
Analysis in Theory and Applications
Anal. Theory Appl., Vol. 36, No. 4 (2020), pp. 373-456

DOI: 10.4208/ata.OA-SU10

A Survey on Some Anisotropic Hardy-Type
Function Spaces

Jun Liu1, Dorothee D. Haroske2 and Dachun Yang3,∗

1 School of Mathematics, China University of Mining and Technology, Xuzhou,
Jiangsu 221116, China
2 Institute of Mathematics, Friedrich Schiller University Jena, Jena 07737, Germany
3 Laboratory of Mathematics and Complex Systems (Ministry of Education of China),
School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China

Received 10 December 2019; Accepted (in revised version) 3 January 2020

Dedicated to Professor Weiyi Su on the occasion of her 80th birthday

Abstract. Let A be a general expansive matrix on Rn. The aims of this article are
twofold. The first one is to give a survey on the recent developments of anisotropic
Hardy-type function spaces on Rn, including anisotropic Hardy–Lorentz spaces,
anisotropic variable Hardy spaces and anisotropic variable Hardy–Lorentz spaces as
well as anisotropic Musielak–Orlicz Hardy spaces. The second one is to correct some
errors and seal some gaps existing in the known articles. Some unsolved problems are
also presented.
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1 Introduction

In order to meet the requirements arising in the development of harmonic analysis and
partial differential equations, there has been more and more research in extending clas-
sical function spaces from Euclidean spaces to some more general underlying spaces;
see, for instance, [8, 34, 44, 47, 49, 58, 85, 90, 116]. In 2003, to give a unified framework
of the real-variable theory of both the isotropic Hardy space and the parabolic Hardy
space of Calderón and Torchinsky [19], for the first time, Bownik [12] introduced the
anisotropic Hardy space Hp

A(R
n) with p ∈ (0, ∞), where A is a general expansive matrix

on Rn (see [12, p. 5, Definition 2.1]). In [12], Bownik also established the characterizations
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of Hp
A(R

n), respectively, in terms of atoms, maximal functions and tight frame multi-
wavelets (see [12, p. 94, Definition 4.2]), and proved as well that the dual space of Hp

A(R
n)

with p ∈ (0, 1] is the anisotropic Campanato space; as applications, Bownik [12] also ob-
tained the boundedness of anisotropic Calderón–Zygmund operators from Hp

A(R
n) to

itself (or to the Lebesgue space Lp(Rn)). Later on, Bownik et al. [16] further extended the
anisotropic Hardy space to the weighted setting. Very recently, Wang [110] considered
a multiplier theorem on anisotropic Hardy spaces Hp

A(R
n). Nowadays, the anisotropic

setting has proved useful not only in developing function spaces, but also in many other
branches such as the wavelet theory (see, for instance, [5, 12, 25]) and partial differential
equations (see, for instance, [18, 53]).

Let us briefly recall some history of the study of anisotropic function spaces. It has
been developed parallel to the theory for isotropic spaces; we refer the reader in partic-
ular to the monographs [9, 88] (and the articles mentioned there), and to the survey [10].
For any p ∈ (1, ∞) and {si}n

i=1 ⊂ N, the (classical) anisotropic Sobolev space on Rn

contains all f ∈ Lp(Rn) such that

∂si f
∂xsi

i
∈ Lp(Rn) for any i ∈ {1, · · · , n}.

It is obvious that, unlike in case of the isotropic Sobolev space (namely, the case when
s1 = · · · = sn), the smoothness properties of an element depend on the chosen direction
in Rn. The number s, defined by setting 1

