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Abstract. In this paper, we review some results over the last 10-15 years on elliptic and
parabolic equations with discontinuous coefficients. We begin with an approach given
by N. V. Krylov to parabolic equations in the whole space with VMOx coefficients. We
then discuss some subsequent development including elliptic and parabolic equations
with coefficients which are allowed to be merely measurable in one or two space direc-
tions, weighted Lp estimates with Muckenhoupt (Ap) weights, non-local elliptic and
parabolic equations, as well as fully nonlinear elliptic and parabolic equations.

Key Words: Elliptic and parabolic equations and systems, nonlocal equations, fully nonlinear
equations, VMO and partially VMO coefficients, weighted estimates, Muckenhoupt weights.

AMS Subject Classifications: 35R05, 35B45, 35B65, 42B37, 35K20, 35J15, 35R11, 35K10, 35K45,
35J60, 35K55, 60J75

1 Introduction

The Lp-theory of elliptic and parabolic equations with discontinuous coefficients has been
studied extensively for more than fifty years. On one hand, when the dimension d = 2,
it is well known that the W2

2 estimate holds for second-order uniformly elliptic opera-
tors with general bounded and measurable coefficients; see, for instance, Bernstein [5]
and Talenti [108]. On the other hand, a celebrated counterexample in Talenti [107] and
Maugeri et al. [97] indicates that when d ≥ 3 in general there is no W2

2 estimate for ellip-
tic operators with bounded measurable coefficients even if they are discontinuous only
at a single point. Another example due to Ural’tseva [110] shows the impossibility of
the W2

p estimate when d ≥ 2 and p 6= 2. See also Meyers [98] and Krylov [80]. Note
that in Ural’tseva’s example, the coefficients are continuous except at a single point when
d = 2 or a line when d = 3. In [101], Nadirashvili showed that the weak uniqueness for
martingale problems may fail if coefficients are merely measurable and d ≥ 3. Recently,
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in [36] it was proved that when p 6= 2, there is no W2
p estimate for elliptic operators with

coefficients piecewise constant on each quadrant in R2. For divergence form equations,
a similar estimate cannot be expected either due to an example by Piccinini and Spag-
nolo [103]. These examples imply that in general there does not exist a solvability theory
for uniformly elliptic operators with bounded and measurable coefficients. Thus in the
past many efforts have been made to treat particular types of discontinuous coefficients.

Among others, an important class of discontinuous coefficients is the class of vanish-
ing mean oscillations (VMO). With VMO leading coefficients, the Lp-solvability theorems
of second-order linear equations were established in early 1990s [7,14,15, 21] for both di-
vergence and nondivergence form equations. The main technical tool in these papers is
the theory of singular integrals, in particular, the Calderón–Zygmund theorem and the
Coifman–Rochberg–Weiss commutator theorem. However, this approach usually does
not allow measurable coefficients because one needs smoothness of the corresponding
fundamental solutions.

In 2005, Krylov [75] gave a unified kernel-free approach for both divergence and non-
divergence linear elliptic and parabolic equations in the whole space, with coefficients
which are in the class of VMO with respect to the space variables and are allowed to
be merely measurable in the time variable. His proof relies on mean oscillation esti-
mates, and uses the Hardy–Littlewood maximal function theorem and the Fefferman–
Stein sharp function theorem. The results in [75] were shortly extended in [76] to the case
of mixed-norm Lp − Lq spaces, where the mixed norm is defined as ‖ f ‖q,p = ‖ f ‖Lt

q(Lx
p)

.
See also [55,74] for earlier results about the mixed-norm estimates for parabolic equations
with coefficients independent of x, and the monograph [77]. Another approach was given
earlier by Caffarelli and Peral [13], which is based on a level set argument together with
a ”crawling of ink spots” lemma originally due to Krylov and Safonov [70, 106] in the
proof of the celebrated Krylov–Safonov Cα estimate for nondivergence form equations
with measurable coefficients. See also Acerbi and Mingione [1] for a maximal function
free argument applied to the parabolic p-Laplace equation, as well as [23, 57] for earlier
work on the elliptic p-Laplace equation by using the sharp and maximal functions. With
these approaches, VMO coefficients are treated in a straightforward manner by pertur-
bation argument. Another advantage is that these approaches are rather flexible: they
can be applied to both divergence and non-divergence or even non-local equations with
coefficients which are very irregular in some of the independent variables. Rather than
looking for as weak regularity assumptions as possible on coefficients, we emphasize that
one of the main points of these work is to put forth new techniques which turn out to be
more powerful than singular integrals in several occasions.

In this paper, we will first give an overview of Krylov’s approach to parabolic equa-
tions in the whole space with VMOx coefficients mentioned above in Section 2. Then
we will review some subsequent important progress in this direction. In Section 3, we
discuss divergence and nondivergence form elliptic and parabolic equations with par-
tially and variably partially VMO coefficients. Section 4 is about a generalization of the
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Fefferman–Stein theorem on sharp functions in spaces of homogeneous type and its ap-
plications to weighted Lp estimates with Muckenhoupt (Ap) weights. In Section 5, we
consider two types of non-local elliptic and parabolic equations: equations with non-
local derivatives in the space variables and equations with non-local derivatives in the
time variable (the Caputo fractional time derivatives). In the last section, we give some
examples of fully nonlinear elliptic and parabolic equations.

To keep this review paper within a reasonable length, we do not make any attempt to
cover many other important and relevant theories, for instance, the semigroup approach
of the maximal regularity, which is from a functional analytic point of view (see [22, 52,
53, 112] and the references therein), and recent results about quasilinear equations.

Throughout the paper, we assume that the coefficients are bounded and measurable.
In most cases, the lower-order coefficients can be assumed to be unbounded and in cer-
tain Lebesgue spaces. See, for example, [90,91] and the recent interesting work [58,64,67,
89], and the references therein.

1.1 Basic notation

Throughout the paper, we always assume that 1 < p, q < ∞ unless explicitly specified
otherwise. By N(d, p, · · · ) we mean that N is a constant depending only on the pre-
scribed quantities d, p, · · · . For a (scalar, vector-valued, or matrix-valued) function u(t, x)
in Rd+1, we set

(u)D =
1
|D|

ˆ
D

u(t, x)dxdt =
 
D

u(t, x)dxdt,

where D is an open subset in

Rd+1 = {(t, x) : t ∈ R, x = (x1, · · · , xd) ∈ Rd}

and |D| is the d + 1-dimensional Lebesgue measure of D. For −∞ ≤ S < T ≤ ∞, we
write u(t, x) ∈ Lq,p((S, T)×Rd) if

‖u‖Lq,p((S,T)×Rd) =

(ˆ T

S

(ˆ
Rd
|u(t, x)|p dx

)q/p

dt

)1/q

< ∞.

Define

W1,2
q,p((S, T)×Rd) = {u : u, ut, Du, D2u ∈ Lq,p((S, T)×Rd)},

H1
q,p((S, T)×Rd) = (1− ∆)1/2W1,2

q,p((S, T)×Rd),

H−1
q,p((S, T)×Rd) = (1− ∆)1/2Lq,p((S, T)×Rd),

and W1,2
p = W1,2

p,p, H1
p = H1

p,p, and H−1
p = H−1

p,p. For any function u defined in Ω ⊂ Rd+1,
we denote its Hölder semi-norm by

[u]Cα/2,α(Ω) = sup
{ |u(t, x)− u(s, y)|
|t− s|α/2 + |x− y|α : ∀(t, x) 6= (s, y) ∈ Ω

}
.
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For any T ∈ (−∞, ∞], we denote

RT = (−∞, T), Rd+1
T = RT ×Rd.

For (t, x) = (t, x′, xd) ∈ R×Rd, let

Br(x) = {y ∈ Rd : |x− y| < r}, Qr(t, x) = (t− r2, t)× Br(x),

B′r(x′) = {y′ ∈ Rd−1 : |x′ − y′| < r}, Q′r(t, x′) = (t− r2, t)× B′r(x′).

We set Br = Br(0) and |Br| to be the d-dimensional volume of Br. Similarly, we define B′r,
Qr, |B′r|, and |Qr|, etc. We use the notation

Diu = uxi , Diju = uxixj , i, j = 1, · · · , d,

and the usual summation convention over repeated indices is assumed throughout the
paper. Additional notation will be introduced in later sections when needed.

2 Krylov’s approach to equations with VMOx coefficients

In [75], Krylov considered linear parabolic equations in the whole space with VMOx coef-
ficients which are in the class of VMO with respect to the space variables and are allowed
to be merely measurable in the time variable. Two types of parabolic operators are con-
sidered:

Pu = −ut + aijDiju + biDiu + cu, (2.1a)

Pu = −ut + Di(aijDju + b̂iu) + biDiu + cu, (2.1b)

in Rd+1, where all the coefficients are bounded

|aij(t, x)| ≤ K, |bi(t, x)| ≤ K, |b̂i(t, x)| ≤ K, |c(t, x)| ≤ K,

and the aij satisfy the ellipticity condition

aijξiξ j ≥ δ|ξ|2

for all (t, x) ∈ Rd+1, ξ ∈ Rd, and for some constants 0 < δ < 1 and K > 0. When
the coefficients and solution are time-independent, P and P are reduced to the elliptic
operators

Lu = aijDiju + biDiu + cu, (2.2a)

Lu = Di(aijDju + b̂iu) + biDiu + cu. (2.2b)

The following VMOx condition was introduced in [75]. Set

oscx
(

aij, Qr(t, x)
)
= r−2|Br|−2

ˆ t

t−r2

ˆ
y,z∈Br(x)

∣∣∣aij(s, y)− aij(s, z)
∣∣∣ dydzds,

a#
R = sup

(t,x)∈Rd+1

sup
r≤R

d

∑
i,j=1

oscx
(

aij, Qr(t, x)
)

.
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Assumption 2.1. There is an increasing continuous function ω(r) defined on [0, ∞) such that
ω(0) = 0 and a#

R ≤ ω(R).

We note that from the proof, it is easily seen that the assumption above can be relaxed:
it is sufficient to assume that a#

R is sufficiently small for all sufficiently small R. Here are
the main results of [75].

Theorem 2.1 (Theorem 2.1 of [75]). Let p ∈ (1, ∞), 0 < T < ∞, and the coefficient matrix
of P satisfies Assumption 2.1. Then for any f ∈ Lp((0, T) ×Rd), there exists a unique u ∈
W1,2

p ((0, T)×Rd) such that

Pu = f in (0, T)×Rd,
u(0, ·) = 0.

