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Abstract. This work concerns the existence and uniqueness of square-mean
pseudo almost periodic solutions of infinite class in the «-norm. The results are
obtained using analytic semigroup, fractional «-power theory and by making use
of Ba-nach fixed point theory. As a result, we obtain a generalization of the work of
Zab-sonre et al. [Partial Differential Equations and Applications: Colloquium in
Honor of Hamidou Touré, Springer, 2023] in the deterministic case, without
unbounded delay. Our results extend and complement many other important
results in the lit-erature. Finally, a concrete example is given to illustrate the
application of the main results.
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1 Introduction

In this work, we study the existence and uniqueness of square-mean (, v)-pseudo
almost periodic solutions of infinite class in the a-norm for the following stochastic
evolution differential equation:

dx(t) = [~ Ax(t) + L(x;) + f(£)]dt + g()dW(t), tER, (1.1)
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where —A : D(A) C H is the infinitesimal generator of compact analytic semigroup
(T(t))t=0 on L*(P, H). The phase space B, defined by

By,={peB: @) € D(A*) for 6 <0 and A%¢p € B}, |l¢ll.=[A%|,

is a subset of B, where A*¢ is defined by A*¢(0) = A*(¢(0)) forf €] —co,0] and Bisa
Banach space of functions mapping | — o0, 0] into L?(P, H) and satisfying some axioms
that will be presented later. A” is the fractional x-power of A that will be described
later. For every t > 0, the history function u; € B, is defined by

u(0) =u(t+0), 6¢€]—o0,0].

L is a bounded linear operator from B, into L2(P,H).

Here f : R — L?*(P,H) and g : R — L?(P, H) are two stochastic processes and
W(t) is a two-sided standard Brownian motion defined on the filtered probability
space (Q), F, P, F;) with

Fr=0{W(u) —W(v)|u,v <t}

We assume (H, |, ||) is a real separable Hilbert space and L?(P, H) is the space of all
H-valued random variables x such that

Ellx| = [ |x|PdP < oo.
@]

Recall that stochastic modeling is crucial to many fields such as physics, engineer-
ing, economics, and social sciences. To this end, stochastic differential systems have
been the subject of much research in recent years. Researchers are increasingly inter-
ested in the above mentioned quantitative and qualitative aspects of stochastic differ-
ential systems, such as existence, uniqueness, and stability. To this end, some recent
contributions have been made concerning square-mean pseudo almost periodic for
abstract differential equations similar to Eq. (1.1), see, for example, [4, 5, 9] and the
references therein.

The aim of this work is to extend the results obtained by Zabsonre et al. [18], whose
authors studied the Eq. (1.1) in the deterministic case. Note that some recent con-
tributions have been made. For example, in [10], the authors studied the equation
without operator L. They introduced a new concept of square-mean pseudo-almost
periodic and automorphic processes using measure theory. They used the p-ergodic
process to define the spaces of  pseudo almost periodic and automorphic processes in
the square-mean sense. Moreover, they established many interesting results on these
spaces, such as completeness and composition theorems. Then they studied the exis-
tence, the uniqueness and the stability of the square-mean y-pseudo almost periodic
and automorphic solutions of the stochastic evolution equation.

Recently, in [17], the authors, studied the existence and the uniqueness of the
square-mean (p, v)-pseudo almost periodic solutions of infinite class for the stochastic
evolution equation. However, to the best of the authors knowledge, the existence of
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square-mean (y, v)- pseudo almost periodic solutions of infinite class in the a-norm of
the Eq. (1.1) remains untreated in the literature, which is the main motivation of this
paper.

This paper is organized as follows. In Section 2, we recall some preliminary re-
sults about analytic semigroup and fractional power associated to its generator, in
Section 3, we give the spectral decomposition of the phase space, in Section 4, we
study the square-mean (y,v)-ergodic process of infinite class, in Section 5 we study
square-mean (p,v)-pseudo almost periodic process, in Section 6, we discuss the ex-
istence and uniqueness of the square-mean (y, v)-pseudo almost periodic solution of
infinite class. The last section is devoted to an application.

2 Analytic semigroup

Let (L?(P,H), || - ||) be a Banach space, let a be a constant such that 0 < a < 1 and
let — A be the infinitesimal generator of a bounded analytic semigroup of linear oper-
ator (T(t))¢=0 on L2(P, H). We assume without loss of generality that 0 € p(A). Note
that if the assumption 0 € p(A) is not satisfied, one can substitute the operator A by
the operator (A — ¢I) with ¢ large enough such that 0 € p(A — ¢I). This allows us
to define the fractional power A* for 0 < o < 1, as a closed linear invertible operator
with domain D(A*) dense in L?(P, H). The closeness of A% implies that D(A%), en-
dowed with the graph norm of A%, |x| = ||x|| + ||A%x||, is a Banach space. Since A" is
invertible, its graph norm | - | is equivalent to the norm |x|, = ||A%x||. Thus, D(A%)
equipped with the norm | - |4, is a Banach space, which we denote by Lz(P, Hy).

(Hp): The operator —A is the infinitesimal generator of an analytic semigroup
(T(t))t=0 on Banach space X. Moreover, we assume that 0 € p(A).

Proposition 2.1 ([14]). Let 0 < a < 1 and assume that (Hy) hold. The following properties
hold:

i) T(t): L2(P,H) — D(A¥®) for every t > 0.
ii) T(t)A%x = A*T(t)x for every x € D(A*) and t > 0.
iii) Forevery t > 0, A*T(t) is bounded on X and there exist M, > 0 and w > 0 such that

|AYT(t)]| < Mye @', t>0.

iv) If0 < a < B < 1, then D(AP) < D(A").
v) There exists N, > 0 such that

I(T(t) — DA™ < Nat®, > 0.



77 D. Mbainadji, T. Cyrille Mbainaissem and I. Zabsonre
Recall that A™* is given by the following formula:

—u 1 e a—1

where the integral converges in the uniform operator topology for every a > 0. Con-
sequently, if T(f) is compact for each t > 0, then A™* is compact.

3 Spectral decomposition

In this work, we assume that the state space (B, |.|g) is a normed linear space of func-
tions mapping | — o0, 0] into X and satisfying the following fundamental axioms.

(A1) There exist a positive constant H and functions K(.), M(.) : R™ — R, with K
continuous and M locally bounded such that forany ¢ € Randa > 0,if u :] — o0, a] —
L*(P,H), u, € B, and u(.) is continuous on [, o + 4], then for every t € [c,a] the
following conditions hold:

(i) ut € B,
(i) |u(t)| < Hl|ut|, which is equivalent to |¢(0)| < H|¢|p for every ¢ € B,
(i) [is] < K(t— 0) supy o [1(5)] + Mt — )1t s

(Ay) For the function u(.) in (A1),t +— u; is a B-valued continuous function for
t€lo,0+al.

(B) The space B is a Banach space.
We make the following assumption:

(Hy) A=%¢ € Bfor ¢ € B, the function A™*¢ is defined by

(A7) (0) = A™"¢(6).
Consequently, we get the following result.

Lemma 3.1 ([11]). Assume that (Hy) and (Hy) hold. If B satisfies axioms (Aq), (Az)
and (B). Then B, satisfies axioms (A1), (Az) and (B).

(A1) Ifu :] — 00,a] — L?(P, Hy) is continuous on [0, a) with x, € By, for some o < a,
then for all t € [0, a]:

(Z) Uy € Ba/
(ii) ||u(t)||a < H||ut||lo, which is equivalent to ||¢(0)||« < H||@||a for every ¢ € By,

(i) el < K(t = 0) supy o [1(5) o+ Mt = 0) [t
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(Ay) For the function u(.) in (A1), t — uy is By-valued continuous function for t €
[, 0+ al.

(B) The space B, is a Banach space.
We suppose that the phase space B satisfies the following axiom:

(C1) If (@n)n>0 is the Cauchy sequence in B such that ¢, — 0in Basn — +oo,
then, (¢,(0))n>0 converges to 0 in X.

