Existence and Uniqueness of Renormalized Solution of Nonlinear Degenerated Elliptic Problems

Youssef Akdim and Chakir Allalou*

Faculté Poly-disciplinaire de Taza, B.P 1223 Taza Gare, Maroc

Received 6 March 2013; Accepted (in revised version) 26 August 2014

Available online 16 October 2014

Abstract. In this paper, We study a general class of nonlinear degenerated elliptic problems associated with the differential inclusion $\beta(u) - div(a(x,Du) + F(u)) \ni f$ in Ω , where $f \in L^1(\Omega)$. A vector field $a(\cdot, \cdot)$ is a Carathéodory function. Using truncation techniques and the generalized monotonicity method in the functional spaces we prove the existence of renormalized solutions for general L^1 -data. Under an additional strict monotonicity assumption uniqueness of the renormalized solution is established.

Key Words: Weighted Sobolev spaces, Hardy inequality, Truncations, maximal monotone graphe, degenerated elliptic operators.

AMS Subject Classifications: 35K45, 35K61, 35K65

1 Introduction

Let Ω be a bounded open set of \mathbb{R}^N ($N \ge 1$) with Lipschitz boundary if $N \ge 2$, p be a real number such that $1 and <math>w = \{w_i(x), 0 \le i \le N\}$ be a vector of weight functions on Ω , i.e., each $w_i(x)$ is a measurable a.e. positive on Ω . Let $W_0^{1,p}(\Omega, w)$ be the weighted Sobolev space associated with the vector w. Our aim is to show the existence and uniqueness of renormalized solutions to the following nonlinear elliptic equation

$$\begin{cases} \beta(u) - div(a(x, Du) + F(u)) \ni f & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}$$
(1.1)

with a right-hand side f which is assumed to belong either to $L^{\infty}(\Omega)$ or to $L^{1}(\Omega)$ for Eq. (1.1). Furthermore, $F : \mathbb{R} \to \mathbb{R}^{\mathbb{N}}$ is locally lipschitz continuous and $\beta : \mathbb{R} \to 2^{\mathbb{R}}$ a set valued, maximal monotone mapping such that $0 \in \beta(0)$, Moreover, we assume that

$$\mathcal{B}^0(l) \in L^1(\Omega) \tag{1.2}$$

http://www.global-sci.org/ata/

©2014 Global-Science Press

^{*}Corresponding author. *Email addresses:* akdimyoussef@yahoo.fr (Y. Akdim), chakir_alalou@yahoo.fr (C. Allalou)

for each $l \in \mathbb{R}$, where β^0 denotes the minimal selection of the graph of β . Namely $\beta_0(l)$ is the minimal in the norm element of $\beta(l)$

$$\beta_0(l) = \inf\{|r|/r \in \mathbb{R} \text{ and } r \in \beta(l)\}$$

 $a: \Omega \times \mathbb{R}^N \to \mathbb{R}^N$ is a Carathéodory function satisfying the following assumptions:

 (A_1) There exists a positive constant λ such that

$$a(x,\xi)\cdot\xi \ge \lambda \sum_{i=1}^N w_i |\xi_i|^p$$

holds for all $\xi \in \mathbb{R}^N$ and almost every $x \in \Omega$.

- (A₂) $|a_i(x,\xi)| \le \alpha w_i^{p^{-1}}(x)[k(x) + \sum_{j=1}^N w_j^{p'^{-1}}(x)|\xi_j|^{p-1}]$ for almost every $x \in \Omega$, all $i=1,\dots,N$ and every $\xi \in \mathbb{R}^N$, where k(x) is a nonnegative function in $L^{p'}(\Omega)$, p' = p/(p-1), for a.e. $x \in \Omega$ and $\alpha > 0$.
- (*A*₃) $(a(x,\xi)-a(x,\eta))\cdot(\xi-\eta) \ge 0$ for almost every $x \in \Omega$ and every $\xi, \eta \in \mathbb{R}^N$.

We use in this paper the the framework of renormalized solutions. This notion was introduced by Diperna and P.-L. Lions [9] in their study of the Boltzmann equation. This notion was then adapted to an elliptic version of Eq. (1.1) by L. Boccardo et al. [4] when the right hand side is in $W^{-1,p'}(\Omega)$, by J.-M. Rakotoson [16] when the right hand side is in $L^1(\Omega)$, and finally by G. Dal Maso, F. Murat, L. Orsina and A. Prignet [15] for the case of right hand side is general measure data. The equivalent notion of entropy solution has been introduced by Bénilan et al. in [6]. For results on the existence of renormalized solutions of elliptic problems of type (1.1) with $a(\cdot, \cdot)$ satisfying a variable growth condition we refer to [2, 12, 18] and [4]. One of the motivations for studying (1.1) comes from applications to electrorheological fluids (see [17] for more details) as an important class of non-Newtonian fluids.

The plan of the paper is as follows. In Section 2 we give some preliminaries and the definition of weighted Sobolev spaces. In Section 3 we make precise all the assumptions on a,β,F,f and we introduce the notions of weak and also renormalized solution for the problem (1.1). Our first main result, the existence of a renormalized solution to Eq. (1.1) for any L^{∞} -data f, are collected in Section 4. Our second main result, existence of a renormalized solution to (1.1) for any L^1 -data f, and the results on uniqueness of renormalized solutions are collected in Section 5. Section 6 is devoted to an example for illustrating our abstract result.

2 Preliminaries

Let Ω be a bounded open set of \mathbb{R}^N $(N \ge 1)$ p be a real number such that 1 $and <math>\omega = \{\omega_i(x), 0 \le i \le N\}$ be a vector of weight functions, i.e., every component $\omega_i(x)$