Furthermore, there is a constant N, depending only on d, p, δ, K, T, and the function ω, such
that

‖u‖W1,2
p ((0,T)×Rd) ≤ N‖Pu‖Lp((0,T)×Rd)

for any u ∈W1,2
p ((0, T)×Rd) satisfying u(0, ·) = 0.

Theorem 2.2 (Theorem 2.4 of [75]). Let p ∈ (1, ∞), T ∈ (0, ∞), and the coefficient matrix
of P satisfies Assumption 2.1. Then for any f , gi ∈ Lp((0, T) × Rd), there exists a unique
u ∈ H1

p((0, T)×Rd) such that

Pu = f + Digi in (0, T)×Rd,
u(0, ·) = 0.

Furthermore, there is a constant N, depending only on d, p, δ, K, T, and the function ω, such
that

‖u‖H1
p((0,T)×Rd) ≤ N(‖ f ‖Lp((0,T)×Rd) + ‖g‖Lp((0,T)×Rd)).

Theorems 2.1 and 2.2 are derived from the following propositions by using the stan-
dard method of continuity and considering v =: e−λu.

Proposition 2.1. Let p ∈ (1, ∞), T ∈ (−∞, ∞], and the coefficient matrix of P satisfies As-
sumption 2.1. Then there exists λ0 ≥ 0 depending only on d, p, δ, K, and the function ω, and
N > 0 depending only on d, p, δ, and K, such that for any λ ≥ λ0 and u ∈W1,2

p (Rd+1
T ),

‖ut‖Lp(R
d+1
T ) + ‖D

2u‖Lp(R
d+1
T ) + λ1/2‖Du‖Lp(R

d+1
T ) + λ‖u‖Lp(R

d+1
T )

≤N‖Pu− λu‖Lp(R
d+1
T ). (2.3)
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Proposition 2.2. Let p ∈ (1, ∞), T ∈ (−∞, ∞], and the coefficient matrix of P satisfies As-
sumption 2.1. Then there exists λ0 ≥ 0 depending only on d, p, δ, K, and the function ω, and
N > 0 depending only on d, p, δ, and K, such that for any λ ≥ λ0 and u ∈ H1

p(R
d+1
T ) satisfying

Pu− λu = f + Digi in Rd+1
T ,

we have

‖Du‖Lp(R
d+1
T ) + λ1/2‖u‖Lp(R

d+1
T ) ≤ N(λ−1/2‖ f ‖Lp(R

d+1
T ) + ‖g‖Lp(R

d+1
T )).

Here we only sketch the proof of Proposition 2.1 following the idea in [75] but with a
slightly simplified argument used in [34]. The starting point is the following L2 estimate.

Lemma 2.1. Let T ∈ (−∞,+∞], aij = aij(t), and λ ≥ 0. Suppose that u ∈W1,2
2 (Rd+1

T ). Then
we have

‖ut‖L2(R
d+1
T ) + ‖D

2u‖L2(R
d+1
T ) +

√
λ‖Du‖L2(R

d+1
T ) + λ‖u‖L2(R

d+1
T )

≤N(d, δ)‖Pu− λu‖L2(Rd+1
T ).

Proof. The lemma is proved by taking the Fourier transform with respect to x, solving the
resulting ODE with respect to t, and then applying the Minkowski inequality and Parse-
val’s identity. Alternatively, the lemma can be proved by using testing the equation with
λu and ∆u and integrating by part, noting that C∞

0 ((−∞, T]×Rd) is dense in W1,2
2 (Rd+1

T ).
We omit the details.

The above lemma also yields the corresponding L2-solvability. We will also use the
following interior estimate.

Lemma 2.2. Suppose that aij = aij(t) and u ∈W1,2
2 (Q1) satisfies

Pu− λu = 0 in Q1.

Then we have
[u]C1/2,1(Q1/2)

≤ N(d, δ)‖u‖L2(Q1). (2.4)

Proof. We will prove an estimate which is actually stronger than (2.4). By mollification in
x and then using the Arzelà–Ascoli lemma, without loss of generality, we may assume
that u is infinitely differentiable in x. For any 1/2 ≤ r < R ≤ 1, choose a smooth cutoff
function η satisfying 0 ≤ η ≤ 1, η = 1 in Qr, and η = 0 outside (−R2, R2)× BR. Testing
the equation with uη2, integrating by parts, and using Young’s inequality, we get for any
s ∈ (−R2, 0),

1
2

ˆ
BR

u2(s, x)η2dx +

ˆ
(−R2,s)×BR

(
δ|Du|2η2 + λu2η2)dxdt

≤
ˆ
(−R2,s)×BR

u2ηηt − 2aijDiuη · Djηudxdt

≤
ˆ
(−R2,s)×BR

Nu2 +
δ

2
|Du|2η2 + N|Dη|2u2dxdt.
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Taking the supremum with respect to s ∈ (−r2, 0), we obtain the Caccioppoli inequality

sup
s∈(−r2,0)

ˆ
Br

u2dx +

ˆ
Qr

(|Du|2 + λu2)dxdt ≤ N(d, δ, r, R)
ˆ

QR

u2dxdt.

Because Du satisfies the same equation, we have

sup
s∈(−r2,0)

ˆ
Br

|Du|2dx +

ˆ
Qr

(|D2u|2 + λ|Du|2)dxdt

≤N(d, δ, r, R)
ˆ

QR

|Du|2dxdt.

By iteration,

sup
s∈(−r2,0)

ˆ
Br

|Dku|2 dx +

ˆ
Qr

(|Dk+1u|2 + λ|Dku|2) dx dt

≤N(d, δ, r, R, k)
ˆ

QR

|u|2 dx dt,

which further implies that

(1 + λ2) sup
s∈(−r2,0)

ˆ
Br

|Dku|2dx ≤ N(d, δ, r, R, k)
ˆ

QR

|u|2dxdt.

Taking k > d/2, by the Sobolev embedding theorem,

(1 + λ) sup
Q1/2

|u| ≤ N
(ˆ

QR

|u|2dxdt
)1/2

.

Again, because Dku satisfies the same equation, it follows from the two inequalities above
that, for any nonnegative integer k,

(1 + λ) sup
Q1/2

|Dku| ≤ N
(ˆ

Q1

|u|2dxdt
)1/2

.

Since
ut = aij(t)Diju− λu,

we also have

sup
Q1/2

|∂tDku| ≤ N(d, δ, k)
(ˆ

Q1

|u|2 dx dt
)1/2

.

The lemma is proved.
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Observe that (2.4) still holds with Du or D2u in place of u because the coefficients
are time-independent. To proceed further, we define the (parabolic) maximal and sharp
function of a function f ∈ L1,loc by

M f (t, x) = sup
Q∈Q,(t,x)∈Q

 
Q
| f (s, y)|dyds,

f #(t, x) = sup
Q∈Q,(t,x)∈Q

 
Q
| f (s, y)− ( f )Q|dyds,

where
Q = {Qr(z) : z = (t, x) ∈ Rd+1, r ∈ (0, ∞)}.

By the Fefferman–Stein theorem on sharp functions and the Hardy–Littlewood maximal
function theorem, for any p ∈ (1, ∞) and f ∈ Lp(Rd+1), we have

‖ f ‖Lp(Rd+1) ≤ N‖ f #‖Lp(Rd+1), ‖M f ‖Lp(Rd+1) ≤ N‖ f ‖Lp(Rd+1), (2.5)

where N = N(d, p). It follows from Lemmas 2.1, 2.2, and a decomposition procedure as
in [75], we have the following mean oscillation estimate.

Lemma 2.3. Let r ∈ (0, ∞), µ ∈ (0, 1/4), λ ≥ 0, X0 = (t0, x0) ∈ Rd+1, and f ∈ L2,loc(R
d+1).

Assume that u ∈W1,2
2,loc satisfies

Pu− λu = f (2.6)

in Qr(X0). Then we have(
|U − (U)Qµr(X0)|

)
Qµr(X0)

≤ Nµ(|U|2)
1
2
Qr(X0)

+ Nµ−1− d
2 (| f |2)

1
2
Qr(X0)

, (2.7)

where U = |D2u|+ λ1/2|Du|+ λ|u| and N = N(d, δ) > 0.

From Lemma 2.3, we see that if u satisfies (2.6) in the whole space Rd+1, then we have
the pointwise estimate

U# ≤ NµM1/2(U2) + Nµ−1−d/2M1/2( f 2). (2.8)

Now we are ready to give the proof of Proposition 2.1.

Proof of Proposition 2.1. For simplicity, we assume T = ∞ and b = c = 0. For the general
case, it suffices to take the zero extension of f beyond T, and set λ0 sufficiently large to
absorb lower-order terms. Here we just give an outline of the proof.
Step 1: p > 2, aij = aij(t). In this case, (2.3) is a consequence of (2.8) and (2.5), by taking a
sufficiently small µ. The a priori estimate and the method of continuity then give the Lp
solvability in this case.
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Step 2: p ∈ (1, 2), aij = aij(t). In this case, (2.3) is obtained from the previous step and a
duality argument, which is possible because aij are independent of x.
Step 3. The a priori estimate and the method of continuity then give the Lp solvability
when aij = aij(t). Now by this as well as a bootstrap/iteration argument, we obtain an
estimate analogous to (2.7):(

|U − (U)Qµr(X0)|
)

Qµr(X0)
≤ Nµ(Up0)

1
p0
Qr(X0)

+ Nµ
− 2+d

p0 (| f |p0)
1

p0
Qr(X0)

(2.9)

for any p0 ∈ (1, ∞).
Step 4: The general case. We use the argument of freezing the coefficients (with respect
to x only). Take p0, ν1 > 1 such that p0ν1 < p and let ν2 = ν1/(ν1 − 1). Assume for
the moment that u vanishes whenever t /∈ (−γ2R2, 0) for small constants γ, R > 0 to be
specified later. For r ∈ (0, R) and X ∈ Rd+1, we rewrite the equation into

−ut + āij(t)Diju = f̄ =: (āij(t)− aij)Diju,

where
āij(t) =

 
Br(x)

aij(t, y)dy.

It then follows from (2.9) and Hölder’s inequality that(
|U − (U)Qµr(X)|

)
Qµr(X)

≤Nµ(Up0)
1

p0
Qr(X + Nµ

− 2+d
p0 (| f |p0)

1
p0
Qr(X)

+ Nµ
− 2+d

p0 (ω(R) + γ2)
1

p0ν2 (Up0ν1)
1

p0ν1
Qr(X)

,

which implies the pointwise estimate

U# ≤NµM
1

p0 (Up0) + Nµ
− 2+d

p0 M
1

p0 (| f |p0)

+ Nµ
− 2+d

p0 (ω(R) + γ2)
1

p0ν2 M
1

p0ν1 (Up0ν1). (2.10)

This together with (2.5) yields (2.3) by taking µ and then R and γ sufficiently small. With-
out the small support condition, we use a partition of unity argument.

