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Abstract. Let T be the singular integral operator with variable kernel, T∗ be the adjoint
of T and T♯ be the pseudo-adjoint of T. Let T1T2 be the product of T1 and T2, T1◦T2

be the pseudo product of T1 and T2. In this paper, we establish the boundedness for
commutators of these operators and the fractional differentiation operator Dγ on the
weighted Morrey spaces.
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1 Introduction

Let Sn−1 be the unit sphere in R
n (n ≥ 2) with normalized Lebesgue measure dσ. The

singular integral operator with variable kernel is defined by

T f (x)=p.v.
∫

Rn

Ω(x,x−y)

|x−y|n
f (y)dy, (1.1)

where Ω(x,z) satisfies the following conditions:

Ω(x,λz)=Ω(x,z) for any x,z∈R
n and λ>0, (1.2a)

∫

Sn−1
Ω(x,z′)dσ(z′)=0 for any x∈R

n. (1.2b)
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Let m∈N, denote by Hm the space of surface spherical harmonics of degree m on Sn−1

with its dimension dm. {Ym,j}
dm
j=1 denotes the normalized complete system in Hm. We can

write (see [1, 3, 9])

Ω(x,z′)= ∑
m≥0

dm

∑
j=1

am,j(x)Ym,j(z
′), (1.3)

where

am,j(x)=
∫

Sn−1
Ω(x,z′)Ym,j(z′)dσ(z′). (1.4)

Let

Tm,j f (x)=
Ym,j

|·|n
∗ f (x).

Then we can write

T f (x)= ∑
m≥0

dm

∑
j=1

am,j(x)Tm,j f (x). (1.5)

Let T∗ and T♯ denote the adjoint of T and the pseudo-adjoint of T respectively, which are
defined by

T∗ f (x)=
∞

∑
m=0

dm

∑
j=1

(−1)mTm,j(am,j f )(x) (1.6)

and

T♯ f (x)=
∞

∑
m=0

dm

∑
j=1

(−1)mam,j(x)Tm,j f (x). (1.7)

Let T1T2 denote the product of T1 and T2, T1◦T2 denote the pseudo product of T1 and T2

(see [1] for the definitions).
In 1955, Calderón and Zygmund [2] investigated the L2 boundedness of the operator

T. Let D be the square root of the Laplacian operator which is defined by D̂ f (ξ)=|ξ| f̂ (ξ).
Let

T1 f (x)=p.v.
∫

Rn

Ω1(x,x−y)

|x−y|n
f (y)dy (1.8)

and

T2 f (x)=p.v.
∫

Rn

Ω2(x,x−y)

|x−y|n
f (y)dy. (1.9)


