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Abstract. In the present paper a numerical method is developed to approximate the
solution of two-dimensional Nonlinear Schrödinger equation in the presence of a sin-
gular potential. The method leads to generalized Lyapunov-Sylvester algebraic opera-
tors that are shown to be invertible using original topological and differential calculus
issued methods. The numerical scheme is proved to be consistent, convergent and sta-
ble using the Lyapunov criterion, lax equivalence theorem and the properties of the
generalized Lyapunov-Sylvester operators.
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1 Introduction

The Schrödinger equation is widely studied from both numerical and theoretical points of
view. This is due to its relation to the modeling of real physical phenomena such as New-
ton’s laws and conservation of energy in classical mechanics, behaviour of dynamical
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systems, the description of a particle in a non-relativistic setting in quantum mechanics,
etc. The Schrödinger’s linear equation states that

∆ψ+
8π2m

h̄2
(E−V(x))ψ=0, (1.1)

where ψ is the Schrödinger wave function, m is the mass, h̄ denotes Planck’s constant,
E is the energy and V is the potential energy. This equation is a prototypical dispersive
linear partial differential equation related to Bose-Einstein condensates and nonlinear op-
tics [10], propagation of electric fields in optical fibers [22, 28], self-focusing and collapse
of Langmuir waves in plasma physics [34], behaviour of rogue waves in oceans [30].

Based upon the analogy between mechanics and optics, Schrödinger established the
classical derivation of his equation. By developing a perturbation method, he proved
the equivalence between his wave mechanics equation and Heisenberg’s matrix one and
thus introduced the time dependent version stated hereafter with a cubic nonlinearity

ih̄ψt=−
h̄2

2m
∆ψ+V(x)ψ−γ|ψ|2ψ in R

N , (N≥2). (1.2)

However, in the nonlinear case such as (1.2), the structure of the nonlinear Schrödinger
equation is more complicated. The nonlinear Schrödinger equation is also related to elec-
tromagnetic, ferromagnetic fields as well as magnums, high-power ultra-short laser self-
channelling in matter, condensed matter theory, dissipative quantum mechanics, [2], film
equations, etc (see [1, 32]).

In [19] and [29] the potential V is assumed to be bounded with a non-degenerate
critical point at x=0. More precisely, V belongs to the class Va, for some real parameter
a (see [26]). With suitable assumptions it is proved in [29] with Lyapunov-Schmidt type
reduction the existence of standing wave solutions of problem (1.2), of the form

ψ(x,t)= e−iEt/h̄u(x). (1.3)

The nonlinear Schrödinger equation (1.2) is thus reduced to the semilinear elliptic equa-
tion

−
h̄2

2m
∆u+(V(x)−E)u= |u|2u.

Setting y= h̄−1x and replacing y by x we get

−∆u+2m(Vh̄(x)−E)u= |u|2u in| R
N , (1.4)

where Vh̄(x)=V(h̄x).
If for some ξ∈RN \{0}, V(x+sξ)=V(x) for all s∈R, Eq. (1.2) is invariant under the

Galilean transformation

ψ(x,t) 7−→exp

(
iξ ·x/h̄−

1

2
i|ξ|2t/h̄

)
ψ(x−ξt,t).