We conclude this section with a few remarks.

Remark 2.1. In [76], Theorems 2.1 and 2.2 were extended to the case of mixed-norm
Lp − Lq spaces (with the restriction q ≥ p in the nondivergence case). The main idea is to
derive from (2.8) a mean oscillation estimate of the Lx

p norms with respect with the time
variable only.

Remark 2.2. The results in this sections were also generalized to second-order parabolic
systems in the whole space in [27], and to higher-order elliptic and parabolic systems in
the whole space, on the half space, and on domains in [34]. In these work, the leading
coefficients satisfy the Legendre–Hadamard condition, which is weaker than the strong
ellipticity condition. The proof of the boundary estimates is highly nontrivial. We refer
the reader to [34] for details.
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3 Equations with partially VMO coefficients

In this section, we discuss elliptic and parabolic equations with partially VMO leading
coefficients, i.e., they are merely measurable with respect to an either fixed or varying
space direction (and the time variable), and have small mean oscillations with respect to
the orthogonal directions on all small scale.

In [59], Kim obtained the W2
p estimate and solvability for nondivergence form elliptic

equations with leading coefficients which can be discontinuous at finitely many parallel
hyperplanes in Rd. This extends earlier results by Lorenzi [93, 94], where the coefficients
are assumed to be piecewise constant in each half space.

Elliptic equations in non-divergence form with partially VMO coefficients were first
considered in [62]. Let us denote Γr(x) = B′r(x′)× (xd − r, xd + r) and

oscx′
(

aij, Γr(x)
)
=

 xd+r

xd−r

 
B′r(x′)

∣∣aij(y′, yd)−
 

B′r(x′)
aij(z′, yd)dz′

∣∣dy′dyd,

and set

ax
′,#

R = sup
x∈Rd

sup
r≤R

d

∑
i,j=1

osc
(

aij, Γr(x)
)

.

Assumption 3.1. There is an increasing continuous function ω(r) defined on [0, ∞) such that
ω(0) = 0 and a#

x′,R ≤ ω(R).

Recall the operators P, P, L, and L introduced in (2.1) and (2.2). The main result of [62]
is the following theorem.

Theorem 3.1 (Theorem 2.4 of [62]). Let p ∈ (2, ∞). Then there exists a constant λ0 ≥ 0,
depending only on d, δ, K, p, and the function ω, such that, for any λ > λ0 and f ∈ Lp(Rd),
there exists a unique solution u ∈W2

p(R
d) satisfying Lu− λu = f in Rd. Furthermore, there is

a constant N, depending only on d, δ, K, and p, such that for any λ ≥ λ0 and u ∈W2
p(R

d),

‖D2u‖Lp(Rd) + λ1/2‖Du‖Lp(Rd) + λ‖u‖Lp(Rd) ≤ N‖Lu− λu‖Lp(Rd).

As an application of the above theorem, they also obtained the corresponding result
in the half space with either the Dirichlet, Neumann, or oblique derivative boundary
condition, by using an even/odd extension argument. See [63] for results about nondi-
vergence form parabolic equations, as well as [60, 61] for interesting extensions to more
general coefficients.

The proof of Theorem 3.1 is based on the method described in the previous section.
The authors first proved the theorem when p = 2 by using a Fourier method and the
maximum principle, and then derived the mean oscillation estimate for Dxx′u. Finally,
the estimate of Dddu can be obtained by using the equation. Note that here one cannot
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apply the duality argument to get the result for p ∈ (1, 2) because the coefficients are
only measurable in xd. This explains why the condition p > 2 is imposed in the theorem.

In [78], Krylov generalized the result in Theorem 3.1 to elliptic equations with ”vari-
ably” partially VMO coefficients, i.e., the leading coefficients are assumed to be mea-
surable in one spatial direction and have vanishing mean oscillation in the orthogonal
directions in each small ball, with the direction allowed to depend on the ball. The fol-
lowing generalized Fefferman–Stein sharp function obtained in [78] plays an essential
role in the proof. Let

Cn = {Cn(i1, · · · , id), i1, · · · , id ∈ Z}, n ∈ Z,

be the filtration of partitions given by cubes, where

Cn(i1, · · · , id) = [i12−n, (i1 + 1)2−n)× · · · × [id2−n, (id + 1)2−n).

Theorem 3.2 (Theorem 2.7 of [78]). Let p ∈ (1, ∞), u, v, g ∈ L1. Assume v ≥ |u|, g ≥ 0
and for any n ∈ Z and C ∈ Cn there exists a measurable function uC given on C such that
|u| ≤ uC ≤ v on C and ˆ

C
|uC − (uC)C|dx ≤

ˆ
C

gdx.

Then we have
‖u‖p

Lp
≤ N‖g‖Lp‖v‖

p−1
Lp

,

where N = N(d, p) > 0.

The proof of this theorem is based on a stopping time argument. It can be readily
extended to the parabolic setting and to more general underlying measure spaces with a
metric (or quasi-metric). See Section 4 for some examples.

For divergence form elliptic and parabolic equations, partially VMO coefficients were
later studied in [24, 28]. In [28], elliptic equations were considered in the whole space,
on a half space {x : xd > 0}, or on a bounded Lipschitz domain with a small Lipschitz
constant with the Dirichlet and conormal boundary conditions. The W1

p estimate and
solvability were obtained. In the bounded domain case, the leading coefficients are as-
sumed to be partially VMO in the interior of the domain and VMO near the boundary.
Mixed norm estimates were also proved in the whole space and half space cases. In [24],
the author studied parabolic equations with leading coefficients which are measurable in
(t, xd) and have small mean oscillation in the other variables in small cylinders, except
a11 which is measurable in xd and have small mean oscillation in the remaining variables
in small cylinders. Let us state one of the main results in [24].

Theorem 3.3 (Corollary 5.5 of [24]). Let p ∈ (1, ∞), aij = aij(xd), u ∈ C∞
0 , and f , g ∈

Lp(Rd+1). Then there exists a constant N > 0, depending only on d, p, and δ, such that we have

λ‖u‖Lp(Rd+1) +
√

λ‖Du‖Lp(Rd+1) ≤ N
√

λ‖g‖Lp(Rd+1) + N‖ f ‖Lp(Rd+1)
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provided that λ ≥ 0 and Pu− λu = f +div g in (Rd+1). In particular, when λ = 0 and f ≡ 0,
we have

‖Du‖Lp(Rd+1) ≤ N‖g‖Lp(Rd+1).

We point out that here the main difficulty is that, since the leading coefficients are
merely measurable in xd, it is only possible to estimate the sharp function of Dx′u, not
the full gradient Du as in [75, 76]. Therefore, one need to bound Ddu by Dx′u. One idea
in [24,28] is to break the “symmetry” of the coordinates so that t and xd are distinguished
from x′ by using a delicate re-scaling argument. Another idea is to estimate the sharp
function of addDdu instead of Ddu, and apply the generalized Fefferman–Stein theorem
stated in Theorem 3.2.

In [35], a new method was developed, which allowed us to treat elliptic and parabolic
systems with variably partially VMO coefficients. In the parabolic setting, the key step
in [35] is to estimate the mean oscillations of U =: adjDju and Diu, i = 1, · · · , d − 1,
instead of the full gradient of u, if the given equation is

ut − Di(aijDju) = div g.

By using this argument, the authors were able to bypass the scaling argument mentioned
above and greatly simplified the proof. Systems with partially VMO coefficients arises
from the problems of linearly elastic laminates and composite materials, e.g., in homog-
enization of layered materials. As an application, a result by Chipot, Kinderlehrer, and
Vergara-Caffarelli [16] on gradient estimates for elasticity system was improved in [35].
We refer the reader to [30] for results on divergence form parabolic systems with more
general coefficients, and [29] for higher-order divergence form elliptic and parabolic sys-
tems with variably partially BMO coefficients in regular and irregular domains, where
the methods in [24, 28, 32, 35] were further developed and a delicate cutoff/reflection ar-
gument was introduce (when the usual method of flattening the boundary is unavailable
for irregular domains). See also [8, 9] for similar results proved by using different meth-
ods. It is worth noting that the cutoff/reflection argument was recently applied to study
mixed Dirichlet-conormal boundary conditions in nonsmooth domains.

Coming back to nondivergence form equations, in [25,26] the condition p > 2 in The-
orem 3.1 and in [78] was removed. The main idea in these papers is to use the hidden
divergence structure of the nondivergence form equations when the coefficients depend
only on xd, and then apply the results for divergence form equations in [24, 28]. To illus-
trate the idea, below we give a key result in [25], which is stated in the parabolic setting.

Theorem 3.4. Let p ∈ (1, ∞), T ∈ (−∞, ∞], and aij = aij(xd). Then for any u ∈ W1,2
p (Rd+1

T )
and λ ≥ 0, we have

λ‖u‖Lp(R
d+1
T ) +

√
λ‖Du‖Lp(R

d+1
T ) + ‖D

2u‖Lp(R
d+1
T ) + ‖ut‖Lp(R

d+1
T )

≤N‖Pu− λu‖Lp(R
d+1
T ), (3.1)
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where N = N(d, p, δ) > 0. Moreover, for any f ∈ Lp(R
d+1
T ) and λ > 0 there is a unique

u ∈W1,2
p (Rd+1

T ) solving Pu− λu = f in Rd+1
T .

Proof. First we assume T = ∞. By the method of continuity, it suffices to prove the a
priori estimate (3.1) for u ∈ C∞

0 . Let

f = Pu− λu. (3.2)

We make a change of variables:

yd = ϕ(xd) =:
ˆ xd

0

1
add(s)

ds, yj = xj, j = 1, · · · , d− 1.

It is easy to see that ϕ is a bi-Lipschitz function and

δ ≤ yd/xd ≤ δ−1, Dyd = add(xd)Dxd .

Denote

v(t, y′, yd) = u(t, y′, ϕ−1(yd)), ãij(yd) = aij(ϕ−1(yd)),

f̃ (t, y) = f (t, y′, ϕ−1(yd)).

Define a divergence form operator P̃ by

P̃v = −vt + D1

(
1

ãdd D1v
)
+

d−1

∑
j=1

Dj

(
ãdj + ãjd

ãdd D1v
)
+

d−1

∑
i,j=1

Dj(ãijDiv).

