On the Connection between the Order of Riemann-Liouvile Fractional Calculus and Hausdorff Dimension of a Fractal Function

Jun Wang¹, Kui Yao^{1,*} and Yongshun Liang²

 ¹ Institue of Science, PLA University of Science and Technology, Nanjing 211101, China
 ² Institue of Science, Nanjing University of Science and Technology, Nanjing 210094, China

Received 25 December 2015; Accepted (in revised version) 28 July 2016

Abstract. This paper investigates the fractal dimension of the fractional integrals of a fractal function. It has been proved that there exists some linear connection between the order of Riemann-Liouvile fractional integrals and the Hausdorff dimension of a fractal function.

Key Words: Fractional calculus, Hausdorff dimension, Riemann-Liouvile fractional integral. **AMS Subject Classifications**: MR28A80, MR26A33, MR26A30

1 Introduction

Fractional calculus, both of theoretical and practical importance, is an important tool being used to investigate fractal functions and curves. Fractional calculus, such as Riemann-Liouvile fractional integrals, can be effective applied to certain fractals like the Weierstrass function [1]. With the help of the K-dimension, Yao [8,9], Su, and Zhou [11] proved that there exist some linear connection between the order of fractional calculus and the Box dimension, K-dimension, and Packing dimension of graphs of the Weierstrass function. A natural problem is, does this connection still hold for the Hausdorff dimension which is very important in fractal theory? Firstly, we recall the definition of Riemann-Liouvile fractional integral.

Definition 1.1 (see [5]). Let *f* be a function piecewisely continuous on $(0,\infty)$ and integrable on any finite subinterval of $(0,\infty)$. Then we call

$$D^{-v}f(t) = \frac{1}{\Gamma(v)} \int_0^t (t-x)^{v-1} f(x) dx.$$

http://www.global-sci.org/ata/

©2016 Global-Science Press

^{*}Corresponding author. *Email addresses:* junwang920811@163.com (J. Wang), yaokui2015@sina.com (K. Yao), 80884903@qq.com (Y. S. Liang)

Riemann-Liouvile fractional integral of *f* of order *v* for t > 0 and Re(v) > 0.

This paper considers the Weierstrass function with random phase added to each term, i.e.,

$$f_{\Theta}(x) = \sum_{n=0}^{\infty} \lambda^{-\alpha n} \sin(2\pi (\lambda^n x + \theta_n)), \quad x \in I,$$
(1.1)

where $\lambda > 1$, $0 < \alpha < 1$, I = [0,1], $\Theta = \{\theta_0, \theta_1, \theta_2, \cdots\}$. More details about the type of the Weierstrass function can be found in [1,7].

Definition 1.2. Denote Riemann-Liouvile fractional integral of $sin(2\pi(\lambda^n x + \theta_n))$ and $cos(2\pi(\lambda^n x + \theta_n))$ of order v as following

$$S_t(v,\lambda,\theta) = D^{-v}\sin(\lambda^n x + \theta_n) = \frac{1}{\Gamma(v)} \int_0^t (t-\xi)^{v-1}\sin(2\pi(\lambda^n\xi + \theta_n)),$$

$$C_t(v,\lambda,\theta) = D^{-v}\cos(\lambda^n x + \theta_n) = \frac{1}{\Gamma(v)} \int_0^t (t-\xi)^{v-1}\cos(2\pi(\lambda^n\xi + \theta_n)).$$

Then define

$$F_{\theta}(x) = D^{-v}(f_{\theta}(x)) = \sum_{n=0}^{\infty} \lambda^{-\alpha n} S_t(v, \lambda, \theta)$$
(1.2)

be R-L fractional integral of $f_{\theta}(x)$ of order v.

Definition 1.3 (see [2]). Let a Borel set $F \in \mathscr{R}^n$ be given as follows. For $s \ge 0$ and $\delta > 0$, define

$$\mathscr{H}^{s}_{\delta}(F) = \inf \left\{ \sum_{i=1}^{\infty} |U_{i}|^{s} : \{U_{i}\} \text{ is a } \delta \text{-cover of } F \right\},\$$

where $|U| = \sup\{|x-y| : x, y \in U\}$ denotes the diameter of a nonempty set U and the infimum is taken over all countable collections $\{U_i\}$ of sets for which $F \subset \bigcup_{i=1}^{\infty} U_i$ and $0 < |U_i| \le \delta$. As δ decreases, $\mathscr{H}_{\delta}^s(F)$ cannot decrease, and therefore it has a limit (possibly infinite) as $\delta \to 0$, define

$$\mathscr{H}^{s}(F) = \lim_{\delta \to 0} \mathscr{H}^{s}_{\delta}(F).$$

The quantity $\mathscr{H}^{s}(F)$ is known as *s*-dimensional Hausdorff measure of *F*. For a given *F* there is a value dim_{*H*}(*F*) for which $\mathscr{H}^{s}(F) = \infty$ for $s < \dim_{H}(F)$ and $\mathscr{H}^{s}(F) = 0$ for $s > \dim_{H}(F)$. Hausdorff dimension dim_{*H*}(*F*) is defined to be this value, that is:

$$\dim_{H}(F) = \inf\{s: \mathscr{H}^{s}(F) = 0\} = \sup\{s: \mathscr{H}^{s}(F) = \infty\}$$

For simplicity, let

$$\begin{aligned} \widetilde{S}_t(v,\lambda,\theta) &= \Gamma(v)S_t(v,\lambda,\theta), \\ \widetilde{C}_t(v,\lambda,\theta) &= \Gamma(v)C_t(v,\lambda,\theta), \\ C^{\alpha}(I) &= \{f(x) : |f(x) - f(y)| \le c|x - y|^{\alpha}, \forall x, y \in I\}. \end{aligned}$$