Regularity Results for a Nonlinear Elliptic-Parabolic System with Oscillating Coefficients

Xiangsheng Xu*

Department of Mathematics & Statistics, Mississippi State University, Mississippi State, MS 39762, USA

Received 9 May 2020; Accepted (in revised version) 4 January 2021

Abstract. In this paper we study the initial boundary value problem for the system $\operatorname{div}(\sigma(u)\nabla\varphi) = 0$, $u_t - \Delta u = \sigma(u)|\nabla\varphi|^2$. This problem is known as the thermistor problem which models the electrical heating of conductors. Our assumptions on $\sigma(u)$ leave open the possibility that $\liminf_{u\to\infty} \sigma(u) = 0$, while $\limsup_{u\to\infty} \sigma(u)$ is large. This means that $\sigma(u)$ can oscillate wildly between 0 and a large positive number as $u \to \infty$. Thus our degeneracy is fundamentally different from the one that is present in porous medium type of equations. We obtain a weak solution (u, φ) with $|\nabla\varphi|, |\nabla u| \in L^{\infty}$ by first establishing a uniform upper bound for $e^{\varepsilon u}$ for some small ε . This leads to an inequality in $\nabla\varphi$, from which the regularity result follows. This approach enables us to avoid first proving the Hölder continuity of φ in the space variables, which would have required that the elliptic coefficient $\sigma(u)$ be an A_2 weight. As it is known, the latter implies that $\ln \sigma(u)$ is "nearly bounded".

Key Words: Oscillating coefficients, the thermistor problem, quadratic nonlinearity.

AMS Subject Classifications: 35B45, 35B65, 35M33, 35Q92

1 Introduction

Let Ω be a bounded domain in \mathbb{R}^N with sufficiently smooth boundary $\partial \Omega$ and *T* any positive number. We consider the initial boundary value problem

$u_t - \Delta u = \sigma(u) \nabla \varphi ^2$	in Ω_T ,	(1.1a)
$\operatorname{div}(\sigma(u)\nabla \sigma) = 0$	in O	(1.1b)

$$\begin{aligned} \operatorname{div}(\partial(u) \lor \varphi) &= 0 & \text{in } \Omega_T, \end{aligned} \tag{1.1b} \\ u &= u_0 & \text{on } \partial_p \Omega_T, \end{aligned} \tag{1.1c}$$

$$\varphi = \varphi_0$$
 on Σ_T , (1.1d)

*Corresponding author. *Email addresses:* xxu@math.msstate.edu (X. Xu)

http://www.global-sci.org/ata/

©2021 Global-Science Press

where

$$\Omega_T = \Omega \times (0, T),$$

$$\Sigma_T = \partial \Omega \times (0, T),$$
the lateral boundary of $\Omega_T,$

$$\partial_v \Omega_T = \Sigma_T \cup \Omega \times \{0\},$$
the parabolic boundary of $\Omega_T.$
(1.2c)

We are interested in the regularity properties of weak solutions when the elliptic coefficient $\sigma(u)$ in the second equation may become oscillatory as $u \to \infty$. To be precise, we establish the following

Theorem 1.1 (Main Theorem). Assume:

(H1) the function σ is continuously differentiable on the interval $[0, \infty)$ with

$$c_0 e^{-\beta s} \le \sigma(s) \le c_1 \qquad on \ [0,\infty) \ for \ some \ c_0, c_1, \beta \in (0,\infty), \tag{1.3a}$$
$$|\sigma'(s)| \le c_2 e^{\gamma s} \qquad on \ [0,\infty) \ for \ some \ c_2, \gamma \in (0,\infty), \tag{1.3b}$$

$$|\sigma'(s)| \le c_2 e^{\gamma s}$$
 on $[0,\infty)$ for some $c_2, \gamma \in (0,\infty)$, (1.3b)

(H2) $u_0, \varphi_0 \in C([0,T]; C^1(\overline{\Omega}))$ with $u_0|_{\partial_n\Omega_T} \geq 0$ and $\partial_t u_0 - \Delta u_0 \in L^s(\Omega_T), \Delta \varphi_0 \in L^s(\Omega_T)$ $L^{\infty}(0,T;L^{s}(\Omega))$ for each s > 1,

(H3) $\partial \Omega$ is $C^{1,1}$.

Then there is a unique weak solution (u, φ) to (1.1a)-(1.1d) with $u \ge 0$ and

$$\nabla u, \nabla \varphi \in L^{\infty}(\Omega_T).$$
(1.4)

The notion of a weak solution is defined as follows:

Definition 1.1. We say that (u, φ) is a weak solution to (1.1a)-(1.1d) if

- (D1) $u, \varphi \in L^2(0, T; W^{1,2}(\Omega)),$
- (D2) $u = u_0, \varphi = \varphi_0$ on Σ_T in the sense of the trace theorem and

$$-\int_{\Omega_T} u\xi_t dx dt + \int_{\Omega_T} \nabla u \nabla \xi dx dt$$

=
$$\int_{\Omega_T} \sigma(u) |\nabla \varphi|^2 dx dt + \int_{\Omega} u_0(x,0)\xi(x,0)dx, \qquad (1.5a)$$

$$\int_{\Omega_T} \sigma(u) \nabla \varphi \nabla \eta dx dt = 0, \tag{1.5b}$$

for each pair of smooth functions ξ , η with $\xi = \eta = 0$ on Σ_T and $\xi(x, T) = \eta(x, T) = 0$.

542