Let C(] — o0,0], L2(P, H)) be the space of continuous functions from | — o0, 0] into
L%(P, H). We suppose the following assumptions hold:

(Cp) B C C(] —0,0],L2(P,H)),

(C3) there exists A9 € R such that for all A € C with Re A > Ag and x € L2(P, H)
we have e*x € B, and

A
Koy = sup le”x|5 < 00,
ReA>Ag, xeL2(P,H), | x|
x#0

where (e}x)(0) = e"x for § €] — 0,0] and x € L*(P, H).
To Eq. (1.1), we associate the following initial value problem:

d
{dtu(t) = —Au(t) +L(u) + f(t), t>0, (3.1)
Up =@ € By,

where f : R" — X is a continuous function. For each + > 0, we define the linear
operator U (t) on B, by

ut) =ol., 9),
where v(., @) is the solution of the following homogeneous equation:

%v(t) = —Av(t)+ L(v), t>0,
vo = @ € By

Proposition 3.1 ([3]). Assume that B satisfies (A1), (Az),(B),(C1) and (Cy), then the
generator Ay of (U(t))¢>o is defined on B, by

D(Ay) = {9 €Bu, ¢'€ By, 9(0) €D(A), (0)' € D(A) and ¢(0)'= — Ap(0)+L(¢p) },
Aup = ¢’ € D(Ay).
Then Ay, is the infinitesimal generator of the semigroup (U(t)); > 0 on B,.

Let (Xo) be the space defined by (Xy) = {Xoc : ¢ € L%(P,H)}, where the func-
tion Xoc is defined by

0, if 6€]—o0,0]

(Xoc)(8) = {c if 9=0.



79 D. Mbainadji, T. Cyrille Mbainaissem and I. Zabsonre

The space B, @ (Xo) endowed with the norm
19+ Xoclla = ll9lla + llcll,  (¢,¢) € Ba x L*(P, H)
is Banach space. Consider the extension Ay of Ay defined on B, @ (Xo) by
D(Ay) = {¢ € B, 9(0) € D(A) @’(0) € D(A) and ¢(0)' € D(A)},
Aug = ¢'+ Xo(— Ag(0) + L(g) — 9(0)").

Lemma 3.2 ([2]). Assume that B satisfies (A1), (Az), (B), (C1), and (Cz), and (Hy) hold.
Then Ay satisfies the Hile-Yosida condition on B, @ (Xo) there exist M > 0,& € R such
that |@, +00[C p(Ay) and

(AL = Ay) ™|, < ~), neN, A>a@.

Let Coo be the space of X-valued continuous function on | — oo, 0] with compact
support. We assume that

(D) If ¢ is a Cauchy sequence in B and converges compactly to ¢ on | — o0, 0], then
(pEBand|gon—(p| — 0.

Proposition 3.2 ([3]). The family (U(t))s>o is a strongly semigroup on By, that is
(i) U(0) =1,
(ii)) U(t+s) =U(t)U(s) fort,s >0,
(iii) forall ¢ € By, U(t)(¢) is a continuous function of t > 0 with values in By,

(iv) U(t) satisfies the translation property, that is for t > 0 and 6 < 0, one has

(U(t+6)(9))(0), t+6>0,

(U (9))(0) = {Q(H@), t+0<0.

For ¢ € B and 6 < 0, we define the linear operator W by

[0, if t+62>0,
[(W(t)el(0) = {go(t+9), if t+0<0.

(W(t))s=0 is exactly the solution semigroup associated to the following equation:

d
Eu(t) =0,
up = 0.

Let Wo(t) = W(t) 5, where B:={¢pcB:¢p0) =0}
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Definition 3.1 ([3]). B is called a uniform fading memory space if it satisfies axioms B satisfies
(A1), (Az),(B),(Cy)and (Cz), (D) and |Wy(t)|| — Oas t — +o0.

Lemma 3.3 ([13]). If B is uniform fading memory space, then we can choose the function K()
and the function M(-) such that M(t) — 0as t — +oo.

Proposition 3.3 ([13]). If the phase space B is a fading memory space, then the space
BC(] — o0,0], L?(P, H)] of bounded continuous L*(P, H)-valued functions on | — o0, 0] en-
dowed with the uniform norm topology is continuously embedded in B. In particular B satis-
ﬁES (C3)f01’ Ag > 0.

Definition 3.2 ([2]). We say a semigroup (U(t))s>o is hyperbolic if
o(Ay)NiR = @.

We make the following assumption.
(H,) T(t) is compact on L2(P, H) for each t > 0.

We have the following result on the spectral decomposition of the phase space B,.

Theorem 3.1 ([11]). Assume that (Hy), (H1) and (Hy) hold and the semigroup (U(t))s>0
is hyperbolic. Suppose that B is a uniform fading memory space. Then B, is decomposed as
a direct sum

Ba =S5 eV

of two U (t) invariant closed subspaces S and U such that the restriction of (U(t))=0 on U is
a group and there exist positive constants M and w such that

()l < Me™|plla, t=0, @E€S,
(Dol < M @lle, t<0, @eU,

where S and U are called respectively the stable and unstable space, I1° and IT* denote respec-
tively the projection operator on S and U.

4 Square mean (u,v)-ergodic process of infinite class
In the following N denotes the Lebesgue o-field of R, M the set of all positive mea-

sures p on N satisfying u(R) = +o0 and p([a,b]) < oo foralla,b € R (a < b). Let
L?(P, H) is a Hilbert space endowed with the following norm:

1

2

= 2dp> :
Il = ()

Definition 4.1 ([10]). Let x : R — L?(P, H) be a stochastic process.
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1. x said to be stochastically bounded in square-mean sense, if there exists M > 0 such that

E|x(t)]|* <M, VteR.

2. x said to be stochastically continuous in square-mean sense if

ltim]EHx(t) —x(s)|> <M, VtseR.
—S

Denote by SBC(IR, L?(P, H)) the space of all the stochastically bounded continuous
processes.

Remark 4.1 ([10]). (SBC(R,L?*(Q), H)),| - |l«) is a Banach space, where
1
1x]|co = sup (E(||x(t)[1?)) .
teR

Definition 4.2. Let u,v € M. A stochastic process f is said to be a-(p, v)-ergodic in square-
mean sense, if f € BC(R, L?(P, H,)) and satisfies

1 T
lim ————— [ E|f(t)|>du(t) = 0.
Jim ey [ EIAO12du)
We denote by & (IR, L?(P, H,), 1, v), the space of all such process.

Definition 4.3. Let yu,v € M. A stochastic process f is said to be a-(u, v)-ergodic of infinite
class in square-mean sense, if f € BC(RR, L%(P, H,)) and satisfies

tim o [ sup E|f()]3du(t) =0.

4o V([=T,T]) St pe) ooy

We denote by &' (IR, L*(P,H,), u,v,), the space of all such process. For y € M
and a € R, we denote y, the positive measure on (R, ') defined by

Ha(A) =u(la+b:beA]), AeN. (4.1)

From y,v € M, we formulate the following hypotheses for our results.

(Hy) Let pt, v € M be such that

limsupM =04 < oo.

T—+00 V( [_T/ T])

(H3) Forall a,b and ¢ € Rsuch that 0 < a < b < ¢, there exist §y and &g > 0 such
that
6] > 00 = wu(a+6,b+06) > aou(d,c+9).

(Hy) For all T € R there exist > 0 and a bounded interval I such that

n{a+7t:a€ A}) < Bu(A),
when A € A and satisfies AN = &.
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Proposition 4.1. Assume that (Hy) holds. Then space & (R, L?*(P, Hy), 1, v, ) endowed
with uniform topology norm is a Banach space.

Proof. Note that &(R, L?(P, Hy), , v, ) is a vector subspace of SBC(R; L?(P, H,)).
To complete the proof, it is enough to prove that &(RR; L*(P,H,),u,v,) is closed
in SBC(R,L?(P,H,)). Let (f,4), be a sequence in &(R,L?*(P, H,), 1, v, ) such that
lim, 1o fn = f uniformly in R. From v(R) = +o9, it follows v([—7,7]) > 0 for T
sufficiently large. Let

£ 1% = sup E[ f()]I3,
teR

and ng € IN such that all n > ny, we have

sy [ (e s ey

<o [ (s 1E||fn(9)—f(9)lli>dﬂ(t)

f€]—o0,t]

)
1
T 0€]—o0,t]

/\
\

+

ol
7N
Oy
i=hael
o
§_~

\_/\_/\_/

[
_:

fe]—oo,t]
<1 e x BT
EEERYLT :
e A G T L

which implies that
1 +1 )
=) /_T <ees}1lglt]]E]f(9)H“>dy(t) <de, Ve>0.
The proof is complete. O

The following theorem is a characterization of square-mean a-(y, v)-ergodic pro-
cesses.

Theorem 4.1. Assume that (Hy) holds and let y,v € M and I be a bounded interval (even-
tually I = ). Assume that f € BC(R, L?(P, H,)). The following assertions are equivalent:

(i) f € &(R,L*(P,Hy), 4, v, ).

