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1 Introduction

We are concerned with global existence of solution of the initial value problem for the
following dimensionless relativistic Boltzmann equation (RBE) in a Robertson-Walker
space-time [6]

∂t f + p̂ · ∇x f − 2
Ġ

G
p · ∇p f = Q( f ; f ), (1.1)

where different parts will be addressed below.
About the relativistic case, several authors have studied this problem by taking the

Minkowski spacetime as background. Most of results available concern the study of
mild solutions [1, 3, 8, 9].

In their seminar paper DiPerna and Lions [1], based on new tools and techniques,
have studied the non-relativistic Boltzmann equation. The key concept of their re-
sults is the notion of renormalized solution of the transport equation. By the velocity
averaging, they permit to show the proof of global existence of weak solution via
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compactness arguments. After this result, the desire to extend this method to the rel-
ativistic case becomes a problem. The response came firstly by Dudyński and Ekiel-
Jeżewska in [2], in Minkowski spacetime, with an existence proof based on the causal-
ity property of the relativistic Boltzmann equation. By modifying the assumptions
made on the scattering cross section in [2], more complicated in the relativistic case,
Zhenglu [8, 9] has given the proof of global existence of renormalized solution for the
initial value problem for the relativistic Boltzmann equation using the DiPerna and
Lions method’s in Minkowski spacetime.

The objective of this paper is to use the same approach as in [1, 9] and prove that
there exists a global renormalized equivalently mild solution to the large data Cauchy
problem for the relativistic Boltzmann in Robertson-Walker spacetime under the con-
dition of initial data f0 satisfying (2.32), that is

Theorem 1.1. Let K(g, θ) be the relativistic collision kernel of the RBE (2.14), and Br a ball
with center at the origin and radius r, B(g) =

∫

S2 K(g, θ)dΩ. Assume that

K(g, θ) ≥ 0, a.e. in [0,+∞)× S2, K(g, θ) ∈ L1
loc(R3 × S2), (1.2)

1

(v0)2

∫

Br

B(g)

v0
1

dv1 → 0 as |v| → +∞, ∀ r, t ∈ (0,+∞). (1.3)

Then the RBE (1.1) has a renormalized or equivalently a mild solution f through initial
data f0 with (2.32) satisfying the following properties:

f ∈ C
(

[0,+∞); L1(R3 × R
3)
)

(1.4)

L( f ) ∈ L∞
(

[0,+∞); L1
(

R
3 × Br

))

, ∀ r ∈ (0,+∞), (1.5)

Q+( f , f )

1 + f
∈ L∞

(

[0,+∞); L1
(

R
3 × Br

))

, ∀ r ∈ (0,+∞), (1.6)

sup
t≥0

∫ ∫

R3×R3
f (1 + ln f )dx dp < +∞. (1.7)

The challenge is the form of the Boltzmann equation in this spacetime. In order
to use the DiPerna and Lions method, we base our approach in the transformation of
Eq. (1.1) into a different equivalent form using covariant variables as in [5,6]. Then we
follow the steps of [1,9]. In this work we use the similar assumptions on the scattering
kernel already used in [9], namely

K(g, θ) ≥ 0 a.e., (1.8)

z(1 + z²)K(z, θ) ∈ L1
Loc

(

(0,+∞)× S2
)

, (1.9)

1

(v0)2

∫ ∫

Br×S2

gs
1
2 K(g, θ)

v0
1

dΩdv1 → 0, |v| → +∞, ∀ r, t ∈ (0,+∞), (1.10)

where for r > 0, Br is a ball with its center in the origin and radius r, and where the
other quantities will be specified in the sequel.
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The plan of this paper is organized as follows. In Section 2, we transform the
relativistic Boltzmann equation into another equivalent form, we give some a priori
estimates satisfied by a solution of the initial value problem and present the main
assumptions of this work. In Section 3, we give three formulations of solutions in the
spirit of DiPerna and Lions paper [1]. In Section 4, is devoted to prove the existence of
a renormalized solution.

