Boundedness for the Singular Integral with Variable Kernel and Fractional Differentiation on Weighted Morrey Spaces

Chao Xue¹, Kai Zhu^{2,*} and Yanping Chen¹

¹ Department of Applied Mathematics, University of Science and Technology Beijing, Beijing 100083, China

² School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China

Received 19 May 2015; Accepted (in revised version) 24 July 2016

Abstract. Let *T* be the singular integral operator with variable kernel, T^* be the adjoint of *T* and T^{\sharp} be the pseudo-adjoint of *T*. Let T_1T_2 be the product of T_1 and T_2 , $T_1 \circ T_2$ be the pseudo product of T_1 and T_2 . In this paper, we establish the boundedness for commutators of these operators and the fractional differentiation operator D^{γ} on the weighted Morrey spaces.

Key Words: Singular integral, variable kernel, fractional differentiation, BMO Sobolev space, weighted Morrey spaces.

AMS Subject Classifications: 42B20, 42B25

1 Introduction

Let S^{n-1} be the unit sphere in \mathbb{R}^n $(n \ge 2)$ with normalized Lebesgue measure $d\sigma$. The singular integral operator with variable kernel is defined by

$$Tf(x) = \text{p.v.} \int_{\mathbb{R}^n} \frac{\Omega(x, x-y)}{|x-y|^n} f(y) dy, \qquad (1.1)$$

where $\Omega(x,z)$ satisfies the following conditions:

$$\Omega(x,\lambda z) = \Omega(x,z) \quad \text{for any } x,z \in \mathbb{R}^n \quad \text{and} \quad \lambda > 0, \tag{1.2a}$$

$$\int_{S^{n-1}} \Omega(x, z') d\sigma(z') = 0 \quad \text{for any } x \in \mathbb{R}^n.$$
(1.2b)

http://www.global-sci.org/ata/

©2016 Global-Science Press

^{*}Corresponding author. *Email addresses:* xue_chao09@163.com (C. Xue), kaizhu0116@126.com (K. Zhu), yanpingch@126.com (Y. P. Chen)

Let $m \in \mathbb{N}$, denote by \mathcal{H}_m the space of surface spherical harmonics of degree m on S^{n-1} with its dimension d_m . $\{Y_{m,j}\}_{j=1}^{d_m}$ denotes the normalized complete system in \mathcal{H}_m . We can write (see [1,3,9])

$$\Omega(x,z') = \sum_{m \ge 0} \sum_{j=1}^{d_m} a_{m,j}(x) Y_{m,j}(z'), \qquad (1.3)$$

where

$$a_{m,j}(x) = \int_{S^{n-1}} \Omega(x, z') \overline{Y_{m,j}(z')} d\sigma(z').$$
(1.4)

Let

$$T_{m,j}f(x) = \frac{Y_{m,j}}{|\cdot|^n} * f(x).$$

Then we can write

$$Tf(x) = \sum_{m \ge 0} \sum_{j=1}^{d_m} a_{m,j}(x) T_{m,j} f(x).$$
(1.5)

Let T^* and T^{\sharp} denote the adjoint of *T* and the pseudo-adjoint of *T* respectively, which are defined by

$$T^*f(x) = \sum_{m=0}^{\infty} \sum_{j=1}^{d_m} (-1)^m T_{m,j}(\overline{a}_{m,j}f)(x)$$
(1.6)

and

$$T^{\sharp}f(x) = \sum_{m=0}^{\infty} \sum_{j=1}^{d_m} (-1)^m \overline{a}_{m,j}(x) T_{m,j}f(x).$$
(1.7)

Let T_1T_2 denote the product of T_1 and T_2 , $T_1 \circ T_2$ denote the pseudo product of T_1 and T_2 (see [1] for the definitions).

In 1955, Calderón and Zygmund [2] investigated the L^2 boundedness of the operator T. Let D be the square root of the Laplacian operator which is defined by $\widehat{Df}(\xi) = |\xi|\widehat{f}(\xi)$. Let

$$T_1 f(x) = \text{p.v.} \int_{\mathbb{R}^n} \frac{\Omega_1(x, x - y)}{|x - y|^n} f(y) dy$$
(1.8)

and

$$T_2 f(x) = \operatorname{p.v.} \int_{\mathbb{R}^n} \frac{\Omega_2(x, x - y)}{|x - y|^n} f(y) dy.$$
(1.9)