1
(i) lim —— ( E i)d b = 0.
i) lim /[ L sup EIFOIR )auct)

=+ v([—T, 7] \ I) 0€]—oco,t]
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i) Ve ot PUELTTINIEIFG)E > o)

5400 v([—T, 7]\ I) =0

Proof. The proof uses the same arguments of the proof of [8, Theorem 2.22].
(i) & (ii). Denote by

A=u, 8= [( s ELSOIR i)

oot]

Since the interval I is bounded and the process f is stochastically bounded continuous,
A and B are finite. For T > O such that I C [—7, 7] and v([—7, 7] \ I) > 0, we have

T T e <9§“}Zf”f (OIF Jan)
- /.. (Bes]ggﬂmnf<9>||§)du<t> =

v([—1,7]) B

1
= o) A T e (Q“Ef’f @1 Jantt) ~ =

From above equalities and the fact v(R) = +o0, we deduce (ii) is equivalent to

im ey (sup EIFO)IE )au) =

tte v([-T, 7)) fe]—oo,1]
that (7).
(iii) = (ii). Denote by A% and B% the following sets:

A = {t et \I: sup E|fO) > }

0€]—o0,t]

Bt = {t c[-t,7]\I: sup E|f(0)]> < e}.

f€]—o0,t]
Assume that (ii) holds, that is

M), (4.2)

From the equality
[ (sw O )dnce)
=27\ \ ge]—oo

=/, <9:]“E,t“f 0P )aute) + [ ( sup ENF@)2 ) du()

oot]
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we deduce that for 7 sufficient large,

e /[W( sup 1E||f(9)||§>du(t)

f€]—o0,t]

H(A2) p(B7)
< Wllsw > e av D o, an D)

Since #(R) = v(R) = oo and by using (Hj) then for all ¢ > 0, we have

m/[_mm( sup 1E||f(9)||§>dy(t)§5e.

0€]—o0,t]

Consequently, (ii) holds.
(if) = (iii).

/mrw( sup ]EHf(Q)M)dy(t)Z/Ag( sup JEHf(e)Hi)dy(t),

0€]—oo,t] f€]—o0,t]
€

1 su 2 n(A9)
v([-7, 7]\ I) /[—T,T]\I <9€]Elt}1EHf(9)H“>dy(t) = EV([—T, T\ 1)’

1 N ) u(A2)
AT o < p Ellf (9”'“)‘”‘“) SR (EEEAY)

f€]—o0,t]

for 7 sufficiently large, we obtain Eq. (4.2), that is (iii). O

Definition 4.4. Let f € SBC(R,L?*(P,H,)) and T € R. We denote by f, the function
defined by f.(t) = f(t+7) for t € R. A subset F of SBC(R,L*(P, H,)) is said to be
translation invariant if for all f € F, we have fr € # forall T € R.

Definition 4.5. Let yy, po € M. We say that y is equivalent to yy, denoting this as py ~ ya
if there exist constants « and B > 0 and a bounded interval I (eventually I = &) such that
apr(A) < up(A) < Bur(A), when A € N satisfies ANT = .

Remark 4.2. The relation ~ is an equivalence relation on M.

Theorem 4.2. Let piq,v1, pp,v2 € M. If py ~ pp and vy ~ vy, then
g(R/ Lz(Pl Hoc)/ ,ullvlloo) = g(R/ Lz(Pl Hoc)/ Ha, V2, OO)

Proof. Since p1 ~ pp and v ~ 15, there exists some constants a1, a2, B1, f2 > 0 and
a bounded interval I (eventually I = @) such that aqp1(A) < p2(A) < B1p2(A) and
a1 (A) < 1p(A) < By (A) for each A € N satisfiess AN = g, i.e.
1 1 1
< < .
Bavi(A) ~ 12(A) T aovi(A)
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Since 1 ~ pp and N is the Lebesgue o-field for T sufficiently large,

arp ({t € [~7, T\ I : supye) o E[If(O)IZ > €})
Bapa([—7, 7]\ I)
- pa({t € [=7, 7]\ I : supye) o 4 EIf(O)[7 > €})
- (-7, 7]\ 1)
_ B ({t € [—7, 7]\ I : supye)_oo g ElF(O)IIT > €})
- wov([—T, 7]\ 1)

By using Theorem 4.1, we deduce that

&(R,L*(P, Hy), p1,11,0) = (R, L*(P, Hy), p2, V2, ).
Let u,v € M, we denote
c(pu,v) ={wr, @2 € M :yuy ~ g, v1 ~12}.
The proof is complete. n
Lemma 4.1 ([7]). Let uy € M satisfy (Hy). Then for all T € R the measures y and pi, are
equivalent.
Lemma 4.2 ([7]). (Hy) implies

Vo >0, limsup pl=t -0, +0]) < oo,

i V(=TT

Theorem 4.3. Assume that (Hy) holds. Then & (R, L?(P, Hy), i, v, o) is invariant by trans-
lation.

Proof. The proof is inspired by [6, Theorem 3.5]. Let f € & (IR, L2(P,Hy), u,v,7)
and a € R. Since V(R) = +o0, there exists ag > 0 such that v([—7 — |a|, T + |a|]) > 0
for |a| > ap. Denote

1 T
Mo(T) = -y / <(,j]“};ﬂE||f<9>||§)dua<t>, V>0, a€R,

where v, is the positive measure define by Eq. (4.1). By using Lemma 4.1, it follows
that v and v, are equivalent, y and y, are equivalent and by Theorem 4.2, we have

(Dp(]RI LZ(P’ Hzx)/ ,ua/Va/ OO) = g(]RI LZ(PI HD()/ ,u/ V/ OO),

therefore, f € &(IR, L?(P, Hy), tta, Va, 7) that is lim;_, y oo M, (7) = O for all a € RR. For all
A € N, we denote x4 the characteristic function of A. By using definition of the y,,
we obtain

/[_m] xa(t)duy(t) = /[_T’T] xa(B)duy(t+a) = / xa(B)dua(t).

[—T+a,T+4]
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Since t > SUPpe)_o g E||f(0)|? is the pointwise limit of an increasing sequence of
function (see [19, Theorem 1.17]), we deduce that

[ sup ElF@)Edn(t) = | sup E|[£(6) ().
71 ge]—cor] [~t+a,744] ge]—cot—a]

We denote a* = max(a,0) and a~ = max(—4,0). Then we have |a| +a = 2at,
la| —a = 2a~ and [-T+a — |a|, T +a+|a|]] = [-T —2a~,7T + 2a"]. Therefore, we
obtain

Mo+ ) = s . sup  E|lf(0)Rdp(t). (43)

T—2a",T420%] ge]—oo,t—q

From (4.3) and the following inequality:

V([_lim]) /{m sup E|£(0)2du(t)

—oo,t—a]
1
< E| f(0)2du(t),
ey 2 ElFORdu(y
we obtain
1 / 2
i S sup E|f(0)zdu(t
e Jan o5 BV (o)
v([-t—2a",T42a"))
= X My(T + |a).
=, 7)) (T + [a])
This implies that

T ey BVt

—o00,t—a]
v([—T —2|a|, T +2|a|])
v([=7 1)

From Egs. (4.3) and (4.4), and using Lemma 4.2, we deduce that

< X My(T + |a]). (4.4)

m /[r,r} sup IEHf(G)Hidy(t) =0,

0€]—o0,t—a]
which equivalent to

1 / 5
S — sup E|f(0—a)|2du(t) =0,
e Jom o200, EVE o) )

thatis f, € &(R, L?(P, Hy), 1, v,00). We have proved that f € &(R, L*(P, H,), 4, v, )
then f_, € &(R,L?*(P, Hy), 4,v,) forall a € R, which means & (R, L>(P, H,), 4, v, )
invariant by translation. O
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5 Square mean (y,v)-pseudo almost periodic process

In this section, we define (j, v)-pseudo almost periodic and we study their basic prop-
erties.

Definition 5.1. A continuous process f : R — Lz(P, H,) is said to be a-square-mean almost
periodic process, if for each € > 0 there exists I > 0 such that for all B € R, there exists
T € [B, B+ 1] with

Sup (£ +7) — (1) < G.1)

We denote the space of all such stochastic processes by SAP(R, L*(P, Hy)).

Theorem 5.1 ([10]). The space SAP(RR, L?(P, H)) endowed with the norm ||.||c is a Banach
space.

Definition 5.2. Let u,v € M. A continuous process f : R — L*(P, H,) is said to be
a-(p, v)-square-mean pseudo almost periodic process if it can decomposed as follows:

f=8+¢,

where g € SAP(R,L*(P,H,)) and ¢ € &(R, L2(P, Hy), i, v). We denote the space of such
stochastic processes by SPAP(R, L?(P, Hy), i, v).

Proposition 5.1. Assume that (Hg) holds. Then the decomposition of a-(u, v)-pseudo almost
periodic function in the form ¢ = ¢1 + ¢2, where p1 € AP(R, X,,) and ¢ € E(R, Xy, y, )
is unique.

