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Abstract. In this paper, the notion gf-wavelet packets on the positive half-lile is in-
troduced. A new method for constructing non-orthogonaleletvpackets related to Walsh
functions is developed by splitting the wavelet subspagestly instead of using the low-
pass and high-pass filters associated with the multirasalanalysis as used in the classi-
cal theory of wavelet packets. Further, the method oversahedifficulty of constructing
non-orthogonal wavelet packets of the dilation fagior 2.
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1 Introduction

In the early nineties a general scheme for the constructiomawelets was defined. This
scheme is based on the notion of multiresolution analysRA)Mintroduced by Mallat®. Im-
mediately specialists started to implement new waveldeays and in recent years, the concept
MRA of R" has been extended to many different setups, for exampldk®atiroduced mul-
tiresolution analysis and wavelets on locally compact Arebroups’, Land*¥ constructed
compactly supported orthogonal wavelets on the locally maech Cantor dyadic groug@ by
following the procedure of Daubechiés via scaling filters and these wavelets turn out to be
certain lacunary Walsh series on the real line. On the o#tmethJiang et al3 pointed out
a method for constructing orthogonal wavelets on local fieldiith a constant generating se-
guence and derived necessary and sufficient conditionsdoluéion of the refinement equation
to generate a multiresolution analysisL3{K ). Subsequently, the tight wavelet frames on local
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fields were constructed by Li and Jiangl{fl. Farkov”) extended the results of La#§ on the
wavelet analysis on the Cantor dyadic gratipo the locally compact Abelian grou@, which

is defined for an integep > 2 and coincides witl® when p = 2. Concerning the construc-
tion of wavelets on a half-line, Farkd¥ has given the general construction of all compactly
supported orthogonal-wavelets inL?(R*) and proved necessary and sufficient conditions for
scaling filters withp” many termgp,n > 2) to generate @-MRA analysis inL?(R*). These
studies were continued by Farkov and his colleagues in [9ydltere they have given some new
algorithms for constructing the corresponding biorthajamd nonstationary wavelets related
to the Walsh functions on the positive half-life”. On the otherhand, Shah and Debiffdth
have constructed dyadic wavelet frames on the positivelin@fR™ using the Walsh-Fourier
transform and have established a necessary condition amifi@ent condition for the system
{212y(2Ixek) 1 j € Z,ke Z*} to be a frame foL3(R™).

It is well-known that the classical orthonormal waveletdmbave poor frequency localiza-
tion. For example, if the wavelep is band limited, then the measure of the supgysfy)” is
2i-times that of supi. To overcome this disadvantage, Coifman ef/atonstructed univariate
orthogonal wavelet packets. The fundamental idea of wapaleket analysis is to construct a
library of orthonormal bases fa(R), which can be searched in real time for the best expansion
with respect to a given application.

Let ¢(x) and@(x) be the scaling function and the wavelet function associaféta mul-

tiresolution analysis{vj} LetW, be the corresponding wavelet subspaces:

jez:
W, :sp—an{wj_k:kez}.

Using the low-pass and high-pass filters associated wittMR@, the spacéV; can be split

into two orthogonal subspaces, each of them can further liiérgp two parts. Repeating this
processj times,W; is decomposed into/2subspaces each generated by integer translates of
a single function. If we apply this to eadh|, then the resulting basis & (R) which will
consist of integer translates of a countable number of fonst will give a better frequency
localization. This basis is called theavelet packet basisTo describe this more formally, we
introduce a parameterto denote the frequency. S&y = ¢ and define recursively

Wn(X) = Man(X=K),  @na(X) = ) Gean(2x—k),
kez kez

where {hc},., and{g«},. are the low-pass filter and high-pass filter corresponding (t9
and(x), respectively. Chui and i3 generalized the concept of orthogonal wavelet packets to



