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Abstract. We consider the local boundary values of generalized harmonic functions
associated with the rank-one Dunkl operator D in the upper half-plane R2

+ = R ×
(0, ∞), where

(D f )(x) = f ′(x) + (λ/x)[ f (x)− f (−x)]

for given λ ≥ 0. A C2 function u in R2
+ is said to be λ-harmonic if (D2

x + ∂2
y)u = 0.

For a λ-harmonic function u in R2
+ and for a subset E of ∂R2

+ = R symmetric about
y-axis, we prove that the following three assertions are equivalent: (i) u has a finite
non-tangential limit at (x, 0) for a.e. x ∈ E; (ii) u is non-tangentially bounded for a.e.
x ∈ E; (iii) (Su)(x) < ∞ for a.e. x ∈ E, where S is a Lusin-type area integral associated
with the Dunkl operator D.
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1 Introduction and main results

For given λ > 0, the rank-one Dunkl operator on the line R is defined by

(D f )(x) = f ′(x) +
λ

x
( f (x)− f (−x)).

A C2 function u in the upper half-plane R2
+ = R × (0, ∞) is said to be λ-harmonic if

∆λu = 0, where
∆λ = D2

x + ∂2
y.
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The operator ∆λ is called the λ-Laplacian, and can be written explicitly by

(∆λu) (x, y) =
∂2u
∂x2 +

∂2u
∂y2 +

2λ

x
∂u
∂x
− λ

x2 (u(x, y)− u(−x, y)) .

Some aspects of harmonic analysis in the upper half-plane R2
+ associated to the Dunkl

operator D were studied in [25] and their analogues in the unit disk D, associated with
Dunkl-Gegenbauer expansions, were developed in [26]. These are generalizations of the
seminal work of Muckenhoupt and Stein [31] on the Bessel operator and the Gegenbauer
expansions. In this paper we study the local existence of boundary values of λ-harmonic
functions in the upper half-plane R2

+.
It is well known that, if u is a harmonic function in the unit disk D and E is a subset of

positive measure of the boundary ∂D, then the existence of non-tangential limit at almost
every eiθ ∈ E of u can be characterized by non-tangential boundedness of u at almost ev-
ery eiθ ∈ E, and also by finiteness of Lusin’s area integral of u at almost every eiθ ∈ E.
The former, as a local version of Fatou’s theorem, was owed to Privalov [38], and the lat-
ter was proved by Marcinkiewicz and Zygmund [30] and Spencer [42]. One of the basic
tools in these works is the conformal mapping, which introduces technical difficulties in
extending them to more variables and other settings. Calderón [5,6] made a breakthrough
and generalized Privalov’s theorem and Marcinkiewicz and Zygmund’s theorem to Eu-
clidean half-spaces of several variables by the real-variable method. A generalization of
the theorem of Spencer [42] to several variables was obtained in Stein [43]. Since then,
criteria on existence of non-tangential boundary limits of harmonic functions in many
different contexts, in terms of non-tangential boundedness or one-side non-tangential
boundedness or finiteness of area integrals have been intensively studied; see, for exam-
ple, [1-4,7,14-22,24,32-37,39] and [46].

As usual, we denote by Γα(x) the positive cone of aperture α > 0 with vertex (x, 0) ∈
∂R2

+ = R, and Γh
α(x) the truncated one with height h > 0, that is,

Γh
α(x0) = {(x, y) ∈ R2

+ : |x− x0| < αy, 0 < y < h}.

For a function u defined in R2
+ and for α > 0, the non-tangential maximal function u∗∇(x)

is defined by
u∗∇(x) = sup

(t,y)∈Γα(x)
|u(t, y)|;

that u has a non-tangential limit at (x, 0) means that for every α > 0, lim u(t, y) exists as
(t, y) ∈ Γα(x) approaching to (x, 0); and that u is said to be non-tangentially bounded at
(x, 0) if u(t, y) is bounded in Γh

α(x) for some α, h > 0. For a C2 function u in R2
+, we define

the Lusin-type area integral Su = Sα,hu for some α, h > 0 by

(Sα,hu) (x) =
(∫

Γh
α(0)

τx(∆λu2)(−t, y)y−2λ|t|2λdtdy
)1/2

,