Remark 5.1. Let X = L?(P, H,). Then the Proposition 5.1 always holds.

Definition 5.3. Let u,v € M. A continuous process f : R — L*(P,H,) is said to be
a-(p, v)-square-mean pseudo almost periodic process of infinite class if it can decomposed as
follows:

f=8+¢,

where ¢ € SAP(R,L?*(P,H,)) and ¢ € &(R,L*(P,H),, 1t,v,). We denote the space of
such stochastic processes by SPAP(R, L?(P, Hy), i, v, o).

Proposition 5.2. Assume that (Hs) holds. Then the decomposition of a-(u, v)-pseudo almost
periodic process of infinite class in the form ¢ = ¢1 + ¢, where ¢y € SAP(R,L*(P, H,))
and ¢» € &(R,L*(P, Hy), u,v, ) is unique.

Proposition 5.3. Let pq, pp, vy and vo € M. If py ~ pp and vy ~ vy, then
SPAP(R, L*(P, Hy), pi1,v1,00) = SPAP(R, L*(P, Hy), ia, V2, 0).

Proof. This proposition is just a consequence of Theorem 4.2. O
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Theorem 5.2. Assume that (Hz) holds . Let u,ve M and €SPAP(R, L*(P, Hy), 1, v, ),
then t — ¢ belongs to SPAP(By, u, v, ).

Proof. Assume that ¢ = ¢ + h, where
g € SAP(R,L*(P,H,)), he &(R,L*(P,Hy),u,v,00).

Then we can see that ¢ = g; + h; and g; is square mean almost periodic process. Let
us denote

1 T
Mazif sup E|[h(0)2du(t),
i ee[tiﬂ 17(6) ||z dpa(t)

where y, and v, are the positive measures defined by Eq. (4.1). By using Lemma 4.1,
it follows that y and y, are equivalent, v and v, are equivalent by using Theorem 4.2,

(g}(R/ L2(PI Hzx)/ V/V/ OO) == g(]RI LZ(P’ Hzx)/ ,ua/Varoo)'

Therefore, f € &(R, L?(P, Hy), fta, Va, o) that is lim;_,e M,(7) = 0 for alla € R. On
the other hand for T > 0, we have

1 /T sup < sup 1E||h(9+§)||i>dﬂ(t)

V(=7 1)) -t ) o

0€]—00,0]

< m /TT <eesf_lg,t]lEHh(e)H%‘>dy(t)
<=/ <9€}s30;-”]£|\h<9>||§ +ges}ugﬂlauh<e>||i)du<t>
< ey (s Bty

+ ﬁ /TT (ees]l_lg’t]EHh@)IIi)dV(f)
< ey (e EHOE auty

+ ﬁ /TT (ees]l_lg’t]EHh@)IIi)dV(f)
<smeap (e B Jante

t o S (e @ ey

SV([_VE[::::JVD<V([—r—1r,r+r])/—rr—r< sup ]E||h(9)||§>dy(t+r)>

6] —oo,t]



89 D. Mbainadji, T. Cyrille Mbainaissem and I. Zabsonre

: /( sup E[[(0)3)du(1).

V(=T 1)) J=r \ g0

Consequently,

1 /T sup < sup 1E||h(9+(?)”§>dy(t)

V(= 1)) -t ) o1 \ be) -0

v([-t—r,T+7]) . 1 T “u )
<SS+ gy [ (o, BRI Janc)

which shows using Lemmas 4.1 and 4.2 that ¢; belongs to SPAP(B,, ,v, ). Thus,
we obtain the desired result. O

Definition 5.4 ([10]). Let f : R x L?(P,H,) — L*(P, H,), (t,x) — f(t,x) be continuous
stochastic process. f is said a-square-mean in t € R uniformly in x € L*(P,H) if for all
compact K of L>(P, H) and for any ¢ > 0 there exists (¢, K) such that for all B € R, there
exists T € [B, B + (g, K)] with

x€K, supE|f(t+7,x)—f(tx)|2 <e
teR

We denote the following space of stochastic processes by SAP(R x L?*(P, H,), L*(P, Hy)).

Definition 5.5. Let y,v € M. A continuous stochastic process f : R x L2(P,H,) —

L%(P, H,) is said to be square-mean a-(p, v)-pseudo almost periodic if it can be written as
f=8+¢

where g € SAP(R x L*(P,H,)) and ¢ € &(R x L2(P, H,), ,v). We denote the following

space of stochastic processes by SPAP(R x L2(P, H,), L*(P, Hy), i, v).

Definition 5.6. Let u,v € M. A continuous function f : R x L?(P,H,) — L?>(P, Hy) is

said to be square-mean «-(p, v)-pseudo almost periodic of infinite class if it can be written as
f=8+t¢

where ¢ € SAP(R x L2(P,H,)) and ¢ € &(R x L?(P, Hy), i, v, 00). We denote the follow-

ing space of stochastic processes by SPAP(R x L2(P, H,), L?(P, Hy), i, v, o).

Next, we study the composition of square-mean a-(y, v) pseudo almost periodic
processes of infinite class.
Theorem 5.3 ([10]). Let f : R x L?(P,H,) — L?>(P,H), (t,x) — f(t,x) be square mean
almost periodic process in t € R uniformly in x € L?>(P,H,). Suppose that f satisfies the
Lipschitz condition in the following sense:

E|[f(t,x) = f(t. Iz < LE|x - yI3

for all x,y € L*(P,H,) and each t € R, where L is independent of t. Then f(t,x(t)) €
SAP(R,L*(P,H,)) for any x € SAP(R, L?(P, H)).



Pseudo Almost Periodic Solutions of Infinite Class in the a-norm 90

Theorem 5.4. Let y,v € M,p = ¢+ ¢» € SPAP(R x L?>(P,H,), u,v,0), where
¢1 € SPAP(R x L*(P,Hy),L2(P, H)) and ¢» € &(P(R x L2(P, Hy), L2(P, H), 1, v, o)
and h € SPAP(R, L?(P,H), u,v, ). Assume:

(i) ¢1(t, x) is uniformly continuous on any bounded subset uniformly for t € R,

(ii) there exists a nonnegative function Ly € LF(R), (1 < p < +o0) such that

Ellp(t, v1) — p(t, )| < Ly(E|xi — ]2, WEER, Vi, x € L3(P,H,). (52)

If

. 1 v
7= I ) L, (@) < =3

then the function t — ¢(t, h(t)) belongs to SPAP(RR, L2(P,Hy), u,v,).
To prove this theorem, we need the following lemma.

Lemma 5.1. Assume that (H3) holds and let f € SBC(R, L?(P, H)). Then
f € &(R,L*(P, Ha), p,v,00),

if and only if
lim #(Mze(f)) —0
t—+eo v([—7,T]) ’
where

Meo(f) = { -t sup E[fO)]2 > }

6] —o0,t]

Proof. Assume that f € &(R, L?(P, Hy), 1, v, 7). Then

— [ sup EIF(O)Ran()

V(=7 1) =t 4 oo
1

= _ sup E|f(0)|2du(t
T /Mm(f)eq_gﬂ LF(O) 12du(t)

T gy S0 EIFO) )

fe]—o0,t]

Vv

m /M”(f sup E|[f(0)2du(t)

0€]—o0,t]

Consequently,
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Suppose that f € SBC(R; L*(P, H,))) such that for any & > 0,

lim P‘(MT,S(J[)) _

=+e0 V([—T, 7))

Assume that E||f(¢)||2 < N for all t € R, then using (H3), it follows that

ﬁ /_” sup E|£(6)[2du(t)

T fe]—oo,t]
1 / ,
= T sup E|f(0)]|2du(t
V=, T) IMeet) ooy 1£ () lldp(t)
1
Y= / sup E||f(0)|3du(t
([ 7,1)) [Tﬂ\Mwuee]_ﬂ,ﬂ 1f (O)ladtpe(£)

/\
5\

| /\

Consequently,

1 +T
fim 7/ sup E[|f(6)2du(t) < de, Ve > 0.
SR v(n ) S o F, £ (@) I[adp(t)

Therefore f € &(R, L2(P, Hy), i, v, ). O
Next, the proof of Theorem 5.4.

Proof of Theorem 5.4. Assume that ¢ = ¢; + ¢, h = hy + hp, where

¢1 € SAP(R x L*(P,H,),L*(P,Hy)), ¢» € &(R x L*(P,Hy),L*(P,Hy, p,v,0)),
hy € SAP(R,L*(P, Hy,)), hy € &(R,L*(P, Hy), p,v,00).

