Weighted Integral Means of Mixed Areas and Lengths Under Holomorphic Mappings

Jie Xiao^{1,*} and Wen Xu²

 ¹ Department of Mathematics and Statistics, Memorial University, NL A1C 5S7, Canada
² Department of Physics and Mathematics, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland

Received 31 October 2013; Accepted (in revised version) 1 March 2014

Available online 31 March 2014

Abstract. This note addresses monotonic growths and logarithmic convexities of the weighted $((1-t^2)^{\alpha}dt^2, -\infty < \alpha < \infty, 0 < t < 1)$ integral means $A_{\alpha,\beta}(f,\cdot)$ and $L_{\alpha,\beta}(f,\cdot)$ of the mixed area $(\pi r^2)^{-\beta}A(f,r)$ and the mixed length $(2\pi r)^{-\beta}L(f,r)$ $(0 \le \beta \le 1$ and 0 < r < 1) of $f(r\mathbb{D})$ and $\partial f(r\mathbb{D})$ under a holomorphic map f from the unit disk \mathbb{D} into the finite complex plane \mathbb{C} .

Key Words: Monotonic growth, logarithmic convexity, mean mixed area, mean mixed length, isoperimetric inequality, holomorphic map, univalent function.

AMS Subject Classifications: 32A10, 32A36, 51M25

1 Introduction

From now on, \mathbb{D} represents the unit disk in the finite complex plane \mathbb{C} , $H(\mathbb{D})$ denotes the space of holomorphic mappings $f:\mathbb{D}\to\mathbb{C}$, and $U(\mathbb{D})$ stands for all univalent functions in $H(\mathbb{D})$. For any real number α , positive number $r \in (0,1)$ and the standard area measure dA, let

$$dA_{\alpha}(z) = (1 - |z|^2)^{\alpha} dA(z), \quad r\mathbb{D} = \{z \in \mathbb{D} : |z| < r\}, \quad r\mathbb{T} = \{z \in \mathbb{D} : |z| = r\}$$

In their recent paper [11], Xiao and Zhu have discussed the following area $0 integral mean of <math>f \in H(\mathbb{D})$:

$$M_{p,\alpha}(f,r) = \left[\frac{1}{A_{\alpha}(r\mathbb{D})}\int_{r\mathbb{D}}|f|^{p}dA_{\alpha}\right]^{\frac{1}{p}},$$

http://www.global-sci.org/ata/

©2014 Global-Science Press

^{*}Corresponding author. Email addresses: jxiao@mun.ca(J. Xiao), wen.xu@uef.fi(W. Xu)

proving that $r \mapsto M_{p,\alpha}(f,r)$ is strictly increasing unless f is a constant, and $\log r \mapsto \log M_{p,\alpha}(f,r)$ is not always convex. This last result suggests such a conjecture that $\log r \mapsto \log M_{p,\alpha}(f,r)$ is convex or concave when $\alpha \leq 0$ or $\alpha > 0$. But, motivated by [11, Example 10, (ii)] we can choose p = 2, $\alpha = 1$, f(z) = z + c and c > 0 to verify that the conjecture is not true. At the same time, this negative result was also obtained in Wang-Zhu's manuscript [10]. So far it is unknown whether the conjecture is generally true for $p \neq 2$ -see [9] for a recent development.

The foregoing observation has actually inspired the following investigation. Our concentration is the fundamental case p = 1. To understand this new approach, let us take a look at $M_{1,\alpha}(\cdot, \cdot)$ from a differential geometric viewpoint. Note that

$$M_{1,\alpha}(f',r) = \frac{\int_{r\mathbb{D}} |f'| dA_{\alpha}}{A_{\alpha}(r\mathbb{D})} = \frac{\int_{0}^{r} \left\lfloor (2\pi t)^{-1} \int_{t\mathbb{T}} |f'(z)| |dz| \right\rfloor (1-t^{2})^{\alpha} dt^{2}}{\int_{0}^{r} (1-t^{2})^{\alpha} dt^{2}}.$$

So, if $f \in U(\mathbb{D})$, then

$$(2\pi t)^{-1} \int_{t\mathbb{T}} |f'(z)| |dz|$$

is a kind of mean of the length of $\partial f(t\mathbb{D})$, and hence the square of this mean dominates a sort of mean of the area of $f(t\mathbb{D})$ in the isoperimetric sense:

$$\Phi_A(f,t) = (\pi t^2)^{-1} \int_{t\mathbb{D}} |f'(z)|^2 dA(z) \le \left[(2\pi t)^{-1} \int_{t\mathbb{T}} |f'(z)| |dz| \right]^2 = \left[\Phi_L(f,t) \right]^2.$$

In accordance with the well-known Pólya-Szegö monotone principle [8, Problem 309] (or [2, Proposition 6.1]) and the area Schwarz's lemma in Burckel, Marshall, Minda, Poggi-Corradini and Ransford [2, Theorem 1.9], $\Phi_L(f,\cdot)$ and $\Phi_A(f,\cdot)$ are strictly increasing on (0,1) unless $f(z) = a_1 z$ with $a_1 \neq 0$. Furthermore, $\log \Phi_L(f,r)$ and $\log \Phi_A(f,r)$, equivalently, $\log L(f,r)$ and $\log A(f,r)$, are convex functions of $\log r$ for $r \in (0,1)$, due to the classical Hardy's convexity and [2, Section 5]. Perhaps, it is worthwhile to mention that if c > 0 is small enough then the universal cover of \mathbb{D} onto the annulus $\{e^{-c\pi/2} < |z| < e^{c\pi/2}\}$:

$$f(z) = \exp\left[ic\log\left(\frac{1+z}{1-z}\right)\right]$$

enjoys the property that $\log r \mapsto \log A(f,r)$ is not convex; see [2, Example 5.1].

In the above and below, we have used the following convention:

$$\Phi_A(f,r) = \frac{A(f,r)}{\pi r^2}$$
 and $\Phi_L(f,r) = \frac{L(f,r)}{2\pi r}$,

where under $r \in (0,1)$ and $f \in H(\mathbb{D})$, A(f,r) and L(f,r) stand respectively for the area of $f(r\mathbb{D})$ (the projection of the Riemannian image of $r\mathbb{D}$ by f) and the length of $\partial f(r\mathbb{D})$ (the boundary of the projection of the Riemannian image of $r\mathbb{D}$ by f) with respect to the standard Euclidean metric on \mathbb{C} . For our purpose, we choose a shortcut notation

$$d\mu_{\alpha}(t) = (1-t^2)^{\alpha} dt^2$$
 and $\nu_{\alpha}(t) = \mu_{\alpha}([0,t]), \quad \forall t \in (0,1),$