Boundary Values of Generalized Harmonic Functions Associated with the Rank-One Dunkl Operator

Jiaxi Jiu and Zhongkai Li*

Department of Mathematics, Shanghai Normal University, Shanghai 200234, China

Received 2 January 2020; Accepted (in revised version) 12 January 2020

Dedicated to Professor Weiyi Su on the occasion of her 80th birthday

Abstract. We consider the local boundary values of generalized harmonic functions associated with the rank-one Dunkl operator *D* in the upper half-plane $\mathbb{R}^2_+ = \mathbb{R} \times (0, \infty)$, where

$$(Df)(x) = f'(x) + (\lambda/x)[f(x) - f(-x)]$$

for given $\lambda \ge 0$. A C^2 function u in \mathbb{R}^2_+ is said to be λ -harmonic if $(D_x^2 + \partial_y^2)u = 0$. For a λ -harmonic function u in \mathbb{R}^2_+ and for a subset E of $\partial \mathbb{R}^2_+ = \mathbb{R}$ symmetric about y-axis, we prove that the following three assertions are equivalent: (i) u has a finite non-tangential limit at (x, 0) for a.e. $x \in E$; (ii) u is non-tangentially bounded for a.e. $x \in E$; (iii) $(Su)(x) < \infty$ for a.e. $x \in E$, where S is a Lusin-type area integral associated with the Dunkl operator D.

Key Words: Dunkl operator, Dunkl transform, harmonic function, non-tangential limit, area integral.

AMS Subject Classifications: 42B20, 42B25, 42A38, 35G10

1 Introduction and main results

For given $\lambda > 0$, the rank-one Dunkl operator on the line \mathbb{R} is defined by

$$(Df)(x) = f'(x) + \frac{\lambda}{x}(f(x) - f(-x)).$$

A C^2 function u in the upper half-plane $\mathbb{R}^2_+ = \mathbb{R} \times (0, \infty)$ is said to be λ -harmonic if $\Delta_{\lambda} u = 0$, where

$$\Delta_{\lambda} = D_x^2 + \partial_y^2.$$

http://www.global-sci.org/ata/

326

©2020 Global-Science Press

^{*}Corresponding author. Email addresses: jiujiaxi78@163.com (J.-X. Jiu), lizk@shnu.edu.cn (Z.-K. Li)

The operator Δ_{λ} is called the λ -Laplacian, and can be written explicitly by

$$(\Delta_{\lambda}u)(x,y) = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{2\lambda}{x}\frac{\partial u}{\partial x} - \frac{\lambda}{x^2}\left(u(x,y) - u(-x,y)\right)$$

Some aspects of harmonic analysis in the upper half-plane \mathbb{R}^2_+ associated to the Dunkl operator *D* were studied in [25] and their analogues in the unit disk \mathbb{D} , associated with Dunkl-Gegenbauer expansions, were developed in [26]. These are generalizations of the seminal work of Muckenhoupt and Stein [31] on the Bessel operator and the Gegenbauer expansions. In this paper we study the local existence of boundary values of λ -harmonic functions in the upper half-plane \mathbb{R}^2_+ .

It is well known that, if *u* is a harmonic function in the unit disk \mathbb{D} and *E* is a subset of positive measure of the boundary $\partial \mathbb{D}$, then the existence of non-tangential limit at almost every $e^{i\theta} \in E$ of *u* can be characterized by non-tangential boundedness of *u* at almost every $e^{i\theta} \in E$, and also by finiteness of Lusin's area integral of *u* at almost every $e^{i\theta} \in E$. The former, as a local version of Fatou's theorem, was owed to Privalov [38], and the latter was proved by Marcinkiewicz and Zygmund [30] and Spencer [42]. One of the basic tools in these works is the conformal mapping, which introduces technical difficulties in extending them to more variables and other settings. Calderón [5,6] made a breakthrough and generalized Privalov's theorem and Marcinkiewicz and Zygmund's theorem to Euclidean half-spaces of several variables by the real-variable method. A generalization of the theorem of Spencer [42] to several variables was obtained in Stein [43]. Since then, criteria on existence of non-tangential boundary limits of harmonic functions in many different contexts, in terms of non-tangential boundedness or one-side non-tangential boundedness or finiteness of area integrals have been intensively studied; see, for example, [1-4,7,14-22,24,32-37,39] and [46].

As usual, we denote by $\Gamma_{\alpha}(x)$ the positive cone of aperture $\alpha > 0$ with vertex $(x, 0) \in \partial \mathbb{R}^2_+ = \mathbb{R}$, and $\Gamma^h_{\alpha}(x)$ the truncated one with height h > 0, that is,

$$\Gamma^h_{\alpha}(x_0) = \{ (x, y) \in \mathbb{R}^2_+ : |x - x_0| < \alpha y, \ 0 < y < h \}.$$

For a function *u* defined in \mathbb{R}^2_+ and for $\alpha > 0$, the non-tangential maximal function $u^*_{\nabla}(x)$ is defined by

$$u_{
abla}^*(x) = \sup_{(t,y)\in\Gamma_{lpha}(x)} |u(t,y)|;$$

that *u* has a non-tangential limit at (x, 0) means that for every $\alpha > 0$, $\lim u(t, y)$ exists as $(t, y) \in \Gamma_{\alpha}(x)$ approaching to (x, 0); and that *u* is said to be non-tangentially bounded at (x, 0) if u(t, y) is bounded in $\Gamma_{\alpha}^{h}(x)$ for some $\alpha, h > 0$. For a C^{2} function *u* in \mathbb{R}^{2}_{+} , we define the Lusin-type area integral $Su = S_{\alpha,h}u$ for some $\alpha, h > 0$ by

$$(S_{\alpha,h}u)(x) = \left(\int_{\Gamma^h_{\alpha}(0)} \tau_x(\Delta_{\lambda}u^2)(-t,y)y^{-2\lambda}|t|^{2\lambda}dtdy\right)^{1/2},$$