Consider

(th(t)) =pr(Eh(t) + [p(th(t) — (L hi(t)] + P2 (t i (2)).

Using Theorem 5.3, we have t — ¢(t,h1(t)) € SAP(R x L?>(P,H,),L*(P,H,)). To
complete the proof its suffices to show that t — [¢(t, h(t)) — ¢(t, hi(t))] and t —
¢2(t, hy(t)) belong to &(R x L2(P,H,),L*(P,Hy), 1, v,00). Clearly ¢ [p(t, h(t)) —
¢(t,h1(t))] is bounded and continuous. Assume that

E|¢(th(t) — ¢(th(t)|2 <N, VieR.
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Since, h(t) and hy(t) are bounded, we can choose a bounded subset B C R such that
h(R),h1(R) C B. Under assumption (ii), for given ¢ > 0 such that E|[x; — x|? < ¢,
implies that

Ellg(t 1) — g(t,32) |2 < eLy(t), VieR,
Since for § € &(R, L?(P, Hy), i, v,00), Lemma 5.1 yields that

lim H (MzS,r (5))

=+ V([—7,T]) =0

Consequently,

e /o (sup Elloe.he) —p(em ()] )ant)

fe]—oo,t]
B u([—lr,r])/f,s(a) (aeﬁggt}muq)w'h(m) ?(0 @), >
1 2
D e (2, @) —ote @) Janto
N I3
< T o O T e <9§]‘3}Z,ﬂ La(0)] ety
N €
< ST 7D o™ T s (é“ﬁ,ﬂ L4(0) ) ()
Np(Mee(9)) €
(e (= B A <9§‘31i,ﬂ La(0)] )t

It follows that

lim é/_z< sup E||¢(6,h(0)) —p(6,h1(0))]| > ) <ed, Ve>0.

T+ V([—T, T]) fe(t—rt]

Consequently, t — [¢p(t, h(t)) — ¢p(t, h1(t))] is (4, v)-ergodic of infinite class. Now, we
will prove that t — ¢ (t,h1(t)) is (i, v)-ergodic of infinite class. Since ¢, is uniformly
continuous on compact set QO = {h;(t) : t € R} which the respect to the second vari-
able x, then for given &€ > 0, there exists § > 0 such that for all §; and ¢, € (), one has
E||& — &]|* < 4, implies

El|ga(t,1(6)) — g2 (1, &(0)|[; < e
Therefore, there exist n(¢) and {zi}?:(i) C Q) such that
n(e)

QC U B(s(zi,(S),
i=1
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and then ©
nie
2
E|lg2(t (1)), < e+ Y Ellga(tz) |-
i=1
Moreover,
1 T
Vie {1,2,...,n(e)}, lim 7/ sup [E||¢2(6,2)]2du(t) =0,
{ ( )} T too V([—T,T]) 71_96]_5),“ H(PZ( )Ha V()
then . .
Ve >0, limsu 7/ sup E 0,h(0 2 du(t < g,
T%+oop V([_T/T]) _796}72,1&] H(PZ( l( ))Ha ‘u()
that implies
1 T 2
lim 7/ sup E 0,h(60 du(t) <e.
T—+400 V([—T,T]) —T@e]_glﬂ H(PZ( 1( ))H‘X V()
Consequently t — ¢a(t, hy(t)) is (u, v)-ergodic of infinite class. O

6 Square-mean (1, v)-pseudo almost periodic process
of infinite class

Lemma 6.1 (Ito’s Isometry, [15]). Let W : [0, T] x Q3 — R denote the canonical real-valued
Wiener process defined up to time T > 0 and let X : [0, T] x Q0 — R be a stochastic process
that is adapted to the natural filtration FV of the Wiener process. Then

IEK/OTXtth>2] :]E[/OTXtZdt],

where IE denotes expectation with respect to classical Wiener measure.
We make the following assumption.
(Hs) g is a stochastically bounded process.

Theorem 6.1. Assume that (Hy), (Hy) and (Hs) hold and the semigroup (U (t))¢>o is hy-
perbolic. If f is bounded on R, then there exists a unique bounded solution u of Eq. (1.1) on R,
given by

t ~
Uy = AETOO . U (t —s)IT° (BaXof(s))ds
t ~
+ ALITOO oo Uu (t — S)H (BAX()f(S))dS
t ~
+ AETm . U°(t — s)IT°(ByXog(s))dW(s)
t ~
+ lim U"(t —s)IT*(ByXog(s))dW(s),
A—+o00 J 400
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where
By=AAI—Ay)Y, A>@,

IT° and IT* are projections of C, onto the stable and unstable subspaces respectively.

Proof. Let
t ~
uy = o(t) + Alim U°(t — s)IT°(ByXog(s))dW(s)
——4+00.J—c0
t ~
+ lim U"(t — s)IT* (B Xog(s))dW(s),
A—+o00 J 400
where

v(t) = Alirﬂm 3 U (t — s)TTS (BAXof(s))ds

li “(t—s)IT*(ByX d

+ lim [ Ut )T (BaXof (s))ds

Let us first prove that u; exists. The existence of v(t) have proved by [1]. Now we will
show that the limit lim) , | fiool/{s(t — §)IT5(ByXog(s))dW(s) exists. For t € R and
using the Ito’s isometry property of the stochastic integral, we have

IEH/_t LS (t — $)IT (B Xog(s)) dW(s) 2

o

<]E</ Mzﬂm | (Baxog(s)) | ds>
<WE( [Pl Buxs(o) e )

P te2(ts )
<weweie e ([ G st P )

—2~h o 1o t—n+1 p—2w(t—s) 5
<arweep SE( [ sl

n=1 o (E—
<wweiep[w( [ 0Tt >||2ds)
cxe( P ]

Then, by using the Holder’s inequality, we obtain

]EH /_:ous(t—S)HS(EAXog(s))dW(s) :

4
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IN

_|_

M M2|TT]PE | g(s

)12

IN

(4w)(1-4)/2

M’ M2|TT* [2E||g (s

)12

IN

(4w)(1-4)/2

IN

M M2|TT*[2E||g(s

)12

(4w)(1-4)/2

IN

M’ M2|TT* [2E||g (s

(4w)(1-4)/2

D. Mbainadji, T. Cyrille Mbainaissem and I. Zabsonre

e—4w(t s)

MZMZIHSIZ [(/ttl mdsf X ]E(/ttl Hg(s)!|4d5>;

L

t—n+1 e*4w(t7s) % fent1 ] %
/t;n (t —s)4 ds) x < /tfn 1&(s) d5>
4w 3 +oo 4wn 3
</ ess4ads> + </ ess4ads>
0 n=2 4w(n—1)
4w %
(/ ess4“ds>
0
+oo 4wn i
+) </ e (n— 1)_4"‘(4w)_4"‘ds>
n=2> 4w(n-1)

4w %
(/ 6_55_4"‘ds>
0

+f@wn“fme%ww%f]

n=2 w(n—l)

2 4w %
)H </ ess4ads>
0

(4w)1/2

T2 1TTs |2 2 too 4wn %
L ERPEISGIE ()
= 4w(n—1)

M M[TEPE | g(s

IN

(4w)(1-4)/2

H2 4w %
/ ss4ads>
0
+

M’ M2[T1E| g (s Hz v _

—2wn

(4w)1/2

M M2[TEPE | g(s

(4w)(1-4)/2

M 1\/12|HS|21EHg(S)H2 S

(4w)1/2

Since the series Y,/ % e

]EH /_:ol/{s(t—S)HS(EAXog(s))dW(s)

—2wn

b L
([ 4w>
e

+1)2

is convergent, it follows that

2
<K, (6.1)

4
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where

M M2[TE2E|g(s) |2 [ [+ T MEMPITPE|g(s)] 2 L
/ 673574“615 + 4w_|_1 3 Z 2wn'
(4w)(1—4a)/2 0 (4w)172

Set
F(n,s,t) = U(t —s)IT° (B Xog(s)), neN, s<t.