2 Preliminaries

In this work Greek, indexes will be assumed to run from 0 to 3, while Latin indexes
run from 1 to 3. We adopt the Einstein summation convention

aαbα = ∑
α

aαbα. (2.1)

Notations xα = (t, x) and pα = (p0, p) respectively represent a four-dimensional
space-time dimensionless variable and a four-dimensional momentum-energy dimen-
sionless variable. As background spacetime, the spatially flat Robertson-Walker space-
time where the metric tensor with signature (−,+,+,+) can be written as

ds2 = −dt2 + R(t)2[(dx1)2 + (dx2)2 + (dx3)2], (2.2)

in which R is differentiable strictly positive increasing function of t called the scale
factor. Using Christoffel symbols, computed in [6, 7], of the Levi-Cevita connection
associated to the metric tensor, the relativistic Boltzmann equation in the Robertson-
Walker spacetime can be written as

∂t f + p̂ · ∇x f − 2
Ġ

G
p · ∇p f = Q( f , f ), (2.3)

where p̂ is defined by p̂ = p/p0 with

p0 =
√

1 + G2(t)|p|2,

and

|p| =
(

(p1)2 + (p2)2 + (p3)2
)

1
2 .

In (2.3), Q is a nonlinear operator called the collision operator which will be specified
below. In instantaneous binary and elastic scheme, we consider that in a given po-
sition x, two particles of four-dimensional momenta pα = (p0, p) and pα

1 = (p0
1, p1)

collide without destroying each other; the collision affecting only their momenta that
change after collision. Let p′α = (p′0, p′) and p′α1 = (p′01 , p′1) be their four-dimensional
momenta after the collision. By conservation of energy momenta, one has

pα + pα
1 = p′α + p′α1 . (2.4)
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The collision operator is henceforth defined by

Q( f , g) = Q+( f , g)− Q−( f , g), (2.5)

where

Q+( f , g) = G3(t)
∫

R3

∫

S2

g
√

s

p0q0
K(g, ω) f (t, x, p′) f (t, x, p′)g(t, x, q′)dωdq, (2.6)

Q−( f , f ) = G3(t)
∫

R3

∫

S2

g
√

s

p0q0
K(g, ω) f (t, x, p) f (t, x, q)g(t, x, q)dωdq, (2.7)

L( f ) = G3(t)
∫

R3

∫

S2

g
√

s

p0q0
K(g, ω) f (t, x, q)g(t, x, q)dωdq, (2.8)

Q−( f , f ) = f L( f ), (2.9)

corresponding to the gain term and the loss term respectively. For simplicity, we some-
times abbreviate f (t, x, p) by f (p). In that expression of Q

• S2 is the unit sphere of R
3,

• s and g are called respectively the square of energy of the energy in the center of
momentum system p + q = 0 and the relative momentum. The are defined by

s = −(pα + qα)(pα + qα), g =
√

(pα + qα)(pα + qα), (2.10)

• K(g, θ) is the differential cross-section or scattering kernel, it depends on the
relative momentum g and the cross section θ is the scattering angle which is
defined in [0, π] by

cos θ =
(p′α − q′α)(pα − p′α)

g2
. (2.11)

2.1 Equation in new variables

In the remainder of this work, as in [6], we consider RBE (2.3) with covariant variables.
So the distribution function f will be considered as a function of t, x and pk = gkβ pβ =

R2pk with k = 1, 2, 3. This change of variables was previously used in [5, 6]. In what
follows, for simplicity we set v = (v1, v2, v3) where vk = G2pk and

v0 =

√

1 +
|v|2

G2(t)
= p0.

