A Complement to the Valiron-Titchmarsh Theorem for Subharmonic Functions

Alexander I. Kheyfits

Bronx Community College and the Graduate Center of the City University of New York, 2155 University Avenue, Bronx, New York 10453, USA

Received 29 December 2013; Accepted (in revised version) 5 March 2014
Available online 31 March 2014

Abstract. The Valiron-Titchmarsh theorem on asymptotic behavior of entire functions with negative zeros has been recently generalized onto subharmonic functions with the Riesz measure on a half-line in \mathbb{R}^n, $n \geq 3$. Here we extend the Drasin complement to the Valiron-Titchmarsh theorem and show that if u is a subharmonic function of this class and of order $0 < \rho < 1$, then the existence of the limit $\lim_{r \to \infty} \log u(r)/N(r)$, where $N(r)$ is the integrated counting function of the masses of u, implies the regular asymptotic behavior for both u and its associated measure.

Key Words: Valiron-Titchmarsh theorem, Tauberian theorems for entire functions with negative zeros, Subharmonic functions in \mathbb{R}^n with Riesz masses on a ray, associated Legendre functions on the cut.

AMS Subject Classifications: 31B05, 30D15, 30D35

1 Main result

The well-known Valiron-Titchmarsh Tauberian theorem [6] states that if an entire function $f(z)$ of non-integer order ρ with negative zeros has regular behavior for $z = x > 0$, i.e., there exists the finite limit

$$\lim_{r \to \infty} r^{-\rho} \log f(r) = h,$$

then its zeros have the density $\lim_{t \to \infty} t^{-\rho} n(t) = \frac{\sin \pi \rho}{\pi} h$, where n is the counting function of the zeros of f. In turn, this implies that the function f is of completely regular growth in the entire complex plane. For the history of this result and the relevant references see, e.g., [5]. Drasin [1] proved a complementary result.

*Corresponding author. Email address: akheyfits@gc.cuny.edu (A. I. Kheyfits)
If \(f \) is an entire function of order \(\lambda, 0 < \lambda < 1, \) with all zeros real and negative, then either one of the conditions
\[
\log \frac{M(r)}{n(r)} \to L > 0, \quad r \to \infty,
\]
or
\[
\log \frac{M(r)}{N(r)} \to L\lambda > 0, \quad r \to \infty,
\]
where \(N(r) = \int_0^r t^{-1} n(t) dt \), implies the asymptotic relation as \(r \to \infty, \)
\[
\log M(r) \sim r^\lambda \psi(r).
\]
Here \(\lambda \) is determined by the transcendental equation \(L = \pi / \sin(\pi \lambda) \) and \(\psi \) is a slowly varying function, that is, \(\psi(\sigma r) / \psi(r) \to 1 \) as \(r \to \infty \) for each fixed \(\sigma > 0 \). The relation \(a \sim b \) hereafter means the existence of the limit \(\lim_{r \to \infty} a(r) / b(r) = 1 \).

The author [5] has recently generalized the Valiron-Titchmarsh theorem onto subharmonic functions in \(\mathbb{R}^n, \ n \geq 3, \) In the present note we complement the results of [5] by extending the Drasin theorem onto the subharmonic functions in \(\mathbb{R}^n, \ n \geq 3. \) Introduce in \(\mathbb{R}^n \) spherical coordinates \(x = (r, \theta), r = |x|, \theta = (\theta_1, \cdots, \theta_{n-1}) \), such that \(x_1 = r \cos \theta_1, 0 \leq \theta_1 \leq \pi, \) and \(0 \leq \theta_k \leq 2\pi \) for \(k = 2, 3, \cdots, n-1. \)

In the case under consideration, the subharmonic functions can be represented as [4, Eq. (4.5.16)]
\[
u(x) = \int_{\mathbb{R}^n} P_n(r, t, \theta_1) d\mu(y) + u_0(x), \quad (1.1)
\]
where \(\mu \) is the Riesz associated mass of \(\nu, \) \(u_0 \) is a subharmonic function of smaller growth than \(\nu, \) and the kernel \(P_n \) is the modified Weierstrass canonical kernel,
\[
P_n(r, t, \theta_1) = rt^{n-2} ((n-1)^2 \cos \theta_1 + rt[n + (n-2) \cos^2 \theta_1] + (n-1)t^2 \cos \theta_1).
\]
Without loss of generality, hereafter we assume \(u(0) = u_0 = 0. \) Let \(n(t) = \mu(B_t) \) be the counting function of the associated masses of \(\nu, \) where \(\overline{B_t} \) is the closed ball of radius \(t \) centered at the origin of \(\mathbb{R}^n, \) and \(N(r) = (n-2) \int_0^r t^{1-n} n(t) dt \) its average. Now we can state our result.

Theorem 1.1. Let \(\nu \) be a subharmonic function in \(\mathbb{R}^n, \ n \geq 3, \) of order \(\rho, 0 < \rho < 1, \) whose Riesz masses are distributed over the negative \(x_1 \)-axis. If the limit
\[
\lim_{r \to \infty} \frac{u(r)}{n(r)} = \Delta \quad (1.2)
\]
exists, then, as \(r \to \infty, \)
\[
u(x) \sim H(\theta) r^\rho \psi(r) \quad (1.3)
\]