DOI: 10.4208/ata.OA-2017-0020

Second Hankel Determinants and Fekete-Szegö Inequalities for Some Sub-Classes of Bi-Univalent Functions with Respect to Symmetric and Conjugate Points Related to a Shell Shaped Region

Rayaprolu Bharavi Sharma¹ and Kalikota Rajya Laxmi^{2,*}

 ¹ Department of Mathematics, Kakatiya University, Warangal, Telangana State, India 506009
² SR International Institute of Technology, Hyderabad, Telangana State, India, 501301

Received 28 April 2017; Accepted (in revised version) 24 April 2018

Abstract. In this paper, we have investigated second Hankel determinants and Fekete-Szegö inequalities for some subclasses of Bi-univalent functions with respect to symmetric and Conjugate points which are subordinate to a shell shaped region in the open unit disc Δ .

Key Words: Analytic functions, univalent functions, Bi-univalent functions, second Hankel determinants, Fekete-Szegö inequalities, symmetric points, conjugate points.

AMS Subject Classifications: 30C45, 30C50, 30C80

1 Introduction

Let *A* be the class of all functions of the form

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k, \qquad (1.1)$$

which are analytic in the open unit disc $\Delta = \{z : |z| < 1\}$. Let *S* be the class of all functions in *A* which are univalent in Δ .

Let *P* denote the family of functions p(z) which are analytic in Δ such that p(0) = 1, and $\Re p(z) > 0$ ($z \in \Delta$) of the form $P(z) = 1 + \sum_{n=1}^{\infty} c_n z^n$.

http://www.global-sci.org/ata/

©2018 Global-Science Press

^{*}Corresponding author. *Email addresses:* rbsharma0050gmail.com (R. B. Sharma), rajyalaxmi22060gmail.com (K. R. Laxmi)

For two functions f and g, analytic in Δ , we say that the function f is subordinate to g in Δ and we write it as $f(z) \prec g(z)$ if there exists a Schwartz function ω , which is analytic in Δ with $\omega(0) = 0$, $|\omega(z)| \le 1$ ($z \in \Delta$) such that

$$f(z) = g(\omega(z)). \tag{1.2}$$

Indeed, it is known that $f(z) \prec g(z) \Rightarrow f(0) = g(0)$ and $f(\Delta) \subset g(\Delta)$.

In 1959, Sakaguchi [26] defined a subclass S_s^* of S which satisfies following condition

$$\operatorname{Re}\left(\frac{2zf'(z)}{f(z)-f(-z)}\right) > 0, \quad z \in \Delta.$$

The functions in the class S_s^* are starlike with respect to symmetric points. Further Sakaguchi has shown that the functions in S_s^* are close-to-convex and hence are univalent. The concept of starlike functions with respect to symmetric points have been extended to starlike functions with respect to *N*-symmetric points by Ratanchand [24] and Prithvipal Singh [21], Ram Reddy [22] studied the class of closeto-convex functions with respect to *N*-symmetric points and proved that the class is closed under convolution with convex univalent functions. Das and Singh [3] introduced another class C_s namely convex functions with respect to symmetric points and satisfying the condition

$$\operatorname{Re}\left(\frac{2(zf'(z))'}{(f(z)-f(-z))'}\right) > 0, \quad z \in \Delta.$$

From the definition of S_s^* and C_s it is evident that $f \in C_s$ if and only if $zf(z) \in S_s^*$. Ashwah and Thomas in [6] introduced another class namely the class S_c^* consisting of functions starlike with respect to conjugate points.

Let S_c^* be the subclass of *S* consisting of functions given by (1.1) and satisfying the condition

$$\operatorname{Re}\left(\frac{2zf'(z)}{f(z)+\overline{f(\overline{z})}}\right) > 0, \quad z \in \Delta.$$

In terms of subordination following Ma and Minda, Ravichandran [25] defined the classes $S_s^*(\phi)$ and $C_s(\phi)$ as below.

A function $f \in A$ is in the class $S_s^*(\phi)$ if

$$\frac{2zf'(z)}{f(z)-f(-z)}\prec\phi(z),\quad z\in\Delta.$$

And in the class $C_s(\phi)$ if

$$\frac{2(zf'(z))'}{(f(z)-f(-z))'} \prec \phi(z), \quad z \in \Delta.$$