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Abstract. In this article we introduce the paranormed sequence spaces ( f ,Λ,∆m, p),

c0( f ,Λ,∆m, p) and ℓ∞( f ,Λ,∆m, p), associated with the multiplier sequence Λ = (λk), de-

fined by a modulus function f . We study their different properties like solidness, sym-

metricity, completeness etc. and prove some inclusion results.
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1 Introduction

Throughout the article w, c, c0, ℓ∞ denote the spaces of all, convergent, null and bounded

sequences, respectively. The zero sequence is denoted by θ = (0, 0, 0, · · · ). The scope for the

studies on sequence spaces was extended on introducing the notion of an associated multiplier

sequence. S. Goes and G. Goes in [3] defined the differentiated sequence space dE and the

integrated sequence space

∫
E for a given sequence space E , by using the multiplier sequence

(k−1) and (k), respectively. P.K. Kamthan in [4] used (k!) as the multiplier sequence for studying

some sequence spaces. We shall use a general multiplier sequence Λ = (λk) for our study.



22 B. C. Tripathy et al : On Some Generalized Difference Paranormed Sequence Spaces

The notion of difference sequence was introduced by H. Kizmaz in [5] as follows:

Z(∆) = {(xk) ∈ w : (∆xk) ∈ Z},

for Z = c,c0 and ℓ∞, where ∆xk = xk − xk+1, for all k ∈ N.

It was further generalized in [12] as follows:

Z(∆m) = {(xk) ∈ w : (∆mxk) ∈ Z},

for Z = c,c0 and ℓ∞, where ∆mxk = xk − xk+m, for all k ∈ N.

Throughout the article p = (pk) is a sequence of strictly positive real numbers. The notion

of paranormed sequences was studied by [10] at the initial stage. It was further investigated by

[6], [7], [11], [13] and many others.

The notion of modulus function was introduced by Nakano in [8]. It was further investigated

with applications to sequence spaces by [1], [9] and many others.

Remark 1.1. It is well known that ℓ∞(p) = ℓ∞, c(p) = c and c0(p) = c0 if and only if

0 < h = inf pk ≤ H = sup pk < ∞, (one may refer to [6] and [7]).

2 Definitions and Preliminaries

Definition 2.1. A modulus f is a mapping from [0,∞) into [0,∞) such that

(i) f (x) = 0 if and only if x = 0;

(ii) f (x+ y) ≤ f (x)+ f (y);

(iii) f is increasing;

(iv) f is continuous from the right at 0.

Hence f is continuous everywhere in [0,∞).

Definition 2.2. A sequence space E is said to be solid (or normal) if (αkxk) ∈ E , whenever

(xk) ∈ E and for all sequences (αk) of scalars with |αk| ≤ 1, for all k ∈ N.

Definition 2.3. A sequence space E is said to be monotone if it contains the canonical

preimages of all its step spaces.

Remark 2.1. From the above definitions it is clear that " A sequence space E is solid

implies that E is monotone".

Definition 2.4. A sequence space E is said to be symmetric if (xπ(n))∈ E , whenever (xn)∈

E , where π is a permutation of N.

Definition 2.5. A sequence space E is said to be convergence free if (yn) ∈ E , whenever

(xn) ∈ E and xn = 0 implies yn = 0.


