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Abstract. In this paper, the notion ofp-wavelet packets on the positive half-lineR
+ is in-

troduced. A new method for constructing non-orthogonal wavelet packets related to Walsh

functions is developed by splitting the wavelet subspaces directly instead of using the low-

pass and high-pass filters associated with the multiresolution analysis as used in the classi-

cal theory of wavelet packets. Further, the method overcomes the difficulty of constructing

non-orthogonal wavelet packets of the dilation factorp > 2.
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1 Introduction

In the early nineties a general scheme for the construction of wavelets was defined. This

scheme is based on the notion of multiresolution analysis (MRA) introduced by Mallat[16]. Im-

mediately specialists started to implement new wavelet systems and in recent years, the concept

MRA of Rn has been extended to many different setups, for example, Dahlke introduced mul-

tiresolution analysis and wavelets on locally compact Abelian groups[5], Lang[14] constructed

compactly supported orthogonal wavelets on the locally compact Cantor dyadic groupC by

following the procedure of Daubechies[6] via scaling filters and these wavelets turn out to be

certain lacunary Walsh series on the real line. On the otherhand, Jiang et al.[13] pointed out

a method for constructing orthogonal wavelets on local fieldK with a constant generating se-

quence and derived necessary and sufficient conditions for asolution of the refinement equation

to generate a multiresolution analysis ofL2(K). Subsequently, the tight wavelet frames on local
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fields were constructed by Li and Jiang in[15]. Farkov[7] extended the results of Lang[14] on the

wavelet analysis on the Cantor dyadic groupC to the locally compact Abelian groupGp which

is defined for an integerp ≥ 2 and coincides withC when p = 2. Concerning the construc-

tion of wavelets on a half-line, Farkov[8] has given the general construction of all compactly

supported orthogonalp-wavelets inL2(R+) and proved necessary and sufficient conditions for

scaling filters withpn many terms(p,n ≥ 2) to generate ap-MRA analysis inL2(R+). These

studies were continued by Farkov and his colleagues in [9,10], where they have given some new

algorithms for constructing the corresponding biorthogonal and nonstationary wavelets related

to the Walsh functions on the positive half-lineR+. On the otherhand, Shah and Debnath[21]

have constructed dyadic wavelet frames on the positive half-line R+ using the Walsh-Fourier

transform and have established a necessary condition and a sufficient condition for the system
{

2 j/2ψ(2 jx⊖k) : j ∈ Z,k∈ Z+
}

to be a frame forL2(R+).

It is well-known that the classical orthonormal wavelet bases have poor frequency localiza-

tion. For example, if the waveletψ is band limited, then the measure of the supp of(ψ j,k)
∧ is

2 j -times that of supp̂ψ . To overcome this disadvantage, Coifman et al.[4] constructed univariate

orthogonal wavelet packets. The fundamental idea of wavelet packet analysis is to construct a

library of orthonormal bases forL2(R), which can be searched in real time for the best expansion

with respect to a given application.

Let ϕ(x) andψ(x) be the scaling function and the wavelet function associatedwith a mul-

tiresolution analysis
{

Vj
}

j∈Z . LetWj be the corresponding wavelet subspaces:

Wj = span
{

ψ j,k : k∈ Z
}

.

Using the low-pass and high-pass filters associated with theMRA, the spaceWj can be split

into two orthogonal subspaces, each of them can further be split into two parts. Repeating this

processj times,Wj is decomposed into 2j subspaces each generated by integer translates of

a single function. If we apply this to eachWj , then the resulting basis ofL2(R) which will

consist of integer translates of a countable number of functions, will give a better frequency

localization. This basis is called thewavelet packet basis. To describe this more formally, we

introduce a parametern to denote the frequency. Setω0 = ϕ and define recursively

ω2n(x) = ∑
k∈Z

hkωn(2x−k), ω2n+1(x) = ∑
k∈Z

gkωn(2x−k),

where{hk}k∈Z and{gk}k∈Z are the low-pass filter and high-pass filter corresponding toϕ(x)

andψ(x), respectively. Chui and Li[2] generalized the concept of orthogonal wavelet packets to