For n sufficiently large and ¢ < t and using the Ito’s isometry property of the stochas-
tic integral, we obtain the following result:

IEH [ Umw(t — S)IT (BaXog(s))dW(s) 2

o

—D ~h o o p—4uw(t=s) 3 ¢ ] :
< MME|IT| </1 (t_s)4ad5> XE(/tlﬂg(S)H dS)
+o0 t—n+1 p—4w(t—s) 3 oc—n+1 . 3
cX ([ Gmgms) ([0 Ises)
n=2 n o—n

_2 ~ S
M M2|HS |21E Hg(s) HZ dw(t=o+1) -5 —4un —4u ?
< (G0)1—)2 <Aw(t_a) e *(t—o) " (4w) ds>

+ Z (A%” 7o e (t—oc+n— 1)_4"‘(4w)_4"‘ds>%]

w(t—o+n—1)

—2 ~ 1
MNP PR, ) < [ e ds) :
4

= (4w)172 w(t-0)
M2 ’Sﬁ I8, _ yy-2n < A4T(+ ”)1) d> %
L i
MzAZZ!(I::J;Hg(s)Hz( oy 1)3g20l-0) ;‘” 2um

< K](t o a)—2zxe—2w(t—a) _|_K28—2w(t (7),

where
-2~
M M?|IT°’E||g(s)]|? —4ay }
Kl (4w)1/2 (=%,
-2~
I TNOTY

(4w)172
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It follow that for n and m sufficiently large and ¢ < t, we have

2

IEH/:OP(n,s,t)dW(s) —/th(m,s,t)dW(s)

4

§IEH/_UOOF(n,s,t)dW(s) —|—/UtF(n,s,t)dW(s)
2

_/” F(m, s, )dW(s) —/tF(m,s,t)dW(s)

— 00

o
2

+3E

< 3]EH /;F(n,s,t)dW(s) i

‘ [ :F(m,s,t)dW(s)

o
2

+3E /,7 "E(n,s, DdW(s) — /0_ "E(m, s, )dW (s)

< 6K1(t — U)—the—wZ(t—g) + K26—2w(t—(7)

+3E /t F(n,s,t)dW(s) — /t F(m, s, t)dW(s)

Since lim;_ 4 E|| f; F(n,s, t)dW(s)|? exists, then

t 2
limsuplEH/ (n,s, t)dW(s F(m,s, t)dW(s)

n,m—r—+00 —

§6(K1(t— ) 204672w(t U)—}-K e —2w(t— U))

If r - —o0, then

t
limsuplEH/ (n,s, t)dW(s) — / F(m,s, t)dW(s)

n,m——+0o

We deduce that

2
=0.

4

t 2
lim IEH/ F(n,s, t)dW(s)

n—oo

" lim ]EH [ (=9 (B, xog(s)) W)

n—o0

o

exists. Therefore, the limit lim,,_, fioo US(t — s)IT*(B,Xog(s))dW(s) exists. More-
over, we can see that from the Eq. (6.1) the function

2
mit - HETME|/ LS (£ — $)IT (B, Xog(s) ) dW(s) “
is bounded on RR. Similarly, we can show that the function
400 - 2
p:t — lim ]E' / U" (t — s)IT" (B, Xog(s))dW(s)
n—-+oo t "

is well defined and bounded on R. O
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Theorem 6.2. Assume that (Hs) holds. Let f,¢ € SAP(R, L*(P, H,)) and T be the mapping
defined for t € R by

A—+o0 J—

T(f,¢)(t) = [ lim /tmus(t—s)HS(EAXof(s))ds

t ~
+A1_1>Too +OOL{ (t —s)IT"(BAXof (s))ds
t ~
+ Al_i)rJr:Oo . U°(t — s)IT° (B Xog(s))dW(s)
t ~
+ lim U"(t —s)IT*(ByXog(s))dW(s) | (0).
A—=400 J 400

Then T(f,g) € SAP(R, [%(P, Hy)).
Proof. We can see that T'(f, g) € SBC(R, L?(P, H,)). In fact

wnﬂ@mmzm\

[ lim /too U (t — s)IT* (ByXof(s))ds

A—+oo J—

+ lim t U (t —s)IT* (ByXof(s))ds

A—+o00 J+oo
t ~
+ lim U°(t — s)IT°(BrXog(s))dW(s)
A=+ ) —0
; B 2
+ lim Uu"(t—s)Ir (BAXOg(s))dW(s)} (0)
A=+ J+o0 o
; B 2
< : S _ S
<4E| lim_ [ U (1= )IT (BAXof (5)) ds a
; B 2
4E| L U (t —s)IT* (B, X d
TAE|| lim [ U= )T (BaXof(5))ds|
2

t ~
+4E|| lim US(t — s)IT°(ByXog(s))dW(s)
A=+ J —co

o

t 2

+4E AETm +OOL{ (t —s)IT*(BaXog(s))dW(s)

o
Using Ito’s isometry property of stochastic integral, we obtain

eZ(ts

B (7,9 (017 < 4B (M [ S o) Pas)

0~ +oo p2uw(t—s y
wam (R [ e P s
—2w(t—s)

+4]E<M2A712/t e(t 7

WW%W@
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+oo p2uw(t—s)

(BRI g (o) P

8A(IFIZ + lIglla) (7 o o
< ()2 </o e %52 ds>
8A(IIf1I% + llgll3)
(Qw)i-2%

I'(1—2a) < oo, (6.2)
where
A = max (M M2|TT° |2, M M2[TT*?).

Since f and g are square-mean almost periodic process, then the set {T'(f,g)r : T € R}
is precompact in SBC(R, L*(P, H,)). On other hand, we have

I(f,8)(t) =T(f,g)(t+1)
[hm tﬂus(t—kr—s)HS(EAXof(s))ds

A—+00
t+1 -
+ lim U'(t+ T —s)IT* (B Xof (s) ) ds
A—400 J 400
t+1 -
+ lim U (t+ T — s)IT° (BrXog(s))dW(s)
A=+ J —co
t+1 -
+ lim U"(t+ T — s)IT* (B Xog(s))dW(s)
A—400 J 400
t ~
_ LETOO/_OOM (t— $)IT (ByXof (T +5))ds

t ~
+AL111100 +OOL{ (t —S)H (B/\Xof(T+S))dS
t ~
+ lim U°(t — s)IT° (B Xog(T +s))dW(s)
A=+ J -0
t ~
+ lim U"(t — s)IT* (B Xog(T +5))dW(s)

A—+00 S o0
- LETOO /_; U (t = $)IT (B Xofx(s) ) ds
+lim ; U (t —)IT" (By Xofr(s))ds
i :o U (t = )IT (B Xoge(s)) AW (s)

t ~
+/\1—1>Too +O°L{ (t — s)IT"(BaXog(s))dW(s)

=TI(fr,g0)(t), VteR
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Thus, I'(f,g)r = I'(fr,§-) which implies {I'(f,¢)r : T € R} is relatively compact in
SBC(R, L?(P, H,)). Since T is continuous SBC(RR, L?>(P, H,)) into SBC(R, L?(P, H,)),
thenT(f,g) € SAP(R, L2(P, Hy)). O

Theorem 6.3. Assume that (Hp) and (Hs) hold. Let f,¢ € &(R,L*(P, Hy), i, v, o), then
r(f’g) E g(R/ LZ(PI Hoc)/ ]’l/ 1/,00),

Proof.

P00 = lim [ (= s (BaXof () ds
+ Al_i)r}:oo :oo U" (t — s)IT" (BrXof(s))ds
+ Al_i)r}:oo _t U (t— s)HS(EAXOg(s))dW(s)
+ Al_i)r}:oo :oo Uu"(t— s)H“(EAXOg(s))dW(s),

E|T(f,8) 1)z

= ‘Alir?m/jwus(t—s)HS(EAXof(s))ds

t ~
li (t —s)IT" (B X d
+ im U= )T (BaXof (s))ds
t ~
+ lim U°(t — s)IT°(ByXog(s))dW(s)
A——+o00 ) —c0

¢ 2

+AL1T00 ) U"(t —s)IT* (ByXog(s))dW (s)

4

then by Ito’s isometry property of stochastic integral, we have

/_TT< sup ]EHF(f,g)(G)IIi)dy(t)

f€]—o0,t]
T o 0 e—Zw(G s) ) )
g/ ( sup [4MM]E</ W|H| 1f(s)]|°ds
—T Ge]_oolﬂ — 00

9 eZwGs )
[ e PIf )P

S

0 72w(9 s) ; )
[ e P ls) s

+f (:w 9 11 Pl(6) s ) o)

o, T 0 e—Zw(G s) ‘12 5
<4M™ M [/ sup WHTHEHJ[()H ds
_Tee]foo,t} —00
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T 0 2w(9 s) 5 5
+ sup ﬁlﬂul E| f(s)[|ds

“Toe]—oo,t] Y —®

T 0 e—Zw(G s) o )
+ sup 2 I E|[g(s) [ "ds

~The]—oo,t] V T® (9 )

T 0 62141(9 s) . )
o[ (s [ S PR s ) dn

0€]—oo,t] Y~

T —2w(0—s)
SAU_T< P Goo iez oy (Elf(s )”z“E”g(S)”z)dS)dV(t)

0€]—oo,t] YV~

T eZw(Gfs)
(s [ IO+l )autn)],

f€]—oo,t] Y~
where
A = max (4M°M2[TT|2, 4M° M2|TT2).
On one hand by Fubini’s theorem, we have