Clearly, v satisfies in Rd+1

P̃v− λv = f̃ ,

and P̃ is uniformly nondegenerate. By Proposition 3.3, we have

λ‖v‖Lp +
√

λ‖Dv‖Lp ≤ N‖ f̃ ‖Lp .

Therefore,
λ‖u‖Lp +

√
λ‖Du‖Lp ≤ N‖ f ‖Lp . (3.3)

Next we estimate D2u. Notice that for each k = 1, · · · , d− 1, Dkv satisfies

P̃(Dkv)− λDkv = Dk f̃ .

Again by using Proposition 3.3, we get

‖Dyyk v‖Lp ≤ N‖ f̃ ‖Lp ,

which implies
‖Dxx′u‖Lp ≤ N‖ f ‖Lp . (3.4)
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Finally, to estimate Dddu, we return to the equation in the original coordinates. From
(3.2), we see that w =: Ddu satisfies

−wt + ∆d−1w + Dd(addDdw)− λw = Dd f + ∑
(i,j) 6=(d,d)

Dd

(
(δij − aij)Diju

)
.

We use Proposition 3.3 again to get

‖Dddu‖Lp ≤ ‖Dw‖Lp ≤ N‖ f ‖Lp + N ∑
(i,j) 6=(d,d)

‖Diju‖Lp . (3.5)

Combining (3.3), (3.4) and (3.5) yields (3.1) by using

ut = aijDiju− λu− f .

For general T ∈ (−∞, ∞], we use the fact that u = w for t < T, where w ∈W1,2
p solves

Pw− λw = χt<T(Pu− λu).

The theorem is proved.

In [26], the author extended the results to equations with ”hierarchically” partially
BMO coefficients by using a scaling argument as in [24, 28, 34], but applied to nondiver-
gence form equations.

Given the results mentioned above, it is natural to ask whether one can dispose the
regularity of the coefficients in two space dimensions. Unfortunately, because of the
counterexamples mentioned at the beginning of the introduction, one cannot expect an
Lp theory in this case for either divergence form equations or nondivergence form equa-
tions. This means that one can only get the results for a restricted range of p. In the
divergence case, when p is close to 2, the W1

p (or H1
p) estimate and solvability follows

from the usual energy argument and the reverse Hölder’s inequality (Gehring’s lemma).
In the nondivergence case, when d = 2 and p = 2 + ε, the W2

p estimate for elliptic equa-
tions with measurable coefficients can be found in Campanato [10]. See also [71] for a
result about parabolic equations under the condition that a11 + a22 is a constant or a func-
tion depending only on t. In the higher dimensional case, we refer the reader to [46],
where p = 2 + ε and the leading coefficients are assumed to be measurable in the time
variable and two coordinates of space variables, and ”almost” VMO with respect to the
other coordinates.

We finish this section by a remark that for general elliptic (or parabolic) systems in
nondivergence form, the W2

p (or W1,2
p ) is still an open problem when the coefficients are

partially VMO. The argument in [25, 26] does not work for systems due to the use of
the change of variables as shown in the proof of Theorem 3.4. Another interesting prob-
lem is the Lp estimate for 1D parabolic equations in non-divergence form with merely
measurable coefficients

ut − a(t, x)uxx = f , (3.6)
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where a(t, x) ∈ (ν, ν−1) is a measurable function on R2. For p = 2, the solvability can
be obtained simply by using integration by parts and the method of continuity (see, for
example, [63]). For p sufficiently close to 2 depending on the ellipticity constant, the
answer is also positive, which can be deduced from the main result of [46]. On the other
hand, in [83] Krylov presented examples which indicate that when p ∈ (1, 3/2) ∪ (3, ∞),
in both non-divergence and divergence cases there are equations which are not solvable.
The proofs in [83] are based on estimates from below and above for solutions of the
Cauchy problem with initial data being an indicator function of a small interval, and
then a delicate construction of explicit solutions to the Ornstein–Uhlenbeck equations.
The question whether we have the solvability of (3.6) when p ∈ [3/2, 2) ∪ (2, 3] is still
open.

4 Weighted estimates with Muckenhoupt weights

In this section, we showcase some results about solvability and estimates of elliptic and
parabolic equations in weighted Sobolev spaces with Muckenhoupt Ap weights. In par-
ticular, we will describe how to use a remarkable extrapolation theorem of Rubio de
Francia [105] to get rid of the restriction q ≥ p in the mixed-norm estimate established
in [76].

In [39], the authors established a generalized version of the Fefferman–Stein theorem
on sharp functions with Ap weights in spaces of homogeneous type with either finite
or infinite underlying measure. Let us first fix some notation. Recall that a space X of
homogeneous type is equipped with a quasi-distance ρ satisfying

ρ(x, y) ≤ K1(ρ(x, z) + ρ(z, y))

for some K1 ≥ 1 and any x, y, z ∈ X, and ρ(x, y) = 0 if and only if x = y, and a doubling
measure µ, i.e., there exists a constant K2 ≥ 1 such that for any x ∈ X and r > 0,

0 < µ(B2r(x)) ≤ K2µ(Br(x)) < ∞.

We assume that the Lebesgue differentiation theorem is satisfied in X. Christ [19] showed
that any such space X admits a dyadic decomposition. More precisely, for each n ∈ Z,
there is a collection of disjoint open subsets Cn =: {Qn

α : α ∈ In} for some index set In,
which satisfy the following properties

(a) For any n ∈ Z, µ(X \⋃α Qn
α) = 0;

(b) For each n and α ∈ In, there is a unique β ∈ In−1 such that Qn
α ⊂ Qn−1

β ;

(c) For each n and α ∈ In, diam(Qn
α) ≤ N0δn;

(d) Each Qn
α contains some ball Bε0δn(zn

α);
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for some constants δ ∈ (0, 1), ε0 > 0, and N0 depending only on K1 and K2.
Denote X̃ =

⋂
n∈Z

⋃
α Qn

α . By properties (1) and (2) above, we have

µ(X \ X̃) = 0, X̃ = lim
n↗∞

⋃
α

Qn
α .

By properties (2), (3), and (4), we have

µ(Qn−1
β ) ≤ N1µ(Qn

α) (4.1)

for any n, α ∈ In, β ∈ In−1 such that Qn
α ⊂ Qn−1

β .
For a function f ∈ L1,loc(X, µ) and n ∈ Z, we set

f|n(x) =
 

Qn
α

f (y) µ(dy),

where x ∈ Qn
α ∈ Cn. For x ∈ X̃, we define the (dyadic) maximal function and sharp

function of f by

Mdy f (x) = sup
n<∞
| f ||n(x),

f #
dy(x) = sup

n<∞

 
Qn

α3x
| f (y)− f|n(x)|µ(dy).

It is easily seen that

Mdy f (x) ≤ NM f (x) and f #
dy(x) ≤ N f #(x) µ-a.e.,

For any p ∈ (1, ∞), let Ap = Ap(µ) = Ap(X, dµ) be the set of all nonnegative functions w
on (X, ρ, µ) such that

[w]Ap =: sup
x0∈X,r>0

( 
Br(x0)

w(x)dµ

)( 
Br(x0)

(
w(x)

)− 1
p−1 dµ

)p−1

< ∞.

By Hölder’s inequality, we have

Ap ⊂ Aq, 1 ≤ [w]Aq ≤ [w]Ap , 1 < p < q < ∞.

Denote

A∞ =
∞⋃

p=2

Ap.

We write f ∈ Lp(X, wdµ) or simply f ∈ Lp(wdµ) if
ˆ
X

| f |pwµ(dx) =
ˆ
X

| f |pwdµ < ∞.
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We use w(·) to denote the measure w(dx) = wµ(dx), i.e., for A ⊂ X,

w(A) =

ˆ
A

w(x)µ(dx).

The following Hardy–Littlewood maximal function theorem with Ap weights was ob-
tained in [2] by Aimar and Macı́as.

Theorem 4.1. Let p ∈ (1, ∞), w ∈ Ap. Then for any f ∈ Lp(w dµ) and we have

‖M f ‖Lp(w dµ) ≤ N‖ f ‖Lp(w dµ),

where N = N(K1, K2, p, [w]Ap) > 0. If [w]Ap ≤ K0 for some K0 ≥ 1, then one can choose N
depending only on K1, K2, p, and K0.

Note that in Theorem 4.1, µ(X) can be either finite or infinite, and X is allowed to be
a bounded space with respect to ρ. However, for the Fefferman–Stein theorem, to bound
the Lp norm of f by that of f # it is crucial that the underlying measure is infinite because
otherwise we have nonzero constant functions as a simple counterexample. One of the
main results of [39] is the following theorem on sharp functions with A∞ weights.

Theorem 4.2 (Theorem 2.3 of [39]). Let p, q ∈ (1, ∞), ε > 0, K0 ≥ 1, w ∈ Aq, [w]Aq ≤ K0,
and f ∈ Lp(w dµ) ∩ L1,loc(dµ).

(i) When µ(X) < ∞, we have

‖ f ‖Lp(w dµ) ≤ N‖ f #
dy‖Lp(w dµ) + N(µ(X))−1(w(supp f )

) 1
p ‖ f ‖L1(µ).

If in addition we assume that supp f ⊂ Br0(x0) and µ(Br0(x0)) ≤ εµ(X) for some r0 ∈
(0, ∞) and x0 ∈ X, then

‖ f ‖Lp(w dµ) ≤ N‖ f #
dy‖Lp(w dµ) + Nε‖ f ‖Lp(w dµ).

Here N = N(K1, K2, p, q, K0) > 0. In particular, when ε is sufficiently small depending
on K1, K2, p, q, K0, it holds that

‖ f ‖Lp(w dµ) ≤ N‖ f #
dy‖Lp(w dµ). (4.2)

(ii) When µ(X) = ∞, (4.2) always holds.

A similar result was obtained in [96, Theorem 4.2] in the sense that both theorems deal
with spaces of homogeneous type with a finite or infinite underlying measure. In the case
of a finite underlying measure, the above theorem is more quantitative than Theorem 4.2
in [96] and is stated in such a way that one can control the weighted Lp or Lp,q-norm of a
function f by that of f #

dy if the support of f is sufficiently small. This is particularly useful
when equations in bounded domains are considered. In fact, a more general result was
proved, which also improves Theorem 3.2 and is handy when one treats equations with
variably partially VMO coefficients.
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Theorem 4.3 (Theorem 2.4 of [39]). Let p, q ∈ (1, ∞), ε > 0, K0 ≥ 1, w ∈ Aq, and [w]Aq ≤
K0. Suppose that

f , g, v ∈ Lp(w dµ) ∩ L1,loc(dµ), | f | ≤ v,

and for each n ∈ Z and Q ∈ Cn, there exists a measurable function f Q on Q such that | f | ≤
f Q ≤ v on Q and  

Q
| f Q(x)− ( f Q)Q|µ(dx) ≤ g(y), ∀y ∈ Q.