In the sequel, we note

v0
0 =

√

1 +
|v|2

G2(0)
, (2.12)

witch will be useful in many estimates.
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With these new variables, we use v′k = G2p′k and v′α1 = G2p′α1 for the post col-
lisional momenta. Now we write (2.3) in a new variables. Let f̃ (t, x, v) = f (t, x, p)
then

∂t f̃ = ∂t f − 2
Ġ

G
p · ∇p f , ∂x f̃ = ∂x f . (2.13)

Straightforward computations lead to dp = R−6dv. In the sequel by abuse of notation
we will still write f instead of f̃ . So with the new variables (2.3) is equivalent to

∂t f +
1

G2
v̂ · ∂x f = Q( f , f ), (2.14)

where

Q( f , f ) =
1

G3(t)

∫

S2
dω

∫

R3
du

g
√

s

v0u0
K(ω, g)[ f (v′) f (u′)− f (v) f (u)]

= Q+( f , f )(t, x, v) − Q−( f , f )(t, x, v), (2.15)

where dΩ = sin θ dθ dψ, 0 ≤ ψ ≤ 2π.
Since energy momentum and momenta are conserved quantities before and after

collision of the two particles, one has

s = s′, g = g′, (2.16)

where

s′ = |p′ + p′1|2, g′ =
1

2
|p′1 − p′|, (2.17)

so

cos θ = 1 +
2a

s − 4
, (2.18)

and a = −|v − v′|2.

2.2 A priori estimates

If Q( f ; f )ϕ(v) ∈ L1(R3) for any given ϕ ∈ L∞(R3) and any given f (v) ∈ L1(R3), then
we get that

∫

R3
ϕ(v)Q( f , f ) dv =

1

4G3(t)

∫

R3
dv

∫

S2
dω

∫

R3
du

g
√

s

v0u0

× K(ω, g)[ϕ(v′)ϕ(u′)− ϕ(v)ϕ(u)]. (2.19)

If ϕ̄ = b0 + b · v + c0v0 where b0 ∈ R, b, v, v0 ∈ R
3, c0 ∈ R, then

∫

R3
ϕ̄(v)Q( f , f ) dv = 0.

This means that f satisfies the conservation laws of mass, momentum and energy if f
is a distributional solution of RBE (2.14).

Next, let us show the property that entropy is always a nonincreasing function of t
in the relativistic case. Multiplying (2.14) by (1 + ln f ), integrating by parts over x
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and v and using (2.19), we deduce at least formally, the following entropy relativistic
identity:

d

dt

∫ ∫

R3×R3
f log f dxdv

+
1

G3(t)

∫ ∫

R3×S2
dΩdv1

gs
1
2 K(g, θ)

v0v0
1

× [ f (v′) f (u′)− f (v) f (u)] log

(

f (v′) f (u′)
f (v) f (u)

)

= 0, (2.20)

or in other words
d

dt

∫ ∫

R3×R3
f log f dxdv + e( f ) = 0, (2.21)

where

e ( f ) =
1

2G3(t)

∫ ∫

R3×S2
dΩdv1

gs
1
2 K(g, θ)

v0v0
1

× [ f (v′) f (u′)− f (v) f (u)] log

(

f (v′) f (u′)
f (v) f (u)

)

≥ 0. (2.22)

We deduce from (2.21) that
∫ ∫

R3×R3 f log f dxdv is a nonincreasing function of time.
Then the entropy of RBE defined by

H(t) = −
∫ ∫

R3×R3
f log f dxdv (2.23)

is a nondecreasing function of time. In order to deduce a bound from (2.20), we need
another estimate. This estimate is deduced from (2.14) by multiplying (2.14) by v0

0|x|2
and integrating by part over x and v, yields

d

dt

∫ ∫

R3×R3
v0

0|x|2 f dxdv

= 2
∫ ∫

R3×R3

v0
0

G2(t)
f x · v̂dxdv

≤ 2

G2(0)

∫ ∫

R3×R3
v0

0 f x · v̂dxdv

≤ 1

G2(0)

∫ ∫

R3×R3
v0

0|x|2 f dxdv +
1

G2(0)

