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Abstract. The more explicit decomposition of the operator and the kernel are utilized
to investigate a characterization of the central BMO(Rn)-closure of C∞

c (Rn) space via
the compactness of the commutators of fractional Hardy operator with rough kernel.
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1 Introduction

Problem of commutators draws recently more and more attention of Harmonic analysis,
such as its application in the study of elliptic equations [1, 7]. For example, Sun, Wang
and Zhang simplify the proof of the famous Wu’s theorem on Navier-Stokes equations
greatly in [18] and the technique used is some estimates for commutators by Lu and
Yan [13]. The commutator formed by an operator T and a suitable function b can be
recalled as

[b, T] f := b(T f )− T(b f ).

We call a function b ∈ Lloc(R
n) is a central BMO(Rn) (the mean oscillation function

space) function, denoted by CBMO(Rn) which was introduced by Lu and Yang [14], if

‖b‖CBMO(Rn) := sup
r>0

1
|Br|

∫
Br

|b(x)− bBr |dx < ∞.

Here and in what follows, Br := B(0, r) is a ball centered at 0 with radius r > 0.
CBMO(Rn) can be understood as a local version of BMO(Rn) at the origin, BMO(Rn) ⊂
CBMO(Rn) and they have quite different properties since for 1 < p < ∞,

‖b‖BMO(Rn) ≈ ‖b‖BMOp(Rn) and ‖b‖CBMO(Rn) . ‖b‖CBMOp(Rn)
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with

‖b‖BMOp(Rn) = sup
B⊂Rn

(
1
|B|

∫
B
|b(x)− bB|pdx

) 1
p

,

‖b‖CBMOp(Rn) = sup
r>0

(
1
|Br|

∫
Br

|b(x)− bBr |pdx
) 1

p

.

Thus, the John-Nirenberg inequality is not true for CBMO(Rn). We follow the nota-
tion used in the existed work: VMO(Rn) denotes the BMO(Rn)-closure of C∞

c (Rn) (the
space of all functions being infinite-times continuously differential in Rn with compact
support), CVMO(Rn) stands for the CBMO(Rn)-closure of C∞

c (Rn).
This paper provides a characterization of the CVMO(Rn) space by the compactness

of [b, T], when T is the following fractional Hardy operator

HΩ,α f (x) =
1

|x|n−α

∫
|y|<|x|

Ω(x− y) f (y)dy,

H∗Ω,α f (x) =
∫
|y|≥|x|

Ω(x− y) f (y)
|y|n−α

dy, 0 < α < n.

Here Ω satisfies

Ω(tx) = Ω(x), ∀t > 0, x ∈ Rn, (1.1a)∫
Sn−1

Ω(x′)dσ(x′) = 0, (1.1b)

Ω ∈ Lq(Sn−1), ∀q ≥ 1. (1.1c)

The Lq≥1-Dini condition of Ω can be recalled as

∫ 1

0

wq(δ)

δ
< ∞ with wq(δ) = sup

‖τ‖≤δ

(∫
Sn−1
|Ω(τx′)−Ω(x′)|qdσ(x′)

) 1
q

and τ is a rotation on Sn−1 with

‖τ‖ = sup
x′∈Sn−1

|τx′ − x′|.

For a suitable function h, H∗Ω,α is said to be the dual operator of HΩ,α in the following
sense ∫

Rn
h(x)HΩ,α f (x)dx =

∫
Rn

f (x)H∗Ω,αh(x)dx.

Fu, Lu and Zhao considered the boundedness of HΩ,α and [b, HΩ,α] on homogeneous
Herz spaces and Lebesgue spaces for b ∈ BMO(Rn) in [11]. For Ω = 1, see for exam-
ple [9, 16].


