DOI: 10.4208/ata.OA-2017-0068 December 2021

$\left[\ell_p\right]_{er}$ Euler-Riesz Difference Sequence Spaces

Hacer Bilgin Ellidokuzoğlu^{1,*} and Serkan Demiriz²

¹ Department of Mathematics, Recep Tayyip Erdoğan University, Rize, Turkey

 2 Department of Mathematics, Tokat Gaziosman
paşa University, Tokat, Turkey

Received 27 October 2017; Accepted (in revised version) 20 November 2018

Abstract. Başar and Braha [1], introduced the sequence spaces $\check{\ell}_{\infty}$, \check{c} and \check{c}_0 of Euler-Cesáro bounded, convergent and null difference sequences and studied their some properties. Then, in [2], we introduced the sequence spaces $[\ell_{\infty}]_{e,r}$, $[c]_{e,r}$ and $[c_0]_{e,r}$ of Euler-Riesz bounded, convergent and null difference sequences by using the composition of the Euler mean E_1 and Riesz mean R_q with backward difference operator Δ . The main purpose of this study is to introduce the sequence space $[\ell_p]_{e,r}$ of Euler-Riesz p-absolutely convergent series, where $1 \le p < \infty$, difference sequences by using the composition of the Euler mean E_1 and Riesz mean R_q with backward difference operator Δ . The main purpose of the inclusion $\ell_p \subset [\ell_p]_{e,r}$ hold, the basis of the sequence space $[\ell_p]_{e,r}$ is constucted and $\alpha -$, $\beta -$ and γ -duals of the space are determined. Finally, the classes of matrix transformations from the $[\ell_p]_{e,r}$ Euler-Riesz difference sequence space to the spaces ℓ_{∞} , c and c_0 are characterized. We devote the final section of the paper to examine some geometric properties of the space $[\ell_p]_{e,r}$.

Key Words: Composition of summability methods, Riesz mean of order one, Euler mean of order one, backward difference operator, sequence space, BK space, Schauder basis, β -duals, matrix transformations.

AMS Subject Classifications: 40C05, 40A05, 46A45

1 Preliminaries, background and notation

By a sequence space, we understand a linear subspace of the space $w = \mathbb{C}^{\mathbb{N}}$ of all complex sequences which contains ϕ , the set of all finitely non-zero sequences, where $\mathbb{N} = \{0, 1, \cdots\}$. We shall write ℓ_{∞}, c and c_0 for the spaces of all bounded, convergent and null sequences, respectively. Also by bs, cs, ℓ_1 and ℓ_p , we denote the spaces of all bounded, convergent, absolutely and p-absolutely convergent series, respectively, where 1 .

http://www.global-sci.org/ata/

©2021 Global-Science Press

^{*}Corresponding author. *Email addresses:* hacer.bilgin@erdogan.edu.tr (H. Ellidokuzoğlu), serkandemiriz@gmail.com (S. Demiriz)

We shall assume throughout unless stated otherwise that p, q > 1 with $p^{-1} + q^{-1} = 1$ and 0 < r < 1, and use the convention that any term with negative subscript is equal to naught.

Let λ , μ be two sequence spaces and $A = (a_{nk})$ be an infinite matrix of real or complex numbers a_{nk} , where $n, k \in \mathbb{N}$. Then, we say that A defines a matrix mapping from λ into μ , and we denote it by writing $A : \lambda \to \mu$, if for every sequence $x = (x_k) \in \lambda$ the sequence $Ax = \{(Ax)_n\}$, the A-transform of x, is in μ ; where

$$(Ax)_n = \sum_k a_{nk} x_k, \quad (n \in \mathbb{N}).$$
(1.1)

By (λ, μ) , we denote the class of all matrices A such that $A : \lambda \to \mu$. Thus, $A \in (\lambda, \mu)$ if and only if the series on the right hand side of (1.1) converges for each $n \in \mathbb{N}$ and every $x \in \lambda$, and we have $Ax = \{(Ax)_n\}_{n \in \mathbb{N}} \in \mu$ for all $x \in \lambda$. A sequence x is said to be A-summable to α if Ax converges to α which is called the A-limit of x.

Let *X* be a sequence space and *A* be an infinite matrix. The sequence space

$$X_A = \{ x = (x_k) \in w : Ax \in X \}$$
(1.2)

is called the domain of *A* in *X* which is a sequence space.

A sequence space λ with a linear topology is called a K- space provided each of the maps $p_i : \lambda \to \mathbb{C}$ defined by $p_i(x) = x_i$ is continuous for all $i \in \mathbb{N}$. A K- space is called an FK- space provided λ is a complete linear metric space. An FK- space whose topology is normal is called a BK- space. If a normed sequence space λ contains a sequence (b_n) with the property that for every $x \in \lambda$ there is a unique sequence of scalars (α_n) such that

$$\lim_{n\to\infty}||x-(\alpha_0b_0+\alpha_1b_1+\cdots+\alpha_nb_n)||=0,$$

then (b_n) is called a Schauder basis (or briefly basis) for λ . The series $\sum \alpha_k b_k$ which has the sum x is then called the expansion of x with respect to (b_n) , and written as $x = \sum \alpha_k b_k$.

A matrix $A = (a_{nk})$ is called a triangle if $a_{nk} = 0$ for k > n and $a_{nn} \neq 0$ for all $n \in \mathbb{N}$. It is trivial that A(Bx) = (AB)x holds for the triangle matrices A, B and a sequence x. Further, a triangle matrix U uniquely has an inverse $U^{-1} = V$, which is also a triangle matrix. Then, x = U(Vx) = V(Ux) holds for all $x \in w$.

Let us give the definition of some triangle limitation matrices which are needed in the text. Δ denotes the backward difference matrix $\Delta = (\Delta_{nk})$ and $\Delta' = (\Delta'_{nk})$ denotes the transpose of the matrix Δ , the forward difference matrix, which are defined by

$$\Delta_{nk} = \begin{cases} (-1)^{n-k}, & n-1 \le k \le n, \\ 0, & 0 \le k < n-1 & \text{or } k > n, \end{cases}$$

$$\Delta'_{nk} = \begin{cases} (-1)^{n-k}, & n \le k \le n+1, \\ 0, & 0 \le k < n & \text{or } k > n+1, \end{cases}$$

for all $k, n \in \mathbb{N}$; respectively.