∫ ∫

R3×R3
v0

0|v|2 f dxdv. (2.24)

This leads to the following inequality:

sup
0≤t≤T

∫ ∫

R3×R3
v0

0|x|2 f dxdv ≤ e
T

G2(0)

∫ ∫

R3×R3
f0v0

0

(

|x|2 + |v|2
G2(0)

)

dxdv (2.25)

for any given T > 0, multiplying (2.24) by e−t/G2(0) and using the conservation of the
mass.
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The entropy can be controlled by the integral
∫ ∫

R3×R3 f | ln f |dxdv for any non-
negative solution of the RBE and so it is natural to estimate of this integral instead of
entropy. So

∫ ∫

R3×R3
f | log f |dxdv

=
∫ ∫

R3×R3
f log f dxdv − 2

∫ ∫

f≤1
f log f dxdv

≤
∫ ∫

R3×R3
f log f dxdv + 2

∫ ∫

R3×R3
f
(

v0
0(x − tv)2 + v0

0

)

dxdv

+ 2
∫ ∫

f<exp(v0
0(x−tp)2+v0

0)
f log

(

1

f

)

dxdv

≤
∫ ∫

R3×R3
f log f dxdv + 2

∫ ∫

R3×R3
f
(

v0
0(x − tv)2 + v0

0

)

dxdv + C1, (2.26)

where C1 is some positive constant independent of f .

Using the fact that
∫ ∫

R3×R3 f log f dxdv is a nonincreasing function of time, (2.25),
(2.26) one deduces that

sup
0≤t≤T

∫ ∫

R3×R3
f | log f |dxdv ≤

∫ ∫

R3×R3
f0Udxdv + C1,

where

U = log f0 + 2v0
0(T + 1)e

1
G2(0) |x|2 + 2v0

0

(

T2 + 1 +
T + 1

G2(0)

)

|v|2 + 2,

then the entropy can be estimated in any finite time T.

We consider the Cauchy problem







∂t f +
1

G2
v̂∂x f = Q( f , f ) in [0,+∞]× R

3 × R
3,

f (0, x, v) = f0(x, v) on R
3 × R

3.
(2.27)

2.3 Main assumptions

In the present work, we suppose that:

Assumption 2.1. About the scattering kernel bounds

K(g, θ) ≥ 0 a.e., (2.28)

z(1 + z2)K(z, θ) ∈ L1
Loc

(

(0,+∞)× S2
)

, (2.29)

1

(v0)2

∫ ∫

Br×S2

gs
1
2 K(g, θ)dΩdv1

v0
1

→ 0, |v| → +∞, ∀ r, t ∈ (0,+∞). (2.30)
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Assumption 2.2. About the scale factor G

G(0) > 0, G′(t) > 0. (2.31)

Assumption 2.3. About the initial condition of the Cauchy problem

f0 ≥ 0 a.e. in R
3 × R

3,
∫ ∫

R3×R3
f0

(

v0
0 + v0

0|x|2 + v0
0|v|2 + log f0

)

dxdv < ∞.
(2.32)

3 Formulation of solutions of RBE

Now we define three formulations of solution to the RBE useful below.

Definition 3.1. A nonnegative function f ∈ L1
loc([0;+∞[×R

3 ×R
3) satisfying RBE (2.14)

in the distribution sense is called a distributional solution to RBE (2.14).

Definition 3.2. If a nonnegative function f belongs to L1
loc([0,+∞[×R

3 × R
3) and u =

ln(1 + f ) solves

∂tu +
1

G2
v̂∂xu =

1

1 + f
Q( f , f )

in the distribution sense, where

1

1 + f
Q±( f , f ) ∈ L1

loc([0,+∞[×R
3 × R

3),

then f is called a renormalized solution of RBE (2.14).

