large enough time t > 0, [8, Proposition 2.3] implies that,

there is a value process V
ϕ′

t ∈ Kt, i.e. there is an admissible self-financing strategy
ϕ′ ∈ H such that

V
ϕ′

t ≥ −2e−λt P − a.s., and P

[

V
ϕ′

t ≥ 1 − 2e−λt
]

≥ 1 − e−bt. (4.25)

Next, for any positive constant c < λ and for a large enough time t > 0, consider
the trading strategy ϕs := ϕ′

se
(λ−c)t, s > 0. Then, since ϕ′ ∈ H so is ϕ, and we have (at

large time t)

V
ϕ

t =
1

2
e(λ−c)tV

ϕ′

t .

It follows we have both V
ϕ

t ≥ −e−ct P − a.s., and

P
[

V
ϕ

t ≥ ect
]

≥ P

[

V
ϕ

t ≥ 1

2
e(λ−c)t − e−ct

]

= P
[

V
ϕ′

t ≥ 1 − 2e−λt
]

≥ 1 − e−bt (4.26)

for large enough time t > 0. Showing existence of asymptotic exponential arbitrage
with geometrically decaying failure probability in the Liu-Tang 3-factor commodity
futures model. �
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Remark 4.1 (The Main Theorem in the General Case). For computation simplicity, we
proved Propositions 4.1 and 4.2 by assuming the constants v0 = vSr = vSδ = 0. But
in general these propositions and hence the main theorem (Theorem 4.1) hold true for
the case where v0, vSr, vSδ > 0 by modifying that: for λ1, λ2, λ3, λ4 > 0, the set At to be
defined by

At :=
{

L1
t ≥ e

−λ1t− η1r0
σ1

}

∩
{

L2
t ≥ e

−λ2t− η2δ0
σ2

}

∩
{

L3
t ≥ e−(λ3+λ4)t−β

}

(4.27)

for some constant β, where {L1
t ≥ e−λ1t}, {L2

t ≥ e−λ2t} and {L3
t ≥ e−(λ3+λ4)t} are

independent events in F , with

L3
t := exp

(

−
∫ t

0
ψ3(s)dW3

s − 1

2

∫ t

0
ψ2

3(s)ds

)

,

and by similar arguments used in Proposition 4.1, one gets the constant b in this propo-
sition to be replaced by

b := I1

(

−λ1 −
η1κ1µ1

σ1

)

+ I1

(

1

2

(

η3v0 + η2
3v0

)

+
η3σSrκ1µ1

σ1
− λ3

)

+ I2

(

−λ2 −
η2κ2µ2

σ2

)

+ I2

(

η3σSδκ2µ2

σ2
− λ4

)

> 0.

5 Conclusion and perspectives

The work in this paper present a first novelty that is a generalization of the analysis of
asymptotic exponential arbitrage discussed in [20] for the Schwartz one-factor com-
modity futures model where the convenience yield was constant and not a stochastic
process, and the commodity futures model was complete (i.e. with a unique equiva-
lent martingale measure) unlike its counterpart in the present 3-factor setting.

However, we notice that like in [20] and unlike the inspiring works [16,17] done in
standard security markets, the trading opportunity generating asymptotic exponen-
tial arbitrage within the Liu-Tang 3-factor commodity futures model is not explicitly
constructed. Nevertheless the result offers a hint to potential investors in the sense
that even if arbitrage opportunities are ruled out for finite delivery date T > 0 as
guaranteed in Proposition 3.3, trading in log-term (i.e. when T is large enough) in
a futures exchange whose prices follow the Liu-Tang 3-factor commodity model may
generate exponential growth risk-less profit for some trading strategy still to be found.

The present works open possible future research including interesting an case
where the prices of the underlying storable commodity exhibits jumps and/or sea-
sonal trends.
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