T ] e—Zw(G s) ) 2
[ (s [ G IR + Els(s) s duce)

9] —co,t] Y~

T o —2ws
= / (/OJr sup :T(IEHJ[(G —8)||> +E|jg(0 — S)Hz)ds> du(t)

-7 f€]—oo,t|

0 ,—2Ws
< [T (s [ BIA@ )P Bl - o) du(r) ) as

0€]—oo,t]

Moreover, by Lebesgue dominated convergence theorem and the Theorem 4.3, we
deduce that

e—2ws 1

lim ((sup [ (ElfE - 5)IP + Ellgto — 9)I2)as )au(r) =

T—+00 52“ V([ T/T]) 96}_°°rt] -

foralls € RT, and

em2ws ] < sup [ (E[f(6—s)|*+E|g(6 - S)Hz)d5> dp(t)

o A

e ™ u([-1,1)) 2 2
< S L 1R + L),

Since f and g are bounded functions that
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belongs to L!([0, +o0]) in view of the Lebesgue dominated convergence theorem, it
follows that
~+o00 e—Zws 1 T

(sup [ (0= +Elg(o-9))autr) ) ds =0

f€]—oo,t] VT

TLITOO 0 52« V([—T, T])

Since like above, it follows that

) +oo e*ZZUS 1 T ) )
g [ v([—nﬂ)(éi‘iﬂ " (BIf(0+9)P+Elg(0-+5) 2)au(r) ) ds =o.
Consequently,
1 T
lim7/<su E|T(f, 9§>dt20.
dim ey L (s EITG)@1R )auto)
Thus, we obtain the desired result. O

For proof of existence of square-mean compact pseudo almost periodic solution of
infinite class, we need the following assertion.

(Hg) f,g: R — L?(P, H) are compact a-cl(u, v)-pseudo almost periodic of infinite
class.

Theorem 6.4. Assume that (Hy), (Hy), (H3) and (Hg) hold. Then Eq. (1.1) has a unique
compact a-cl(p, v) pseudo almost periodic solution of infinite class.

Proof. Since f and g are (y,v)- pseudo almost periodic functions, f has a de-
composition f = fi + f, and ¢ = ¢1 + g2, where f1,¢1 € SAP(R,L*(P,H,)) and
f2,82 € &(R,L*(P,Hy), t,v,). Using Theorems 6.1, 6.2 and 6.3, we get the desired
result. O

Our next objective is to show the existence of square mean a-(y, v)-pseudo almost
periodic solutions of infinite class for the following problem:

dx(t) = [—Ax(t) + L(x;) + f(t, up)]|dt + g(t, uy )dW(t), teR, (6.3)

where f,¢ : R x Cy — L?(P, H) are two continuous stochastic processes.
For the sequel, we formulate the following assumptions.

(H7) Let y,v € M and f : R x B, — L*(P, H,) be a square mean cl(y,v)-pseudo
almost periodic of infinite class such that there exists a positive constant L such that

E|f(t,¢1) — f(t, p2)II> < LfE[lp1 — pallz, VEER, ¢1,¢2 € B

(Hg) Let u,v € Mand g : R x B, — L2(P, H,) be a square mean cl(y,v) pseudo
almost periodic of class r such that there exists a positive constant L, such that

Elg(t, ¢1) —8(t¢2) [ < LgEll g1 — 2llz, VEER, ¢, 2 € By
(Ho) The instable space U = {0}.
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Theorem 6.5. Assume that B, satisfies (A1), (Az), (B),(C1),(C2), and (C3) and (Hp),
(H1), (H2), (H3), (H4), (Hy), (Hs) and (Hy) hold. If

2MM]H511/217 ]Lf—I—L
\/T(1—2a)

( 120&/2

then Eq. (6.3) has unique a-cl(p, v)-square-mean pseudo almost periodic solution of infinite
class.

Proof. Let x be a function in SPAP(R, L>(P, H,), 4,v,). From Theorem 5.2, the
function f — x; belongs to SPAP(B,, u,v,0). Hence Theorem 5.4 implies that the
function g(+) = f(-,x) is in SPAP(R, L?(P, H,), 4, v,0). Since by (Hy), the instable
space U = {0}, then |IT"| = 0. Moreover B, is fading memory space, by Lemma 3.3,
we can choose the function K and M such that M(t) — 0 as t — +o0. Let

= max{ sup [K(0) sup [M(D) |,
EER L feR teR

and consider the mapping
H : SPAP(R,L*(P,H,), p,v,00) — SAP(R,L*(P,H,), p,v,)

defined for t € R by

(Hx)(t) = [ lim /toous(t—s)HS(EAXOf(s,xS))ds

A—4o0 J—

+AET00 _toolxls(t—S)HS(EAXOg(s,xS))dW(s) (0).

From Theorems 6.1-6.3, it suffices now to show that the operator H has a unique
fixed point in SPAP(R, L?(P, H,), ,v,). Let x1,x2 € SPAP(R,L?(P,Hy), 1, v,7),
then we have

E[|(Hx1) — (Hx) |3

; B 2

<2E|| tim [ U= )T (BaXo(f(s 1) — (s, %2)))ds a
; B 2
+2E Alirﬂm [mus(t—s)HS(BAXO(g(s,xls) —g(s,x25)) )dW(s) )

By Ito’s isometry property, it follows that

E[[(Hx1)(t) — (Hx2) (113

72wt s

WL](]EHXE — X2SH%3WEIS

< M MA|TT 2 /
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e—2w(t—s)
+2M M2|HS|/ ﬁLglEHxls_XZSH%ads
T2 2175 |2 e 2w(t=s)
<R [ ST B (K(S) sup (@)~ (@)l
—00 (t_ ) 0<¢<s

2
- M(s) |, —xzom) ds

e—2w(t—s)
LN [ e (KG) sup () — @)l

0<¢<s

2
- M(s) |, —xzom) s

P t e—2w(t—s) ) )
< 4AM M|IT| o LFE( K°(s) sup [[x1(¢) — x2(8) I3
—oo (t—5)% 0<E<s

MG s, = o ) s

—2w( s)
eV [ B (K sup (@) - (Ol

0<g<s

T+ M2(s) [, — xzom)ds
_2 ~
SM M2|TT|2(Ls + Ly) [ [+
= (2w)17204f : </0 e s 2ad5>Hx1 _x2Hgo,a
8M”M2[TT [25 (| L + Lg)
(2w)172a

L(1 - 20) 31 - 32l

Consequently,

2MM]HS],/2;7 Lf+Lg
| (Hx1) = (Hx1) loon < 207 \/T(1—2a)

)21 = 22l coa

This means that H is a strict contraction. Thus by Banach’s fixed point theorem, H has
a unique fixed point u in SPAP(RR, L?(P, H,), #, v, ). We conclude that Eq. (6.3), has
one and only one a-cl(y, v)-square-mean pseudo almost periodic solution of infinite
class. The proof is complete. O]

Proposition 6.1. Assume that (Hy), (H1), (Hz), (Hs), (Ha), (Ho) hold and f, g are Lips-
chitz continuous with respect the second arqument. If

(2w)1—2a
16M° M2|TT5|2T (1 — 20)

Lip(f) = Lip(g) <
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then Eq. (6.3) has unique w-cl(u,v)-square-mean pseudo almost periodic solution of infinite
class, where Lip(f) and Lip(g) are respectively the Lipschitz constant of f and g.

Proof. Let us pose k = Lip(f) = Lip(g). By Ito’s isometry property, we have
E|[|(Hax1)(t) — (Hx2) (1)][3

72w(t s)
AW [ G B () sup (@)~ =)l

T M2(s) 1, — xzoui)ds

o t ,—2w(t—s)
R [ G B (1K) sup () —xa@)E

0<¢<s

T M(s)x1, — xzoui)ds
_2 ~
16M M?|11%|%k too
< (2”('1))1’2“’ 1 </0 e’s 2“ds> ||X1 - x2||go,a
_ 16MM2[IE Py
(Zw)l 2n

(1= 2a)x1 = x2% 0.