Definition 3.3. A function f is called a mild solution of the RBE (2.14) if f is a nonnegative
function which belongs to L1

loc([0;+∞[×R
3 × R

3) and for almost (x, v) ∈ R
3 × R

3,

Q( f , f )♯(t, x, v) ∈ L1
loc([0, T[×R

3 × R
3), ∀ T ∈]0,+∞[,

and

f ♯(t, x, v)− f ♯(s, x, v) =
∫ t

s
Q( f , f )♯(µ, x, v)dµ, ∀ 0 ≤ s < t < +∞,

where h♯ denotes for any measurable function h on [0;+∞[×R
3 ×R

3 the following restriction
to characteristics:

h♯(t, x, v) = h
(

t, X(t, x, v), v
)

with

X(t, x, v) = x +

(

∫ t

0

1

G2(τ)
√

1 + |v|2G−2(τ)
dτ

)

v. (3.1)

Using the above definitions, and using DiPerna and Lions [1], we can show that
the following Theorems 3.1-3.8 hold. They show the relation between these solution
formulations.
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Theorem 3.1. A function f is a renormalized solution of RBE if f is a distributional solution
of RBE and Q±( f , f ) ∈ L1

loc([0,+∞[×R
3 × R

3).

Theorem 3.2. If a function f is a renormalized solution of the RBE, then the composition
β( f ) is a distributional solution of

∂tβ +
1

G2
∂xβ = β′( f )Q( f , f )

for all β = β(t) ∈ C1 ([0,+∞[) such that |β′(t)| ≤ C/(1 + t) for some positive constant C.

Theorem 3.3. A function f is a distributional solution of RBE if f is a renormalized solution
of RBE and Q±( f , f ) ∈ L1

loc([0,+∞[×R
3 × R

3).

Theorem 3.4. If Q∓( f , f )(t, x, v) ∈ L1
loc([0,+∞[×R

3 ×R
3) and f is a distributional solu-

tion of RBE , then f is a mild solution of RBE.

Theorem 3.5. If Q∓( f , f )(t, x, v) ∈ L1
loc([0,+∞[×R

3 × R
3), f ♯ is absolutely continuous

with respect to t for almost (x, v) ∈ R
3 × R

3 and f is a mild solution of RBE, then f is
a distributional solution of RBE.

Theorem 3.6. If f is a renormalized solution of RBE and f ♯ is absolutely continuous with
respect to t for almost (x, v) ∈ R

3 × R
3, then f is a mild solution of RBE.

Theorem 3.7. Suppose Q∓( f , f )/(1 + f ) ∈ L1
loc([0,+∞[×R

3 × R
3) and f is a mild solu-

tion of RBE, then f is a renormalized solution of RBE.

Theorem 3.8. Suppose L( f ) ∈ L1
loc(]0, T[×R

3 × Br) for all 0 < r, T < +∞. Let us write

F♯(t, x, v) =
∫ t

0
L♯( f )(τ, x, v)dτ.

Then f is a mild solution of RBE if and only if for almost (x, v)∈R
3×R

3 and 0≤ s< t<+∞

the following exponential multiplier form holds:

f ♯(t, x, v)− f ♯(s, x, v) exp
[

−
(

F♯(t)− F♯(s)
)]

=
∫ t

s
Q+( f , f )♯(τ, x, v) exp

[

−
(

F♯(t)− F♯(s)
)]

dτ.

In order to read this work, it is recommended to be aware of the methods used
in [1, 9]. The core of this method is based in two particular points: some hypothesis
and the mean average result as the one used in [1, 9]. It is important to remain this
aspect, so that one should not reproduce many results which can be found in [1, 9].
Firstly, one notices that hypothesis (2.28)-(2.30), (2.32) are similar to the one adopted
in [9]

B(g, θ) ≥ 0 a.e. z(1 + z2)B(z, θ) ∈ L1
Loc

(

(0,+∞)× S2
)

, (3.2)

1

(p0)2

∫

BR

A(g)

p0
1

d3 p1 → 0 as |p| → +∞, ∀ R ∈ (0, ∞). (3.3)

About the mean average, the following result proved in [4] will be useful.
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Lemma 3.1. Define the operator T from L1(dx ⊗ dµ(ν)) by T f =
∫

u(x, v) dµ(v), where u
is the unique solution in L1(dx ⊗ dµ(ν)) on the transport equation

u + v · ∂xu = f , x ∈ R
N, v ∈ R

N.

