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Abstract. In this paper we introduce a method to construct periodic solutions for the
n-body problem with only boundary and topological constraints. Our approach is
based on some novel features of the Keplerian action functional, constraint convex
optimization techniques, and variational methods. We demonstrate the strength of this
method by constructing relative periodic solutions for the planar four-body problem
within a special topological class, and our results hold for an open set of masses.
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1 Introduction

The Newtonian n-body body problem concerns the motion of n masses m1, · · · , mn ≥ 0
moving in Rd, d ∈ {1, 2, 3}, in accordance with Newton’s law of universal gravitation:

mk ẍk =
∂

∂xk
U(x), k = 1, · · · , n, (1.1)

where xk ∈ Rd is the position of mk, x = (x1, · · · , xn), and

U(x) = ∑
i<j

mimj

|xi − xj|

is the (self-)potential energy. Let

K(ẋ) =
1
2

n

∑
k=1

mk|ẋk|2
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be the kinetic energy and L(x, ẋ) = U(x) + K(ẋ) be the Lagrangian. Eq. (1.1) are Euler-
Lagrange equations for the action functional

At0,t1(x) =
∫ t1

t0

L(x, ẋ)dt, x ∈ H1
loc(R, Cn). (1.2)

The case A0,T will be denoted by AT. Unless specified otherwise, throughout this paper
a “solution” of (1.1) is referred to a “classical solution” of (1.1).

Analytic construction for periodic solutions of (1.1) is an old school, while variational
approach has become a fashion since the discovery of the hip-hop orbit with four bod-
ies [16] and the figure-8 orbit [15] with three bodies. Their idea of imposing symmetry
constraints on solution curves was subsequently applied to many other examples, some
notable successes been choreographic solutions [3,7,13,14,21,22,25,28,29], multiple chore-
ographic solutions (such as the parallelogram four-body problem) [5–7], generalized hip-
hops [12, Section 4.2] and [30], and many other orbits with miscellaneous types of sym-
metries (such as symmetries with rotating circle property) [4, 17–19]. Most applications
rely on manipulations of some equal masses. There are some examples without restric-
tion on equal masses: the generalized hip-hops with the Italian symmetry [12, Section
4.2], some Hill type orbits [2], retrograde orbits for the three-body problem [9, 10], and
certain orbits with n-bodies extending Euler-Moulton relative equilibria [11]. In some
of these examples, simple order-two spatial symmetry were imposed without involving
permutation of masses. Apart from them, to our knowledge there seems to be no sub-
stantial progress on variational constructions for periodic solutions of (1.1) with totally
distinct masses.

Numerical experiments suggest that, however, many highly symmetric orbits with
identical masses persist as one perturb the masses, with the only expense being the lose
of some symmetry. The persistence is in fact observed in many examples for a fairly
large range of masses. Some curious experiments on perturbing masses for orbits in [5]
and [7, Section 5] are major incentives of our present work. Fig. 1 is a very small list of
motivating examples. With totally distinct masses, manipulations with symmetries are
not helpful. Direct applications of global estimates in [9, 10] are also not quite useful for
n-body problems with n ≥ 4, as to be explained later in this paper (Section 4). These so-
lutions fall in certain topological families, and it is in general a difficult task to rigorously
prove the existence of a real solution within a given topological family of curves. There
must be some insights and artifices missing.

The purpose of this paper is to introduce a method to construct periodic solutions
for the n-body problem with only boundary and topological constraints (Section 3). Our
approach is based on some novel features of the Keplerian action functional (Section 2),
some properties of the action functional (Section 4), and some constraint convex opti-
mization techniques (Section 5). Our approach is a substantial improvement of methods
in [9,10], and has no restriction on equal masses. We illustrate the strength of this method
by constructing relative periodic solutions for the planar four-body problem within a spe-
cial topological class (Section 6).