s := 1
n (

1
s1
+ · · ·+ 1

sn
), is usually called the mean

smoothness, and a = (a1, · · · , an), given by ai := s
si

, i ∈ {1, · · · , n}, characterizes the
anisotropy. Similarly to the isotropic situation, more general scales of anisotropic Bessel
potential spaces (fractional Sobolev spaces), anisotropic Besov spaces and anisotropic
Triebel–Lizorkin spaces were studied. It is well known that the isotropic theory has a
more or less complete counterpart of the fundamentals (definitions, description via dif-
ferences and derivatives, elementary properties, embeddings for different metrics, in-
terpolation) in the context of anisotropic spaces. A survey on the basic results for the
(anisotropic) spaces of Besov or Triebel–Lizorkin type was given in [94, Subsections 4.2.1
through 4.2.4] (with preceding results in [83, 92, 93, 103–106]) and [57, Sections 2.1 and
2.2]. More recently, several authors were concerned with the problem of obtaining use-
ful decompositions of anisotropic function spaces of Besov and Triebel–Lizorkin type.
A construction of unconditional bases using Meyer wavelets was obtained in [7, 8]; see
also [44, 45, 49]; a different approach, involving the ϕ-transform of Frazier and Jawerth
(see [40, 41]) was followed in [28–30]; see also [95]. More recent contributions can be
found in [13–15] and [55, 61, 62]. Based on the approach used in [107, 108], further repre-
sentations were obtained by local means, atomic and sub-atomic decompositions, which
can be found in [34, 47]; see also [24, 35, 36, 101, 112, 113] for applications. Finally, let us
refer the reader to [109, Chapter 5] where Triebel gave a very nice and detailed sum-
mary of the history, recent developments and the state-of-the-art (in 2006), which we also
recommend for further references. Moreover, Barrios et al. [4] further characterized the
anisotropic Besov spaces in terms of Peetre maximal functions and approximations; Li et



J. Liu, D. D. Haroske and D. Yang / Anal. Theory Appl., 36 (2020), pp. 373-456 375

al. [64] presented the duality theory of weighted anisotropic Besov and Triebel–Lizorkin
spaces; Li et al. [65] and Liu et al. [80, 81] established the characterizations of weighted
anisotropic Besov and Triebel–Lizorkin spaces via Littlewood–Paley functions involving
ball averages. In addition, anisotropic weak Hardy spaces were studied by Ding et al. [27]
and Barrios et al. [5], which were just special cases of anisotropic Hardy–Lorentz spaces
introduced by Liu et al. in [77, 79]; anisotropic local Hardy spaces were investigated
by Betancor et al. [11]; weighted anisotropic product Hardy spaces were considered by
Bownik et al. [17] and Li et al. [63]. In 2014, based on the work of both Bownik [12] and
Ky [60], Li et al. [68] introduced the anisotropic Musielak–Orlicz Hardy space, which was
a generalization of the anisotropic Hardy space of Bownik [12], the weighted anisotropic
Hardy space of Bownik et al. [16] as well as the Musielak–Orlicz Hardy space of Ky [60].
Recently, the anisotropic product Musielak–Orlicz Hardy space was studied by Fan et al.
in [32] and the anisotropic mixed-norm Hardy space by Huang et al. in [51].

The main purposes of this article are twofold. The first one is to give a survey on
the recent developments of anisotropic Hardy-type function spaces on Rn, including
anisotropic Hardy–Lorentz spaces, anisotropic variable Hardy spaces, anisotropic vari-
able Hardy–Lorentz spaces and anisotropic Musielak–Orlicz Hardy spaces. To be pre-
cise, the main results that we review include: various real-variable characterizations of
these four kinds of function spaces, the boundedness of Calderón–Zygmund operators
on anisotropic Hardy–Lorentz spaces and Musielak–Orlicz Hardy spaces, the bounded-
ness of maximal operators of the Bochner–Riesz and the Weierstrass means on anisotropic
variable Hardy spaces and Hardy–Lorentz spaces as well as some real interpolation re-
sults. The second purpose is to correct some errors and seal some gaps existing in the
proofs of Lusin area function characterizations of the above four kinds of function spaces,
namely, the proofs of the sufficiencies of, respectively, [79, Theorem 2.7], [75, Theorem
6.1], [78, Theorem 5.2] and [67, Theorem 2.8]. In addition, some unsolved problems are
also presented.

