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Abstract. In this paper we study the initial boundary value problem for the system
div(σ(u)∇ϕ) = 0, ut − ∆u = σ(u)|∇ϕ|2. This problem is known as the thermistor
problem which models the electrical heating of conductors. Our assumptions on σ(u)
leave open the possibility that lim infu→∞ σ(u) = 0, while lim supu→∞ σ(u) is large.
This means that σ(u) can oscillate wildly between 0 and a large positive number as
u→ ∞. Thus our degeneracy is fundamentally different from the one that is present in
porous medium type of equations. We obtain a weak solution (u, ϕ) with |∇ϕ|, |∇u| ∈
L∞ by first establishing a uniform upper bound for eεu for some small ε. This leads to an
inequality in ∇ϕ, from which the regularity result follows. This approach enables us
to avoid first proving the Hölder continuity of ϕ in the space variables, which would
have required that the elliptic coefficient σ(u) be an A2 weight. As it is known, the
latter implies that ln σ(u) is “nearly bounded”.
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1 Introduction

Let Ω be a bounded domain in RN with sufficiently smooth boundary ∂Ω and T any
positive number. We consider the initial boundary value problem

ut − ∆u = σ(u)|∇ϕ|2 in ΩT, (1.1a)
div(σ(u)∇ϕ) = 0 in ΩT, (1.1b)
u = u0 on ∂pΩT, (1.1c)
ϕ = ϕ0 on ΣT, (1.1d)
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where

ΩT = Ω× (0, T), (1.2a)
ΣT = ∂Ω× (0, T), the lateral boundary of ΩT, (1.2b)
∂pΩT = ΣT ∪Ω× {0}, the parabolic boundary of ΩT. (1.2c)

We are interested in the regularity properties of weak solutions when the elliptic coeffi-
cient σ(u) in the second equation may become oscillatory as u → ∞. To be precise, we
establish the following

Theorem 1.1 (Main Theorem). Assume:

(H1) the function σ is continuously differentiable on the interval [0, ∞) with

c0e−βs ≤ σ(s) ≤ c1 on [0, ∞) for some c0, c1, β ∈ (0, ∞), (1.3a)
|σ′(s)| ≤ c2eγs on [0, ∞) for some c2, γ ∈ (0, ∞), (1.3b)

(H2) u0, ϕ0 ∈ C
(
[0, T]; C1(Ω)

)
with u0|∂pΩT ≥ 0 and ∂tu0 − ∆u0 ∈ Ls(ΩT), ∆ϕ0 ∈

L∞(0, T; Ls(Ω)) for each s > 1,

(H3) ∂Ω is C1,1.

Then there is a unique weak solution (u, ϕ) to (1.1a)-(1.1d) with u ≥ 0 and

∇u,∇ϕ ∈ L∞(ΩT). (1.4)

The notion of a weak solution is defined as follows:

Definition 1.1. We say that (u, ϕ) is a weak solution to (1.1a)-(1.1d) if

(D1) u, ϕ ∈ L2(0, T; W1,2(Ω)),

(D2) u = u0, ϕ = ϕ0 on ΣT in the sense of the trace theorem and

−
∫

ΩT

uξtdxdt +
∫

ΩT

∇u∇ξdxdt

=
∫

ΩT

σ(u)|∇ϕ|2dxdt +
∫

Ω
u0(x, 0)ξ(x, 0)dx, (1.5a)∫

ΩT

σ(u)∇ϕ∇ηdxdt = 0, (1.5b)

for each pair of smooth functions ξ, η with ξ = η = 0 on ΣT and ξ(x, T) = η(x, T) = 0.


