BOUNDEDNESS OF COMMUTATORS FOR MARCINKIEWICZ INTEGRALS ON WEIGHTED HERZ-TYPE HARDY SPACES

Cuilan Wu

(Xuzhou Normal University, China)

Received Dec. 2, 2010

© Editorial Board of Analysis in Theory & Applications and Springer-Verlag Berlin Heidelberg 2011

Abstract. In this paper, the authors study the boundedness of the operator μ_{Ω}^b , the commutator generated by a function $b \in \text{Lip}_{\beta}(\mathbf{R^n})(0 < \beta < 1)$ and the Marcinkiewicz integral μ_{Ω} on weighted Herz-type Hardy spaces.

Key words: Marcinkiewicz integral, commutator, weighted Herz space, Hardy space

AMS (2010) subject classification: 42B20, 42B25

1 Introduction and Main Result

Let S^{n-1} denote the unit sphere of $\mathbf{R}^{\mathbf{n}}(n \geq 2)$ with Lebesgue measure $d\sigma = d\sigma(x')$. Let $\Omega \in L^1(S^{n-1})$ be homogeneous of degree zero on $\mathbf{R}^{\mathbf{n}}$ and satisfy the cancelation condition

$$\int_{S^{n-1}} \Omega(x') d\sigma(x') = 0,$$

where x' = x/|x| for any $x \neq 0$. The higher-dimentional Marcinkiewicz integral μ_{Ω} is defined by

$$\mu_{\Omega}(f)(x) = \left(\int_0^{\infty} |F_{\Omega,t}(f)(x)|^2 \frac{dt}{t^3}\right)^{1/2},$$

where

$$F_{\Omega,t}(f)(x) = \int_{|x-y| \le t} \frac{\Omega(x-y)}{|x-y|^{n-1}} f(y) dy.$$

Supported by the Natural Science Foundation of Xuzhou Normal University (09XLB02).

The operator μ_{Ω} is first defined by Stein^[1]. Meanwhile, Stein has proved that if Ω is continuous and satisfies the Lip $\alpha(S^{n-1})(0 < \alpha \le 1)$ condition

$$|\Omega(x') - \Omega(y')| \le C|x' - y'|^{\alpha}, \qquad \forall x', y' \in S^{n-1},$$

then μ_{Ω} is an operator of strong type (p,p)(1 and of weak type <math>(1,1). In [2], it is proved that if $\Omega \in C^1(S^{n-1})$, then μ_{Ω} is bounded on $L^p(\mathbf{R}^n)$ for $1 . The boundedness of <math>\mu_{\Omega}$ have been discussed by many authors(see [3-4] etc).

On the other hand, let $b \in L_{loc}(\mathbf{R}^{\mathbf{n}})$, the commutator μ_{Ω}^{b} is defined by

$$\mu_{\Omega}^{b}(f)(x) = \left(\int_{0}^{\infty} |F_{\Omega,b,t}(f)(x)|^{2} \frac{\mathrm{d}t}{t^{3}}\right)^{1/2},$$

where

$$F_{\Omega,b,t}(f)(x) = \int_{|x-y| \le t} \frac{\Omega(x-y)}{|x-y|^{n-1}} (b(x) - b(y)) f(y) dy.$$

In this paper $b \in \text{Lip}_{\beta}(\mathbf{R}^{\mathbf{n}})$ $(0 < \beta < 1)$, which is the homogeneous Lipschitz space consisting of all functions f such that

$$||f||_{Lip_{\beta}} = \sup_{x,y \in \mathbf{R}^n, x \neq y} \frac{|f(x) - f(y)|}{|x - y|^{\beta}} < \infty.$$

Obviously, if $b \in \text{Lip}_{\beta}(\mathbf{R}^{\mathbf{n}})(0 < \beta < 1)$, then

$$|b(x) - b(y)| \le C||b||_{\operatorname{Lip}_{\beta}}|x - y|^{\beta} \ (\forall x, y \in \mathbf{R}^{\mathbf{n}}).$$

Recently, Cheng and $\mathrm{Shu}^{[5]}$ considered the commutator μ^b_Ω on Herz-type Hardy spaces, and proved the following theorem.

Theorem A. Suppose that $\Omega \in \text{Lip}_{V}(S^{n-1})(0 < v \le 1), b \in \text{Lip}_{\beta}(\mathbf{R}^{\mathbf{n}})(0 < \beta < \min\{1/2, v\}), 0 < p < \infty, 1 < q_{1}, q_{2} < \infty \ and$

$$1/q_1 - 1/q_2 = \beta/n$$
, $n(1-1/q_1) \le \alpha < n(1-1/q_1) + \beta$,

then μ_{Ω}^{b} is bounded from $H\dot{K}_{q_{1}}^{\alpha,p}(\boldsymbol{R^{n}})$ to $\dot{K}_{q_{2}}^{\alpha,p}(\boldsymbol{R^{n}}).$

Lu and Yang^[6] introduced the weighted Herz-type Hardy space, and built the atomic decomposition theory. Motivated by [5-6], we consider the weighted boundedness of μ_{Ω}^b and present our result as follows.

Theorem 1. Suppose that $\Omega \in \text{Lip}_{V}(S^{n-1})(0 < v \le 1), b \in \text{Lip}_{\beta}(\mathbf{R}^{\mathbf{n}})(0 < \beta < \min\{1/2, v\}), 0 < p_{1} \le p_{2} < \infty, 1 < q_{1}, q_{2} < \infty \text{ and }$

$$1/q_1 - 1/q_2 = \beta/n$$
, $n(1-1/q_1) \le \alpha < n(1-1/q_1) + \beta$,

and $\omega_1 \in A_1$, $\omega_2^{q_2} \in A_1$, then μ_{Ω}^b is bounded from $H\dot{K}_{q_1}^{\alpha,p_1}(\omega_1,\omega_2^{q_1})$ to $\dot{K}_{q_2}^{\alpha,p_2}(\omega_1,\omega_2^{q_2})$.