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Abstract. It was proved by Shen that the graph of the classical Weierstrass function
Yoo A" cos(2mb" x) has Hausdorff dimension 2 + log A/ log b, for every integer b > 2
and every A € (1/b,1) [Hausdorff dimension of the graph of the classical Weierstrass
functions, Math. Z., 289 (2018), 223-266]. In this paper, we prove that the dimension
formula holds for every integer b > 3 and every A € (1/b, 1) if we replace the function
cos by sin in the definition of Weierstrass function. A class of more general functions
are also discussed.
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1 Introduction

Weierstrass functions are classical fractal functions. The non-differentiability of these
functions were studied by Weierstrass and Hardy [2]. Recently, Shen [7] proved that the
graph of the classical Weierstrass function ), A" cos(27tb"x) has Hausdorff dimension
2 +1logA/logb, for every integer b > 2 and every A € (1/b,1), which solved a long-
standing conjecture. Some relevant results can be found in [1,3-5,8]. Naturally, we
want to study the Hausdorff dimension of the graph of Weierstrass functions with the
following form:

Wipe(x) =) A"cos(2mb"x+6), x€R,
n=0
where b > 2 is an integer, A € (1/b,1) and 6 € R.

Denote D, , = 2 +1log A/ logb. Denote by dimy I'WV,, 1, o the Hausdorff dimension of
the graph of W) ; p. Our main result is:
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Theorem 1.1. If 0 = —7mt/2, then dimyI'W, ;9 = D, for every integer b > 3 and every
A € (1/b,1). If the integer b > 7, then the dimension formula holds for every A € (1/b,1) and
every 0 € R.

The paper is organized as follows. In next section, we present necessary notations
and properties introduced by Shen [7] and Tsujii [8]. In Sections 3 and 4, we prove the
main result.

2 Preliminaries

In this section, we present necessary notations and properties introduced in [7,8]. Denote
v =1/(Ab), pp(x) = cos(2mtx + 0), and g(x) = ¢, (x). Let A = {0,1,--- ,b —1}. Given
y€Randu = {u,}, € AZ" we define

So(x,u) = i " ge(x(ul)),

where u|, = (uq,- -+ ,u,) and

X u u
X(u|n):b7+7l+ 2

u

-n

=

For simplicity, we will use S(x,u) to denote Sy(x, u) if no confusion occurs.
Givene,d > 0. Two words i,j € AZ" are called (¢, §)-tangent at a point xo € R if

|S(x0,1) — S(x0,j)| <& and [S'(xg,i) — S (x0,j)| < 6.

Let E(g, x0;¢,0) denote the set of pairs (k,1) € A7 x A7 for which there exist u,v € AZT
such that ku and 1v are (¢, §)-tangent at x(. Let

e(q,x0;¢,0) = max #{l € A7: (k,1) € E(q,x0;¢,9)},
keAZt

E<q1x0) = ﬂ m E(q,x0;¢,6),

e>06>0

e(g,x0) = max#{l € A7: (k,1) € E(q,x0) }.
keAl
For | C IR, define

E(q,];¢6) = |J E(q,x0;¢,0),

xo€]

E(q.]) = () () E(q,];¢96),

e>06>0

e(q,]) = max#{l € A7: (k1) € E(g,])}-