(i) When µ(X) < ∞, we have

‖ f ‖p
Lp(w dµ)

≤ N‖g‖β

Lp(w dµ)
‖v‖p−β

Lp(w dµ)
+ N(µ(X))−pω(supp v)‖v‖p

L1(µ)
.

If in addition we assume that supp v ⊂ Br0(x0) and µ(Br0(x0)) ≤ εµ(X) for some r0 ∈
(0, ∞] and x0 ∈ X, then

‖ f ‖p
Lp(w dµ)

≤ N‖g‖β

Lp(w dµ)
‖v‖p−β

Lp(w dµ)
+ Nεp‖v‖p

Lp(wdµ)
. (4.3)

Here (β, N) = (β, N)(K1, K2, p, q, K0) > 0.

(ii) When µ(X) = ∞, (4.3) holds with ε = 0.

The proofs of Theorems 4.2 and 4.3 use a usual stopping time argument, but with a
threshold

λ0 =

{
2N1‖ f ‖L1(µ) (µ(X))

−1 , if µ(X) < ∞,
0, if µ(X) = ∞,

where N1 is the constant in (4.1). For a nonnegative f ∈ L1,loc, we define the stopping
time:

τ(x) = inf
n∈Z
{n : f|n(x) > αλ},

where λ > λ0. This allows us to estimate the measure of the super level set w{x :
| f (x)| ≥ λ} by using the Calderón–Zygmund decomposition when λ > λ0. When λ ∈
(0, λ0], we estimate the above measure simply by w(supp f ). We refer the reader to [39]
for details.

From Theorems 4.1-4.3, the following mixed-norm results were derived by using the
extrapolation theorem of Rubio de Francia, which roughly speaking reads that if a pair
of function ( f , g) satisfies

‖ f ‖Lp(w dµ) ≤ N‖ f ‖Lp(w dµ)

for some p ∈ (1, ∞) and any w ∈ Ap, then it satisfies

‖ f ‖Lq(w dµ) ≤ N‖ f ‖Lq(w dµ)

for any q ∈ (1, ∞) and any w ∈ Aq. See [105] as well as [39, Theorem 2.5] for the precise
statement.
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We write x = (x′, x′′), and let (X′, ρ1, µ1) and (X′′, ρ2, µ2) be two spaces of homoge-
neous type. Define µ to be the completion of the product measure on X′ ×X′′ and

ρ((x′, x′′), (y′, y′′)) = ρ1(x′, y′) + ρ2(x′′, y′′)

be a quasi-metric on X′ × X′′. Let X ⊂ X′ × X′′ such that (X, ρ|X×X, µ|X) is of homoge-
neous type. Assume that for any p ∈ (1, ∞), w1 = w1(x′) ∈ Ap(µ1), and w2 = w2(x′′) ∈
Ap(µ2), w = w(x) =: w1(x′)w2(x′′) is an Ap weight on (X, ρ|X×X, µ|X) and

[w]Ap ≤ N([w1]Ap , [w2]Ap).

We remark that this condition is always satisfied, for example, if X satisfies the interior
measure condition in X′ ×X′′.

For any p, q ∈ (1, ∞) and weights w1 = w1(x′) and w2 = w2(x′′), we define the
weighted mixed norm on X by

‖ f ‖Lp,q,w(dµ) = ‖ f ‖Lp,q(w dµ) =: ‖ f ‖Lp,q(X,w dµ)

=

(ˆ
X′′

( ˆ
X′
| f |p IXw1(x′)µ1(dx′)

)q/p
w2(x′′)µ2(dx′′)

)1/q

.

Corollary 4.1 (Corollary 2.6 of [39]). Let p, q ∈ (1, ∞), K0 ≥ 1, w1 = w1(x′) ∈ Ap(µ1),
w2 = w2(x′′) ∈ Aq(µ2), [w1]Ap ≤ K0, [w2]Aq ≤ K0, and w = w(x) = w1(x′)w2(x′′). Then
for any f ∈ Lp,q(w dµ), we have

‖M f ‖Lp,q(w dµ) ≤ N‖ f ‖Lp,q(wdµ),

where N = N(K1, K2, p, q, K0) > 0.

Corollary 4.2 (Corollary 2.8 of [39]). Let p, q, p′, q′ ∈ (1, ∞), K0 ≥ 1, w1 = w1(x′) ∈
Ap′(µ1), w2 = w2(x′′) ∈ Aq′(µ2), [w1]Ap′

≤ K0, [w2]Aq′
≤ K0, w = w(x) =: w1(x′)w2(x′′),

and f , g ∈ Lp,q(w dµ). Suppose that either µ(X) = ∞ or supp f ⊂ Br0(x0) and µ(Br0(x0)) ≤
εµ(X) for some r0 ∈ (0, ∞] and x0 ∈ X, where ε > 0 is a constant depending on K1, K2, p, p′, q,
q′, and K0. Moreover, for each n ∈ Z and Q ∈ Cn, there exists a measurable function f Q on Q
such that | f | ≤ f Q ≤ K3| f | on Q for some constant K3 > 0 and

 
Q
| f Q(x)−

(
f Q
)

Q
|µ(dx) ≤ g(y), ∀y ∈ Q.

Then we have
‖ f ‖Lp,q(w dµ) ≤ N‖g‖Lp,q(w dµ),

where N = N(K1, K2, K3, p, q, p′, q′, K0) > 0.
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Below we give an application of the above results to second-order parabolic equations
in nondivergence form equations with VMOx coefficients. Before that, we recall the self-
improving property of Ap weights: for any w ∈ Ap(Rd), p ∈ (1, ∞) satisfying [w]Ap ≤ K0,
there exists ε = ε(d, p, [w]Ap) ∈ (0, p− 1) such that

w ∈ Ap−ε and [w]Ap−ε
≤ N(d, p, [w]Ap).

See, for example, [95, Theorem 3.2]. Now for any p, q ∈ (1, ∞), w1 ∈ Ap(Rd) with
[w1]Ap ≤ K0, and w2 ∈ Aq(R) with [w2]Aq ≤ K0, we choose

ε1 = ε1(d, p, K0), ε2 = ε2(q, K0),

such that p− ε1 > 1, q− ε2 > 1 and

w1 ∈ Ap−ε1(R
d), w2 ∈ Aq−ε2(R).

Find p0, ν1 ∈ (1, ∞) satisfying

p0ν1 = min
{

p
p− ε1

,
q

q− ε2

}
> 1.

Note that

w1 ∈ Ap−ε1(R
d) ⊂ Ap/(p0ν1)(R

d) ⊂ Ap/p0(R
d),

w2 ∈ Aq−ε2(R) ⊂ Aq/(p0ν1)(R) ⊂ Aq/o0(R).

By using (2.10) and Corollaries 4.1-4.2, we immediately get the following theorem, which
is a special case of [39, Theorem 5.2] and improves one of the main results in [76] by
dropping the restriction q ≥ p. See Remark 2.1.

Theorem 4.4. Let p, q ∈ (1, ∞), w1 and w2 satisfy the assumptions above, w = w1(x)w2(t),
T ∈ (−∞, ∞], and the coefficients of P satisfy Assumption 2.1. Then there exists λ0 ≥ 0
depending only on d, p, q, δ, K, K0, and the function ω, and N > 0 depending only on d, p, q, δ,
K, K0, such that for any λ ≥ λ0 and u ∈W1,2

p,q,w(R
d+1
T ),

‖ut‖+ ‖D2u‖+ λ1/2‖Du‖+ λ‖u‖ ≤ N‖Pu− λu‖,

where ‖ · ‖ = ‖ · ‖Lp,q,w(R
d+1
T ).

We refer the reader to [39] for various applications to weighted mixed-norm estimate
for higher-order nondivergence form systems in the whole space or on the half space
with VMOx coefficients, second-order nondivergence form equations with partially VMO
coefficients, and higher-order divergence form systems with partially VMO coefficients
on bounded or unbounded Reifenberg flat domains. From these a priori estimates, one
can also derive the corresponding solvability results. See Section 8 of [39].
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The argument developed in [39] has later been applied in [44, 45] to study higher-
order elliptic and parabolic equations with VMO coefficients and with general boundary
condition satisfying the Lopatinskiı̆–Shapiro condition, as well as in [18] where weighted
mixed norm estimates were obtained for higher-order elliptic and parabolic systems with
VMOx coefficients on Reifenberg flat domains. See also [49] for some extensions with
applications to fully nonlinear elliptic and parabolic equations, [42,50] for applications to
time-dependent Stokes systems with VMOx coefficients, as well as [54] for applications
to time-nonlocal equations. We also refer the reader to [87] for a recent survey on the
extrapolation theory as well as [88] for an application to the weak uniqueness of solutions
of the stochastic Itô equations when the leading coefficients are assumed to be measurable
in the time variable and two space variables, and be almost in VMO with respect to the
other coordinates.

It would be interesting to see whether the results in [44, 45] can be extended to the
VMOx case.

To conclude this section, we mention that there are many important work in the lit-
erature when the weight is certain power of the distance to the boundary of the domain,
which in particular have applications to SPDEs. See [37, 38, 66, 69, 72, 73], and the refer-
ences there in.