The organization of this survey is as follows.
In Section 2, we first give some notation which are used throughout this article and

then recall some notions on expansive matrices and homogeneous quasi-norms.
The aim of Section 3 is the summary of anisotropic Hardy–Lorentz spaces Hp,q

A (Rn)
with p ∈ (0, ∞), q ∈ (0, ∞] and A being a general expansive matrix. To this end, we
first recall the notion of Lorentz spaces Lp,q(Rn) which are then used to define Hp,q

A (Rn).
Moreover, in Subsections 3.2 and 3.3, various real-variable characterizations of the spaces
Hp,q

A (Rn), respectively, in terms of maximal functions, atoms, finite atoms, molecules and
the Lusin area functions as well as the Littlewood–Paley g-functions or g∗λ-functions, es-
tablished in [77, 79], are presented. Some errors and gaps existing in the proof of the suf-
ficiency of [79, Theorem 2.7] are also corrected and sealed in Subsection 3.3. As an appli-
cation, the fact that the space Hp,q

A (Rn) is an intermediate space between Hp1,q1
A (Rn) and

Hp2,q2
A (Rn) with 0 < p1 < p < p2 < ∞ and q1, q, q2 ∈ (0, ∞], and also between Hp,q1

A (Rn)
and Hp,q2

A (Rn) with p ∈ (0, ∞) and 0 < q1 < q < q2 ≤ ∞ in the real method of interpo-
lation, proved in [77, Theorem 6.1], is displayed. As another application, the bounded-
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ness of δ-type Calderón–Zygmund operators from Hp
A(R

n) to the weak Lebesgue space
Lp,∞(Rn) (or to Hp,∞

A (Rn)) in the critical case, from Hp,q
A (Rn) to itself (or to Lp,q(Rn)) with

δ ∈ (0, ln λ−
ln b ], p ∈ ( 1

1+δ , 1] and q ∈ (0, ∞], as well as the boundedness of some Calderón–
Zygmund operators from Hp,q

A (Rn) to Lp,∞(Rn), obtained in [77, Subsection 6.2], are also
given, where b := |det A|, λ− ∈ (1, min{|λ| : λ ∈ σ(A)}] and σ(A) denotes the set of all
eigenvalues of A.

In Section 4, we give the real-variable theory of anisotropic variable Hardy spaces
Hp(·)

A (Rn), where the variable exponent function, p(·) : Rn → (0, ∞], satisfies the so-
called globally log-Hölder continuity condition (see [75, (2.5) and (2.6)]). For this pur-
pose, we first recall the definition of variable Lebesgue spaces Lp(·)(Rn), which are the
associated basic function spaces of Hp(·)

A (Rn), and then present the notion of the spaces

Hp(·)
A (Rn). Furthermore, we display various real-variable characterizations of the spaces

Hp(·)
A (Rn) from [75], respectively, by means of maximal functions, atoms, finite atoms,

and the Lusin area functions as well as the Littlewood–Paley g-functions or g∗λ-functions.
Some errors and gaps existing in the proof of the sufficiency of [75, Theorem 6.1] are also
corrected and sealed in Subsection 4.3. As applications, a criterion on the boundedness of
some sublinear operators from Hp(·)

A (Rn) into a quasi-Banach space and the boundedness

of maximal operators of the θ-summability means from Hp(·)
A (Rn) to Lp(·)(Rn), obtained

in [75], are presented.
Section 5 is devoted to the introduction of the real-variable theory of anisotropic vari-

able Hardy–Lorentz spaces Hp(·),q
A (Rn), with p(·) as in Section 4 and q ∈ (0, ∞], which

are the generalizations of the spaces Hp,q
A (Rn) considered in Section 3. To this end, we

successively recall the notions of variable Lorentz spaces Lp(·),q(Rn) from [59] and the
spaces Hp(·),q

A (Rn) from [78]. Then various real-variable characterizations of the spaces

Hp(·),q
A (Rn), respectively, in terms of maximal functions, atoms, finite atoms, and the

Lusin area functions as well as the Littlewood–Paley g-functions or g∗λ-functions, es-
tablished in [76, 78], are presented. Some errors and gaps existing in the proof of the
sufficiency of [78, Theorem 5.2] are also corrected and sealed in Subsection 5.2. As an
application of the real-variable characterizations of both Hp(·)

A (Rn) and Hp(·),q
A (Rn), a real

interpolation result, obtained in [78, Theorem 6.2], is displayed. Moreover, we review a
criterion on the boundedness of some sublinear operators from Hp(·),q