If K ⊂ L1(dx ⊗ dµ(ν)) is bounded and uniformly integrable, then T(K) is compact in
L1

loc(dx).

But for the use of Lemma 3.1, we need to prove that fn + Q̃n( fn, fn) is uniformly
integrable where fn is the unique solution of the approximation RBE (4.2). But this is
a classical result according to (2.30)-(2.32) and the proof made in [4, pp. 148-152].

4 Proof of Theorem 1.1

The proof of Theorem 1.1 depends on the same approximation scheme given by
DiPerna and Lions [1]. Initially the collision kernel is truncated to obtain Kn(g, θ) ∈
L∞ ∩ L1(R3, L1(S2)) such that

∫ ∫

Br×S2
|Kn(g, θ)− K(g, θ)|dvdΩ → 0 (4.1)

uniformly in {v1 : |v1| ≤ k} as n → ∞ for all r ∈ (0,+∞). Then follows the resolution
of the approximation equation

∂ f n

∂t
+

1

G2(t)
v̂ = Q̃n( fn, fn) in (0,+∞)× R

3 × R
3 with f n|t=0 = f n

0 , (4.2)

where

Qn( f , f ) =
1

G3(t)

∫

S2
dω

∫

R3
du

g
√

s

v0u0
Kn(ω, g)[ f (v′) f (u′)− f (v) f (u)], (4.3)

Q̃n( f , f ) =

(

1 +
1

n

∫

R3
f dv

)−1

Qn( fn, fn). (4.4)

On deduces from (4.3) and (2.31)

‖Q̃n(ϕ, ϕ)‖L∞([0,+∞)×R3×R3) ≤ Cn‖ϕ‖L∞([0,+∞)×R3×R3), (4.5)

‖Q̃n(ϕ, ϕ)‖L1(R3×R3) ≤ Cn‖ϕ‖L1(R3×R3), (4.6)

‖Q̃n(ϕ, ϕ)− Q̃n(ψ, ψ)‖L1(R3×R3) ≤ Cn‖ϕ − ψ‖L1(R3×R3), (4.7)

where every where Cn is nonnegative constant independent of ϕ and ψ.
By following DiPerna and Lions [1], the initial data f0 can be first truncated and

regularized to get a sequence of nonnegative functions ( f n
0 ) is an approximation

sequence of f0 obtained such that we first approximate the initial condition f0 by
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truncating it and regularizing the truncated function by convolution to obtain f̃ n
0 ∈

D (R³ × R³) such that f̃ n
0 ≥ 0 and

∫ ∫

dxdv| f0 − f̃ n
0 |(1 + |x|2 + ṽ0 + |v|2) →

n
0, (4.8)

∫ ∫

dxdv f̃ n
0 | ln f̃ n

0 | ≤ C independent of n. (4.9)

Then we set

f n
0 = f̃ n

0 +
1

n
exp−1

2
(|x|2 + |v|2 + ṽ0).

We deduce that (4.8) and (4.9) hold with f̃ n
0 replaced by f n

0 .

5 Conclusion

In this study, we have provided a construction of renormalized solution to the rela-
tivistic Boltzmann equation in a Robertson-Walker space time. This study extends the
approach proposed in [1] to a different metric of space-time. We have been obliged to
consider different assumptions in order to produce this result and dominate the math-
ematical challenge created by this procedure. It is proved that renormalized solution
is equivalent to mild solution, therefore this study gives a different approach to obtain
the result given in [9] in a different spacetime background.
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