5 Nonlocal elliptic and parabolic equations

In this section, we discuss two types of non-local elliptic and parabolic equations. Non-
local equations such as integro-differential equations with jump Lévy processes have re-
ceived increasing attention. See recent work of Caffarelli, Silvestre, and many other peo-
ple. These equations arise from models in physics, engineering, and finance that involve
long-range interactions. An example is the following equation

Lu(x)− λu(x)

=:
ˆ

Rd

(
u(x + y)− u(x)− y · ∇u(x)χ(σ)(y)

)
K(x, y)dy− λu(x) = f (x), (5.1)

where
χ(σ) ≡ 0 for σ ∈ (0, 1), χ(1) = 1y∈B1 , χ(σ) ≡ 1 for σ ∈ (1, 2),

and K(x, y) is a positive kernel which has certain lower and upper bounds. A typical
case is the fractional Laplace operator −(−∆)γ, γ ∈ (0, 1), which can be written as the
principal value of the integral above with K(x, y) = Cd,γ|y|−d−2γ for a constant Cd,γ > 0.
In this case, the classical theory for pseudo-differential operators shows that, for any
λ > 0 and f ∈ Lp(Rd), 1 < p < ∞, there exists a unique solution u in the Bessel potential
space

Hσ
p (R

d) := {u ∈ Lp(R
d) : (1− ∆)σ/2u ∈ Lp(R

d)}
to (5.1) satisfying

‖u‖Hσ
p (R

d) ≤ N(d, σ, λ, p)‖ f ‖Lp(Rd).
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In general, if the symbol of the operator is sufficiently smooth and its derivatives sat-
isfy appropriate decays, the aforementioned Lp-solvability is classical following from the
Fourier multiplier theorems. On the other hand, the Lp-solvability is also available if

K(x, y) = K(y) = a(y)/|y|d+σ (5.2)

and a(y) is homogeneous of order zero and sufficiently smooth. See [68, 99].
In [31], the authors extended this type of Lp-solvability to Eq. (5.1) when the kernel

K is translation invariant with respect to x, i.e., K(x, y) = K(y), merely measurable in y,
and satisfies the ellipticity condition

(2− σ)
ν

|y|d+σ
≤ K(y) ≤ (2− σ)

ν−1

|y|d+σ
, ν ∈ (0, 1), (5.3)

where 0 < σ < 2 is a constant. By using a purely analytic method, the authors proved the
continuity of the non-local operator L from the Bessel potential space Hσ

p to Lp, and the
unique strong solvability of the corresponding non-local elliptic equations in Lp spaces.

Theorem 5.1 (Theorem 2.1 of [31]). Let 1 < p < ∞, λ ≥ 0, and 0 < σ < 2. Assume that
K = K(y) satisfies (5.3) and, if σ = 1, K also satisfies the additional cancellation condition

ˆ
∂Br

yK(y)dSr(y) = 0, ∀r ∈ (0, ∞).

Then L defined in (5.1) is a continuous operator from Hσ
p to Lp. For u ∈ Hσ

p and f ∈ Lp
satisfying

Lu− λu = f in Rd, (5.4)

we have
‖u‖Ḣσ

p
+
√

λ‖u‖Ḣσ/2
p

+ λ‖u‖Lp ≤ N‖ f ‖Lp ,

where N = N(d, ν, Λ, σ, p). Moreover, for any λ > 0 and f ∈ Lp, there exists a unique strong
solution u ∈ Hσ

p of (5.4).

As a byproduct, interior Lp-estimates were also obtained. The proof is built on mean
oscillation estimates mentioned above. The key step in establishing the mean oscillation
estimates of solutions is based on a Cα estimate for the non-local equation, for which
some ideas from Barles et al. [4] were used. Compared to previous results, the novelty
of the results is that the function a in (5.2) is not necessarily to be homogeneous, regular,
or symmetric. An application of the above result is the uniqueness for the martingale
problem associated to the operator L upon using the embedding C0 ⊂ Hσ

p for p > d/σ.
See, for instance, [68]. Similar results for parabolic equations were later obtained in [100].

It is however not clear to us whether the results in [31] still hold if the kernel K(x, y)
can be written as a(x, y)/|y|d+σ and a is uniformly continuous with respect to x. Unlike
the second-order case, this extension seems to be highly nontrivial. For instance, it is
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not even clear whether the operator L is bounded from Hσ
p to Lp under the continuity

condition on a. This is also highly in contrast with the Schauder theory for the same
equation (see, for instance, [33]), where for the Cσ+α estimate, it suffices to assume a to be
Cα in x. We note that a partial result on the Lp estimates has been obtained in [100] when
a is Hölder in x and p is sufficiently large.

Another type of non-local equations which we would like to discuss here is equations
with non-local time derivatives, e.g., the Caputo fractional time derivative, which has
been used to model fractional diffusion in plasma turbulence. When α ∈ (0, 1), it is given
by

∂α
t u(t, x) =

1
Γ(1− α)

d
dt

ˆ t

0
(t− s)−α [u(s, x)− u(0, x)] ds.

Recently, there are many interesting work about parabolic equations with non-local time
derivatives. For instance, De Giorgi–Nash–Moser type Hölder estimates for time frac-
tional parabolic equations was obtained in Zacher [114], and for parabolic equations with
fractional operators in both t and x in Allen et al. [3].

In Kim et al. [65], the authors proved the unique solvability in mixed Lp,q spaces of
the time fractional parabolic equation

−∂α
t u + aijDiju + biDiu + cu = f

for α ∈ (0, 2), under the assumption that the leading coefficients aij are piecewise con-
tinuous in time and uniformly continuous in the spatial variables. Their proof is based
upon a representation formula for solution to the time fractional heat operator

−∂α
t + ∆

using the Mittag–Leffler function together with a perturbation argument.
In [40] this result was substantially extended in the case when α ∈ (0, 1), where the

leading coefficients aij are allowed to be merely measurable in time and VMO in the space
variables, as in Section 2. For the proof, the authors exploited the level set argument
in [5]. The main difficulty arises in the key step where one needs to estimate local L∞
estimates of the Hessian of solutions to locally homogeneous equations. Starting from
the L2-estimate and applying the Sobolev type embedding results, one can only show
that such Hessian are in Lp1 for some p1 > 2, instead of L∞. Nevertheless, this allows
us to obtain the Lp estimate and solvability for any p ∈ [2, p1) and aij = aij(t) by using
a modified level set type argument. By repeating this procedure, one can iteratively in-
crease the exponent p for any p ∈ [2, ∞). The case when p ∈ (1, 2) follows from a duality
argument. For equations with the leading coefficients being measurable in t and having
small mean oscillations in x, it suffices to use a perturbation argument. This is achieved
by incorporating the small mean oscillations of the coefficients into level set estimates
of solutions having compact support in the spatial variables. After that, the standard
partition of unity argument completes the proof.
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In this direction, we also refer the reader to [41] for a corresponding result for diver-
gence form equations with non-local time derivatives with leading coefficients measur-
able in a space variable and VMO with respect to other variables, as well as [54] for an
extension of the result in [65] to weighted mixed-norm Lebesgue spaces for the fractional
heat equation

−∂α
t u + ∆u = f .

Given the results in [39] and [54,65], it is natural to ask whether the result in [40] can be ex-
tended to the mixed-norm spaces and whether it is possible to also include weights. Un-
fortunately, it turns out that these extensions cannot be achieved by using the technique
of iteration and the level set argument in [40]. In [43], the authors gave a definite answer
to these two questions. In particular, it was proved that under the same assumptions on
the coefficients as in [40], for any p, q ∈ (1, ∞) and Muckenhoupt weights w1(t) ∈ Ap(R),
w2(x) ∈ Aq(Rd), if u satisfies

−∂α
t u + aijDiju + biDiu + cu = f in (0, T)×Rd

with the zero initial condition at t = 0, then it holds that

‖|∂α
t u|+ |u|+ |Du|+ |D2u|‖Lp,q,w((0,T)×Rd) ≤ N‖ f ‖Lp,q,w((0,T)×Rd),

where w = w1(t)w2(x) and N is independent of u and f .
For the proof, the authors adapted the mean oscillation argument mentioned above.

For this, one need to establish a Hölder estimate of D2v, where v satisfies a certain ho-
mogeneous equation with coefficients depending only on t. Such an estimate can be ob-
tained relatively easily for parabolic equations with the local time derivative term vt via
somewhat standard local estimates. However, if the non-local time derivative is present,
the local estimates do not work when improving the regularity of v because the non-local
time derivative of v depends on all past states of v. To overcome the difficulty from the
non-local effect in time, the strategy is to consider an infinite cylinder (−∞, t0)× Br(x0)
instead of the usual parabolic cylinder Qr(t0, x0). We write u ∈H

α,2
p,0

(
(0, T)×Rd) if there

exists a sequence {un} such that un ∈ C∞
0
(
[0, T]×Rd), un(0, x) = 0, and

‖un − u‖p + ‖Dun − Du‖p + ‖D2un − D2u‖p + ‖∂α
t un − ∂α

t u‖p → 0

as n → ∞, where ‖ · ‖p = ‖ · ‖Lp((0,T)×Rd). Let H
α,2
p0,0((0, T) × Br) be the collection of

functions in H
α,2
p,0

(
(0, T)×Rd) restricted in (0, T)× Br.

Lemma 5.1. Let p0 ∈ (1, ∞), t0 ∈ (0, ∞), and v ∈H
α,2
p0,0((0, t0)× Br) satisfy

−∂α
t v + aij(t)Dijv = 0 (5.5)

in (0, t0)× Br, r > 0. Then there exists

p1 = p1(d, α, p0) ∈ (p0, ∞]
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satisfying

p1 > p0 + min
{

2α

αd + 2− 2α
, α

}
,

such that (
|D2v|p1

)1/p1

Qr/2(t1,0) ≤ N
∞

∑
j=1

j−(1+α)
(
|D2v|p0

)1/p0

Qr(t1−(j−1)r2/α,0)

for any t1 ≤ t0, where N = N(d, δ, α, p0) and(
|D2v|p1

)1/p1

Qr/2(t1,0) = ‖D
2v‖L∞(Qr/2(t1,0)), if p1 = ∞.

If p0 > d/2 + 1/α, then

[D2v]Cσα/2,σ(Qr/2(t1,0)) ≤ Nr−σ
∞

∑
j=1

j−(1+α)
(
|D2v|p0

)1/p0

Qr(t1−(j−1)r2/α,0)

for any t1 ≤ t0, where σ = σ(d, α, p0) ∈ (0, 1). Moreover, if p1 < ∞, then v ∈
H

α,2
p1,0 ((0, t0)× Br/2).

Lemma 5.1 is proved by using a cutoff argument and the embedding theorems ob-
tained in [40]. Then by an iteration argument and the simple inequality

k−1

∑
j=1

j−(1+α)(k− j)−(1+α) ≤ N(α)k−(1+α)

for any α > 0, the following Hölder estimate is obtained.

Proposition 5.1. Let 1 < p0 < p < ∞, t0 ∈ (0, ∞), and v ∈ H
α,2
p0,0((0, t0)× Br) satisfy (5.5)

in (0, t0)× Br, r > 0. Then we have

[D2v]Cσα/2,σ(Qr/2(t1,0)) ≤ Nr−σ
∞

∑
j=1

j−(1+α)
(
|D2v|p0

)1/p0

Qr(t1−(j−1)r2/α,0)

for any t1 ≤ t0, where σ = σ(d, α, p0) ∈ (0, 1) and N = N(d, δ, α, p, p0).