Consequently,

4MM|HS|,/
[(Hx1) — (Hx1)||oon < =0 —~amz V1 (1 —2a)|lx1 — x2][coa-

This means H is strict contraction if
( 2ZU) 1—2«

k < —— .
16M™ M2|TT5 25T (1 — 2a)

The proof is complete. O

7 Application

For illustration, we propose to study the existence of solutions for the following model:

dz(t,x) = —aa—;z(t,x)dt + [/0 G(0)z(t + 6, x)d6 + x(sin(t) + sin(v/2t))

— 00

+ arctan (¢ +/ ( aax (t+9,x)>d9]dt

j{ 2+ccc;ss((\>ﬂ + cos(t +/ < 2(t+6, x))d@]dW(t),

teR, xe€]0,],
z(t,0) =z(t,1) =0, teR, x¢€][0,7],

7

(7.1)
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where G : R_ — R is continuous function and / : R_ — R is Lipschitz continuous
with the respect of the second argument. For example, we can take

G(0) = e (0+1) ¥>0, 6€]—00,0],
h(8,x) = 6> +sin (Z), (6,x) €] —c0,0] x R.
We can see that G is continuous and
(0,31) — h(0,3%2)| < g1 = ],

which implies that / is lipschitz continuous with the respect of the second argument.
W(t) is a two-sided standard Brownian motion defined on the filtered probability
space (Q), F, P, F;) with

Fr=c{W(u)—-W() | uov <t}

Let v > 0, we define the phase space
B=C, = {q) € C(J— 0,0 L%(P,H)) : lim ¢"p(6) existsin L2(P, H)}
——00

with the norm
[ SégglEHewco(G)Hz, ¢ €Cy.

From [13], this space satisfies axioms (A), (B), (C) and (D). Moreover it is a uni-
form fading memory space, which implies that (H3) is satisfied. We choose & = 1/2.

The norm in B; /; is given by
2
dx> .
Moreover, A‘l/zgo € B, for ¢ € B, then (H;) is satisfied.
To rewrite Eq. (7.1) in abstract form, we introduce the space H = L?((0, )). Let
A:D(A) — L2((0,7)) defined by

(5 E))

ol = sup [l (atg(6)) | =sup ( [“E
<0 p<0 \ /0

{D(A) — H2(0, 1) N H(0, ),
Ay(t) =y"(t), te (0,m), ye D(A).

Then the spectrum ¢(A) of A equals to the point spectrum ¢, (A) and is given by
o(A) =0p(A) = {-n*: n>1},

and the associated eigenfunctions ({,),>1 are given by

Cn(s) = \/%sin(ns), s € [0, rt].
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Then the operator A is computed by

+00
Ay =Y n*(y,01)0n, v € D(A).
n=1
For each -
y € D(A}) = {y €H: Y n(y,in)in € H}
n=1

we define the fractional power

by
Ay Z (v, Cn)ln, Y E D(Az).

It is well known that — A is the generator of a compact analytic semigroup (T(f))s>0
on L?((0, 7r)) which is given by

Ju = Ze (u,2,)0n, uE€ Lz((O,n)).

Then (Hy) and (Hy) are satisfied.
Now, we define f : R x By, — L2((0,7)) and L : By, — L?(0, 7t) as follows:

f(t,¢)(x) = x(sin(t) + sin(v2t)) + arctan(t)
+ [ h(@,%(])(@)(x))de, xe(0,7), tER,

cos(t)

2 + cos(v/2t)
+/0 h(e,%¢(9)(x)>d9, e (), teR,
L)) = [ GOp(0)(x) <6, xen)

Lemma 7.1 ([16]). Ify € D(A'?2), then y is absolutely continuous, y' € L*(P,H) and
[y'| = A2y

gt ) (x) = x + cos(t)

Let us pose v(t)(x) = z(t,x). Then Eq. (7.1) takes the following abstract form:
do(t) = [—Av(t) + L(ve) + f(t,0p)]dt + g(t,0,)dW(E), teER. (7.2)
Consider the measure y and v where its Randon-Nikodym derivates are respectively

p1 and pr
1, t>0,
b =
p1(t) {et, <,
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and
p2(t) =|t|, teER,

ie. du(t) = pi(t)dt and du(t) = p2(t)dt, where dt denotes the Lebesgue measure on R
and

na) = / pr(t)dt for v(A) =py(t)dt, AeN.
A
From [7], u,v € M satisfy hypothesis (Hs). We have also

0 T
/ Jdt + / dt .

7 T]) T—+00 2 /T tdt T— 400 T2
0

=0< o0,

which implies that (H) is satisfied. On other hand, one can see that
Az (x(sin(t) 4 sin(v2t))) = (x(sin(t) + sin(V2t)))" = sin(t) + sin(V2¢),

and t > sin(t) + sin(v/2t) is almost periodic. Then t —— x(sin(t) + sin(v/2t)) is
x-almost periodic.

By Lemma 7.1, we have

M/T sup IE]arctan(G)@dy(f)

~The]—o0,t]
_éff su IE|A% arctan(9)|2d (t)
(= g
2

du(t)

v([—7,7]) _796}7(&] 1462

1 T
=3 Ld”(t)
u((-7,7))
(=)

Thus, t — x(sin(t) + sin(v/2t)) + arctan(t) belongs to SPAP(R, L%(P, Hy /3), 1, v, %0).

Moreover, for every ¢1,¢2 € By, by Holder’s inequality and Fubini’s theorem, we
have

E[f(t, 1) — f(t,¢2)II7: 2
_ ]E[/Oﬂ </Owh<t,;—x<p1(9)(x)> —h<t,%¢2(9)(x)>d9> dx]

<k| " [_BO)|5anE® - se@m

— 0 as T — +Hoo.

2
dex]
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T 0
<E // h2(0)e 219270

d 2

2 0) )~ a(6) (1)

d@dx]

I 91 (0)(x) — pa(6) ()

fa))o]
%)

2
d9> dx

2 p(O)x) ~ 2 pa(0)(x)

0 s
< / e“”%%(@)d@) sup/ E
<00

1 0 n ) ) 2
< E</ e_479h%(9)d9> %u}g i E 679<£¢1(9)(X) — a@(@)(x)) dx>
. .
1 0
<o ([ e mme)ae ) Ion -

This means f is Lipchitz continuous. In addition

|t gl <37 3% 438 [ ([ (s Zo@w)iae) zdx]

T 0 2
< 372 —|—3]E[/ (/ h2(0)e 219270 d9> dx]
0 9]
2 0 2 iay,—216 Tl e 9 ’
<3m +3[wh1(9)e 7 (zti%) ; E|e” <£<p(9)(x)>

0
<arta( [ w0 ol <.

2 9(0)x)

dx) de

This means that f is bounded. Consequently, we conclude that f Lipschitz continuous
and square mean a-cl(y, v) pseudo almost periodic of infinite class. Then (Hy) yields.
Similarly, by the same

R <x cos(t) ) _ (x cos(t) ) _ cos(t) '
2 + cos(v/2t) 2 + cos(v/2t) 2 + cos(v/2t)
Then
cos(t)
2 + cos(v/2t)
is a-almost periodic. Since for 6 € R, —1 < sinf < 1 and by Lemma 7.1, we have

t — x

1 /T 5
S — sup E|cos(0)|5du(t
=) —T()e]—g,t} | cos(6)[1du(t)
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- [ su 2 cos(0)]
~y([-T1,1)) /_T9€}Z,t]IE|A (0)| du(t)
R — su sin()[?
—v([-1,7]) /Tee}—g,t]IE’ (0) |7 du(t)

1 T
A0

(
§y(7 — 0 as T — Hoo.
v(

Ellg(t, ¢)[2. < 3%2 +3%2 +31E[/0” (/O h(t, %(p(@)(x))dG)zdx]

) 2
d9> dx]

<31+ 3]E[/On (/Ooo 13 (6)e= 210270
e? (%4}(9)(@) 2dx> do

0 7T
< 3712 +3/ h%(9)6_279<sup E
0
<32 +3( / h%w)e-”@de) 1]12 < oo.
0 2

0
= (60)(x)

p<0 /0

Then hypothesis (Hs) is verified. Moreover, by Ito’s isometry property, Holder’s
equality and Fubini’s theorem, we have

1 0
Istt,0) -~ 5(t92) P < 5 ([ e 2(@0d0) gn — galf.

Consequently, we conclude that ¢ Lipschitz continuous and square mean a-cl(, v)
pseudo almost periodic of infinite class. Then (Hg) yields. For hyperbolycity , we
suppose that

(o) [ [G(0)ld6 < 1.

Lemma 7.2 ([12]). Assume that (Hyo) holds. Then the semigroup (U(t))i>o is hyperbolic
and the instable space U = {0}.

We can in our case see that

0 0
/ IG(6)|d6 = lim [ V%0 = lim

0 1
—e(7+1)9 — 1.
r—+oo J_, r—+4oo ’)/—|—]_ .

=——<
_, v+1
Theorem 7.1. Assume that (Hy), (Hg), (Ho) and (Hyg) hold. If Lip(h) is small enough,

then Eq. (7.2) has a unique a-cl(p, v)-square-mean pseudo almost periodic solution v of infinite
class.
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