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Abstract. We establish Littlewood-Paley charaterizations of Triebel-Lizorkin spaces
and Besov spaces in Euclidean spaces using several square functions defined via the
spherical average, the ball average, the Bochner-Riesz means and some other well-
known operators. We provide a simple proof so that we are able to extend and improve
many results published in recent papers.
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1 Introduction

As is well known, Littlewood-Paley functions and their various applications are impor-
tant parts of harmonic analysis, dating back as far as the early 1930’s; see [10, 19, 20, 22]
for more details about the historical development. Recently Alabern et al. in [1] ob-
tained a new characterization of Sobolev spaces with arbitrary smoothness order on Eu-
clidean spaces, which can be seen as characterizations of Sobolev spaces via Littlewood-
Paley g-functions involving ball averages. These characterizations depend only on the
metric of Rn and hence provide several possible approaches to introduce high order
Sobolev spaces on general metric measure spaces. Motivated by the work in [1], some
characterizations of high order Besov and Triebel-Lizorkin spaces on Rn in terms of
Littlewood-Paley functions and pointwise inequalities involving ball averages were fur-
ther established, which also serve as new approaches to introduce these spaces with high
order smoothness on metric measure spaces. Yang et al. in [26] established the corre-
sponding characterizations for Besov and Triebel-Lizorkin spaces. Inspired by [1, 26],
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Dai et al. further characterized Sobolev spaces with any positive even integer order via
some pointwise inequalities involving ball averages in [6], as well as Besov and Triebel-
Lizorkin spaces with any positive smoothness order via some Littlewood-Paley g func-
tions involving ball averages in [7]. Based on [7], Chang et al. in [3] considered the re-
lated characterizations of Triebel-Lizorkin spaces via the corresponding Lusin area func-
tion and the Littlewood-Paley g∗λ -function. Some further characterizations of Sobolev,
Besov and Triebel-Lizorkin spaces via ball averages were then presented in a series of
works [4, 8, 13, 15, 25, 28–30].

One the other hand, Chen et al. in [5] gave a simple method to characterize inho-
mogeneous Sobolev spaces Wα,p(Rn) by using several different square functions defined
via the spherical average, the ball average and the Bochner-Riesz means. Based on the
aforementioned works, the main purpose of this article is to characterize Triebel-Lizorkin
and Besov spaces via some generalized Littlewood-Paley functions which are much more
general than those Littlewood-Paley functions of ball averages. We extend their results,
using an alternate, less complicated method of proof.

To this end, we firstly give some necessary notations. Let n ≥ 2 and Rn be n-
dimensional Euclidean space. Fix an L1(Rn) function Φ. Denote, for (x, t) ∈ Rn ×R,

Φ2t(x) = 2−tnΦ
(
x/2t) .

The Fourier transform of Φ2t is given by Φ̂2t(ξ) = Φ̂
(
2tξ
)

, ξ ∈ Rn. For any 1 < q < ∞,
associated with Φ, the Littlewood-Paley function SΦ,q ( f ) is defined by

SΦ,q ( f ) (x) =
(∫

R
|Φ2t ∗ f (x)|q dt

)1/q

,

and the discrete version is given by

DΦ,q( f )(x) =

(
∑

k∈Z

|(Φ2k ∗ f )(x)|q
)1/q

. (1.1)

Sometimes we write SΦ,q ( f ) (x) in an equivalent form

SΦ,q ( f ) (x) =
(∫ ∞

0
|Φt ∗ f (x)|q dt

t

)1/q

,

and skip the ratio (ln 2)−1/q between two forms. Also, for simplicity, we initially define
SΦ,q ( f ) on all functions f in the Schwartz space S (Rn) . Let

∆ =
n

∑
j=1

∂2

∂x2
j