For solutions to inhomogeneous equations, the following bound is proved by taking
the non-local effect of the operator into account. Denote Hα,1

2,0 ((0, T)× Br) to be the set
of functions which can be approximated by a sequence {un} ⊂ C∞

0 ([0, T]× Br) with
un(0, ·) = 0 in the norm

‖u‖
Hα,1

2 ((0,T)×Br)
= ‖u‖Lp((0,T)×Br) + ‖Du‖Lp((0,T)×Br) + ‖∂

α
t u‖

H−1
p ((0,T)×Br)

,

where

‖∂α
t u‖

H−1
p ((0,T)×Br)

=: inf
{
‖g‖Lp((0,T)×Br) + ‖ f ‖Lp((0,T)×Br) : ∂α

t u = div g + f in (0, T)× Br

}
.
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Proposition 5.2. Let p0 ∈ (1, ∞), f ∈ Lp0 ((0, t0)× B1), and w ∈ Hα,1
2,0((0, t0) × B1) be a

weak solution to
−∂α

t w + aij(t)Dijw = f (t, x)

in (0, t0)× B1 with the zero boundary condition on ∂p ((0, t0)× B1). Then we have(
|D2w|p0

)1/p0

Q1/2(t1,0) ≤
∞

∑
k=0

ck(| f |p0)
1/p0
(sk+1,sk)×B1

for any t1 ≤ t0, where sk = t1 − 2k + 1 and
∞

∑
k=0

ck ≤ N = N(d, δ, α, p0).

Define general cylinders

Qr1,r2(t, x) = (t− r2/α
1 , t)× Br2(x)

and the strong maximal function

(SM f ) (t, x) = sup
Qr1,r2 (s,y)3(t,x)

 
Qr1,r2 (s,y)

| f (r, z)|dzdr

for any f ∈ L1,loc. Clearly, M f ≤ SM f . It is well know that the Hardy–Littlewood
theorem holds for the strong maximal function, i.e., for any p ∈ (1, ∞),

‖SM f ‖Lp(Rd+1) ≤ N‖ f ‖Lp(Rd+1).

Moreover, for any p, q ∈ (1, ∞), K1 ∈ [1, ∞), w1(t) ∈ Ap(R, dt), w2(x) ∈ Aq(Rd, dx)
satisfying

[w1]Ap ≤ K1, [w2]Aq ≤ K1,

and w(t, x) = w1(t)w2(x), we have for any f ∈ Lp,q,w(R×Rd),

‖SM f ‖Lp,q,w(R×Rd) ≤ N‖ f ‖Lp,q,w(R×Rd), (5.6)

where N = N(d, p, q, K1) > 0. This follows from [6, Theorem 1.1] when p = q, and the
extrapolation theorem of Rubio de Francia [105].

Now by using a decomposition argument, it follows from Propositions 5.1 and 5.2
that for any (t0, x0) ∈ (0, T]×Rd, r ∈ (0, ∞), µ ∈ (0, 1/4),(

|D2u− (D2u)Qµr(t0,x0)|
)

Qµr(t0,x0)

≤Nµσ(SM|D2u|p0)
1

p0 (t0, x0)

+ Nµ
− 1

p0
(d+ 2

α )ω
1

ν2 p0 (R)(SM|D2u|ν1 p0)
1

ν1 p0 (t0, x0)

+ Nµ
− 1

p0
(d+ 2

α ) (SM| f |p0)
1

p0 (t0, x0) (5.7)
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provided that u ∈H
α,2
p0

(
(0, T)×Rd) has compact support in [0, T]× BR and satisfies

−∂α
t u + aij(t, x)Diju = f

in (0, T)×Rd. Similar to (2.9), the inequality (5.7) gives a pointwise sharp function esti-
mate, which together with the weighted mixed-norm Fefferman–Stein theorem (Theorem
4.2) and (5.6) yield the desired estimate.

It is an interesting problem whether the results in [40, 43] still hold in the factional
wave case when α ∈ (1, 2). In this range, the best result so far is in [65], where the
coefficients are assumed to be piecewise continuous in time and uniformly continuous
in the spatial variables. Would it be possible relax the condition to VMO coefficients, or
even VMOx coefficients?

6 Fully nonlinear equations with or without the convexity
condition

In the last section of the paper, we discuss some recent progress in fully nonlinear el-
liptic and parabolic equations with discontinuous coefficients. The interior W2

p , p > d,
estimates for a class of fully nonlinear uniformly elliptic equations of the form

F(D2u, x) = f (x)

were first obtained by Caffarelli in [11]. See also [12]. His proof is geometric and is based
on the Aleksandrov–Bakel’man–Pucci a priori estimate, the Krylov–Safonov Harnack es-
timate, and the ”crawling of ink spots” lemma in [70, 106] mentioned in the introduc-
tion. Adapting this technique, similar estimates were proved by Wang [111] for parabolic
equations. By exploiting a weak reverse Hölder’s inequality, the result of [11] was sharp-
ened by Escauriaza in [51], who obtained the interior W2

p-estimate for the same equations
allowing p > d − ε, with a small constant ε depending only on the ellipticity constant
and d. See also Winter [113] for an extension to the corresponding boundary estimate
as well as the W2

p-solvability of the boundary value problem. We also mention that a
solvability theorem in the space W1,2

p,loc(Q) ∩ C(Q̄) can be found in [20] for the boundary-
value problem of fully nonlinear parabolic equations. In these papers, a small oscillation
assumption in the integral sense is imposed on the operators. See, for instance, [11, The-
orem 1]. However, as pointed out in [113, Remark 2.3] and in [79] (see also [20, Example
8.3] for a relevant discussion), this assumption turns out to be equivalent to a small os-
cillation condition in the L∞ sense. Thus, the results in [11, 20, 51, 111, 113] mentioned
above are in general not applicable to the operators under the VMO condition, in which
local oscillations are measured in the average sense so that huge jumps in the L∞ norm
are allowed.

In [79], Krylov obtained interior W2
p , p > d, estimates for elliptic Bellman’s equations

sup
ω∈Ω

[aij(ω, x)Diju(x) + bi(ω, x)Diu(x)− (c(ω, x) + λ)u(x) + f (ω, x)] = 0
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in the whole space Rd with VMO ”coefficients”, i.e.,

sup
x∈Rd

 
Br(x)

sup
ω∈Ω
|a(ω, y)− (a)Br(x)(ω)| dy

is sufficiently small for all r sufficiently small. This result was extended in [47] to the
parabolic case, where both interior and boundary W1,2

p estimates for a class of fully non-
linear parabolic equations of the form

∂tu(t, x) + F(D2u(t, x), t, x) + G(D2u(t, x), Du(t, x), u(t, x), t, x) = 0 (6.1)

in cylindrical domains were proved and a solvability result for the terminal-boundary
value problem was also obtained. Let S be the set of symmetric d× d matrices, fix some
constants δ ∈ (0, 1), and K ∈ R+ =: (0, ∞). By Sδ we denote the subset of S consisting of
matrices whose eigenvalues are between δ and δ−1. Let D ⊂ Rd be a bounded domain,
T ∈ (0, ∞), and DT = (0, T)×D. The following condition is imposed in [47].

Assumption 6.1. (i) F(u′′, t, x) is convex and positive homogeneous of degree one with respect
to u′′ ∈ S and for all values of the arguments and ξ ∈ Rd,

δ|ξ|2 ≤ F(u′′ + ξξ∗, t, x)− F(u′′, t, x) ≤ δ−1|ξ|2.

(ii) G(u′′, u′, u, t, x), where u′′ ∈ S, u′ ∈ Rd, and u ∈ R, is nonincreasing in u and for all
values of the arguments

|G(u′′, u′, u, t, x)− G(u′′, v′, v, t, x)| ≤ K
(
|u′ − v′|+ |u− v|

)
,

|G(u′′, u′, u, t, x)| ≤ χ(|u′′|)|u′′|+ K(|u′|+ |u|) + Ḡ(t, x),

where Ḡ and χ are given functions such that χ : R̄+ → R̄+ is bounded, decreasing, and χ(r)→ 0
as r → ∞.

(iii) For all values of the arguments and ξ ∈ Rd,

δ|ξ|2 ≤ F(u′′ + ξξ∗, t, x) + G(u′′ + ξξ∗, u′, u, t, x),

− F(u′′, t, x)− G(u′′, u′, u, t, x) ≤ δ−1|ξ|2.

(iv) F(u′′, t, x) + G(u′′, u′, u, t, x) is convex with respect to u′′ ∈ S and, for any u′, u, t, x at
each point u′′ at which G(u′′, u′, u, t, x) is differentiable with respect to u′′, we have

|G(u′′, u′, u, t, x)− u′′ijGu′′ij
(u′′, u′, u, t, x)| ≤ Ĝ(t, x)M(|u|)(1 + |u′|),

where M(s) is a continuous function on R and Ĝ ∈ L1,loc(R
d+1).

Remark 6.1. The convexity of operators plays an important role in the regularity theory
of fully nonlinear elliptic and parabolic equations. For elliptic equations without con-
vexity assumptions, the best result one can get is that viscosity solutions are in C1+α (see
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Trudinger [109]) under the condition that the operators are sufficient regular (Hölder)
with respect to the independent variables. In fact, N. Nadirashvili and S. Vlǎdut [102]
found an example which shows that even for elliptic operators independent of the space
variables viscosity solutions may not have bounded second-order derivatives.

Remark 6.2. A typical example when it is relatively easy to verify the hypotheses is given
by the following Bellman’s equation:

∂tu(t, x) + sup
ω∈Ω

[aij(ω, t, x)Diju(t, x) + bi(ω, t, x)Diu(t, x)

− c(ω, t, x)u(x) + f (ω, t, x)] = 0, (6.2)

where the set Ω is a separable metric space, a = (aij), b = (bi), c ≥ 0, and f are given
functions which are measurable in (t, x) for each ω ∈ Ω and continuous in ω for each
(t, x). Introduce

F(u′′, t, x) = sup
ω∈Ω

aij(ω, t, x)u′′ij,

G(u′′, u′, u, t, x) = sup
ω∈Ω

[aij(ω, t, x)u′′ij + bi(ω, t, x)u′i

− c(ω, t, x)u+ f (ω, t, x)]− F(u′′, t, x),

and assume that for any ω the function aij(ω, t, x)u′′ij satisfies Assumption 6.1(i) and the
function bi(ω, t, x)u′i − c(ω, t, x)u+ f (ω, t, x) satisfies Assumption 6.1(ii). Then F and G
satisfy Assumption 6.1(i)-(iii) with χ ≡ 0.

The following VMO assumption is imposed on the leading term in (6.1) with a con-
stant θ ∈ (0, 1] to be specified later.

Assumption 6.2. There exists R0 ∈ (0, 1] such that for any r ∈ (0, R0], τ ∈ R, and z ∈ D,
one can find a function F̄(u′′) (independent of (t, x)) satisfying condition Assumption 6.1(i) and
such that for any u′′ ∈ S with |u′′| = 1 we have

 
Qr(τ,z)

|F(u′′, t, x)− F̄(u′′)|dxdt ≤ θ. (6.3)

For instance, (6.3) is satisfied by (6.2) if for any r ∈ (0, R0], t ∈ R, and z ∈ D one can
find functions āij(ω) such that the functions āij(ω)u′′ij satisfy Assumption 6.1(i) and for
any u′′ ∈ S with |u′′| = 1

 
Qr(τ,z)

∣∣∣ sup
ω

aij(ω, t, x)u′′ij − sup
ω

āij(ω)u′′ij

∣∣∣dxdt ≤ θ.

One of the main results in [47] is the following solvability result.
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Theorem 6.1 (Theorem 1.1 of [47]). Let p > d + 1 be a constant, T ∈ R+, and let D be a
bounded C1,1 domain in Rd. Assume that Ḡ ∈ Lp(DT). Then there exists a constant θ ∈ (0, 1]
depending only on d, p, δ, and the C1,1 norm of ∂D such that if Assumptions 6.1 and 6.2 are
satisfied with this θ, then the following assertions hold. For any g ∈ W1,2

p (DT), there is a unique
solution u ∈W1,2

p (DT) to (6.1) such that u = g on ∂pDT. Moreover, we have

‖u‖W1,2
p (DT)

≤ N‖Ḡ‖Lp(DT) + N‖g‖W1,2
p (DT)

+ N0,

where N depends only on d, p, δ, K, R0, the C1,1 norm of ∂D, and diam(D) and N0 depends only
on the same objects, T, and χ. In particular, N0 = 0 if χ ≡ 0.

We remark that in contrast to linear equations, to the best of our knowledge, there is
no W1,2

p estimate for fully nonlinear equations with “coefficients” measurable in the time
variable. For example, consider the equation

ut + F(D2u, t) = 0,

where F satisfies the ellipticity and convexity conditions with respect to D2u. When F is
a measurable function of t, we do not even know whether D2u is bounded (or u ∈ C1,1

with respect to x).
The key ingredients of the proofs in [47, 79] are the Evans–Krylov C2,α estimate ap-

plied to homogeneous equations with constant coefficients and a W2
ε estimate for elliptic

equations with measurable coefficients, which is originally due to Lin [92] and extended
to the parabolic case in [79].

Lemma 6.1. Let r ∈ (0, ∞) and let u ∈ C(Q̄r) ∩W1,2
d+1(Qρ) for any ρ ∈ (0, r). Then there are

constants γ ∈ (0, 1] and N, depending only on δ, d, such that for any L = aijDij, where aij are
symmetric, bounded, measurable, and satisfy the ellipticity condition with ellipticity constant δ,
we have

 
Qr

|D2u|γdxdt ≤ Nr−2γ sup
∂′Qr

|u|γ + N
( 

Qr

|∂tu + Lu|d+1dxdt
)γ/(d+1)

,

where ∂′Qr is the union of the top and lateral boundaries of Qr.

Observe that in the lemma above, we only have the bound of the Lγ norm of D2u,
where γ could be small, so that the classical Fefferman–Stein theorem is not applicable. In
this regard, another tool in the proof is a generalization of the Fefferman–Stein theorem,
where the mean oscillation is measured in the Lγ sense instead of the L1 sense.

Later the convexity condition in the above theorem was relaxed in [48, 81, 82, 86]. In
particular, in [48] the authors proved that for any uniformly parabolic fully nonlinear
second-order equation

∂tu(t, x) + H(u(t, x), Du(t, x), D2u(t, x), t, x) = 0
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with bounded measurable ”coefficients” and bounded ”free” term in any cylindrical
smooth domain with smooth boundary data, there is an approximating equation

∂tu(t, x) + max(H[u], P[u]− K) = 0,

which has a unique continuous solution with the first derivatives bounded and the sec-
ond spacial derivatives locally bounded. Here P[u] = P(D2u) is a convex elliptic oper-
ator independent of (t, x) and the approximating equation is constructed by modifying
the original one only for large values of |u|, |Du|, and |D2u|. The novelty of the results
in [48, 81] is that no convexity assumption is imposed on the equation. The main idea is
that on the set Γ, where the second-order derivatives of u are large, we have

∂tu + P[u] = K

and by the maximum principle the second order derivative on Γ are controlled by their
values on the boundary of Γ, where they are under control by the definition of Γ. The
implementation of this idea, however, requires sufficient regularity of solutions. Since
this is not known a priori, the above idea was applied at the level of finite differences,
which is quite involved.

The following solvability result for fully nonlinear parabolic equations

∂tu + F(D2u, u, t, x) + G(D2u, Du, u, t, x) = 0 (6.4)

under a relaxed convexity condition can be found in [86]. Let θ, θ̂ ∈ (0, 1) be constants to
be specified.

Assumption 6.3. (i) For u′′ ∈ S, u′ ∈ Rd, u ∈ R, and (t, x) ∈ Rd+1,

|G(u′′, u′, u, t, x) ≤ θ̂|u′′|+ K0(|u′|+ |u|) + Ḡ(t, x),

where Ḡ ≥ 0.
(ii) The function F is Lipschitz continuous with respect to u′′ with Lipschitz constant KF and

F(0, t, x) ≡ 0.
(iii) There exist R0 ∈ (0, 1] and τ0 ∈ [0, ∞) such that, if r ∈ (0, R0], z ∈ Rd+1, Qr(z) ⊂ DT,

and u ∈ R, then one can find a convex function

F̄(u′′) = F̄z,r,u(u
′′),

for which we have F̄(0) = 0 and Du′′ F̄ ∈ Sδ at all points of differentiability of F̄. Moreover, for
any u′′ ∈ S with |u′′| = 1 (|u′′| =: tr 1/2(u′′u′′)), we have 

Qr(z)
sup
τ>τ0

τ−1∣∣F(τu′′, u, t, x
)
− F̄(τu′′)

∣∣ dx dt ≤ θ.

(iv) There exists a continuous increasing function ωF(τ), τ ≥ 0, satisfying ωF(0) = 0 and
for any u, v ∈ R, (t, x) ∈ DT, and u′′ ∈ S, we have

|F(u′′, u, t, x)− F(u′′, v, t, x)| ≤ ωF(|u− v|)|u′′|.
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Note that in (iii) the ”VMO” condition on F(u′′, u, t, x) with respect to (t, x) is only im-
posed for u′′ sufficiently large. The following condition is also used for the solvability of
equations. It is worth mentioning that in contrast to the previous results in the literature
(see, for example, [20]), no Lipschitz continuity with respect to u′ and u is assumed.

Assumption 6.4. For any (t, x) ∈ Rd+1, the function

H(u′′, u′, u, t, x) =: F(u′′, t, x) + G(u′′, u′, u, t, x)

is continuous with respect to (u′, u), and Lipschitz continuous with respect to u′′, and at all points
of differentiability of H with respect to u′′, we have Du′′H ∈ Sδ.

For ρ > 0, denote

Dρ = {x ∈ D : Bρ(x) ∈ D}, D
ρ
T = [0, T − ρ2)×Dρ.

Theorem 6.2 (Theorem 12.1.10 of [86]). Let p > d + 2 and D be a bounded domain in Rd

which satisfies the exterior ball condition. There exist constants θ, θ̂ ∈ (0, 1), depending only on
d, p, δ, KF such that if Assumptions 6.3 and 6.4 are satisfied, and Ḡ ∈ Lp(DT), then for any
g ∈ C(((0, T)× ∂D) ∪ ({T} × D̄)), there exists

u ∈
⋃
ρ>0

W1,2
p (D

ρ
T) ∩ C(D̄T)

satisfying (6.4) and u = g on ((0, T)× ∂D) ∪ ({T} × D̄).

The exterior ball condition in the theorem above can be replaced with the weaker
exterior measure condition:

|Br(x) \D| ≥ δ|Br(x)|
for any sufficiently small r > 0 and x ∈ ∂D. We refer the reader to Remark 12.1.12 of [86]
for a discussion about a similar solvability result in [20], where viscosity solutions are
considered and H is assumed to be convex (or concave) in u′′ and continuous in (t, x).

In [49], the authors proved weighted and mixed-norm Sobolev estimates for fully
nonlinear elliptic and parabolic equations in the whole space, under a relaxed convexity
condition with almost VMO dependence on space-time variables similar to Assumption
6.3. As a typical example, weights which are powers of the distance to the boundary
were considered. The corresponding interior and boundary estimates are also obtained.
For the proof, the authors established the following local version of the Fefferman-Stein
sharp functions theorem. Recall the notation in Section 4. For m ∈ Z and γ ∈ (0, 1],
introduce

u#
γ,m(x) = sup

n≥m
sup

Qα
n∈Cn,Qα

n3x

(  
Qα

n

 
Qα

n

|u(z)− u(y)|γµ(dz)µ(dy)
)1/γ

,

Mmv = sup
n≤m

v|n.
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For β ∈ (0, 1], we say that w is of β-type (the A∞ condition) if

w(A)

w(C)
≤ Nw,β

|A|β
|C|β

for any measurable A ⊂ C and C ∈ C∞ =: ∪nCn, where Nw,β is a (finite) constant
independent of C and A.

Theorem 6.3 (Corollary 2.10 of [49]). Let p ∈ (1, ∞) and m ∈ Z. Assume that |u||n → 0 as
n→ −∞, and let w be of β-type. Then for any p > γβ,

ˆ
Ω
|u|pwµ(dx) ≤ NI(p−γβ)/p Jγβ/p,

where

I =
ˆ

Ω
|Mu|pw µ(dx), J =

ˆ
Ω

(
u#

γ,m +M
1/γ
m (|u|γ)

)pw µ(dx),

and the constant N depends only on K1, K2, Nw,β, p, β, and γ.

This theorem allows them to derive estimates without relying on a partition of unity
argument, which is not applicable to general fully nonlinear operators. For further results
in this direction, we refer the reader to [56, 84, 85, 104] and the recent monograph [86] on
Sobolev and viscosity solutions for fully nonlinear equations.
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