A (Rn) into a quasi-
Banach space and the boundedness of maximal operators of the θ-summability means
from Hp(·),q

A (Rn) to Lp(·),q(Rn); see [76].
In Section 6, we present the real-variable theory of anisotropic Musielak–Orlicz Hardy

spaces Hϕ
A(R

n) with ϕ : Rn × [0, ∞) → [0, ∞) being an anisotropic growth function
(see [68, Definition 3]). For this purpose, we first recall the notions of the class of uniform
anisotropic Muckenhoupt weights, anisotropic growth functions as well as Musielak–
Orlicz spaces Lϕ(Rn), and then the definition of the spaces Hϕ

A(R
n). Moreover, we point

out that the anisotropic Musielak–Orlicz Hardy space Hϕ
A(R

n) and the anisotropic vari-
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able Hardy space Hp(·)
A (Rn) (see Section 4) cannot cover each other; see Remark 6.1(ii)

below. Then we display several real-variable characterizations of the spaces Hϕ
A(R

n),
respectively, by means of atoms, molecules and the Lusin area functions as well as the
Littlewood–Paley g-functions or g∗λ-functions, which are established in [67, 73, 74]. Some
errors and gaps existing in the proof of the sufficiency of [67, Theorem 2.8] are also cor-
rected and sealed in Subsection 6.3. As an application of these real-variable character-
izations, the boundedness of integral anisotropic Calderón–Zygmund operators from
Hϕ

A(R
n) to itself (or to the Musielak–Orlicz space Lϕ(Rn)), the dual spaces of Hϕ

A(R
n)

and the characterizations of Hϕ
A(R

n) via the so-called tight frame multiwavelets, obtained
in [73, 74], are reviewed.

2 Notions and notation

In this section, we give some notation and recall some notions on expansive matrices and
homogeneous quasi-norms which are used throughout this article.

We always let N := {1, · · · }, Z+ := {0} ∪N and ~0n be the origin of Rn. For any
multi-index α := (α1, · · · , αn) ∈ (Z+)n =: Zn

+, let |α| := α1 + · · ·+ αn and

∂α :=
(

∂

∂x1

)α1

· · ·
(

∂

∂xn

)αn

.

We use the symbol C to denote a positive constant which is independent of the main pa-
rameters and may change from line to line, and use C(α,β,··· ) to denote a positive constant
depending on the indicated parameters α, β, · · · . The symbol f . g means f ≤ Cg and,
when f . g . f , we write f ∼ g. We also use the following convention: If f ≤ Cg
and g = h or g ≤ h, we then write f . g ∼ h or f . g . h, rather than f . g = h or
f . g ≤ h. In addition, for any set F ⊂ Rn, we denote by 1F its characteristic function
and by |F| its n-dimensional Lebesgue measure. For any r ∈ [1, ∞], we denote by r′ its
conjugate index, namely, 1/r + 1/r′ = 1 and by bsc (resp. dse) the largest (resp. least)
integer not greater (resp. less) than s for any s ∈ R.

Denote by L1
loc(R

n) the set of all locally integrable functions on Rn. For any r ∈
(0, ∞] and measurable set E ⊂ Rn, denote by the symbol Lr(E) the set of all measurable
functions f such that, when r ∈ (0, ∞),

‖ f ‖Lr(E) :=
[∫

E
| f (x)|rdx

]1/r

< ∞

and

‖ f ‖L∞(E) := ess sup
x∈E

| f (x)| < ∞.
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Recall that an n× n matrix A is called an expansive matrix, shortly a dilation, if

min
λ∈σ(A)

|λ| > 1,

here and thereafter, σ(A) denotes the set of all eigenvalues of A (see, for instance, [12]).
The following notion of homogeneous quasi-norms is just [12, p. 6, Definition 2.3].

Definition 2.1. Let A be a given dilation. A measurable mapping ρ : Rn → [0, ∞) is
called a homogeneous quasi-norm, associated with A, if

(i) x 6=~0n implies ρ(x) ∈ (0, ∞);

(ii) for any x ∈ Rn, ρ(Ax) = bρ(x), here and thereafter, b := |det A|;

(iii) there exists a constant R ∈ [1, ∞) such that, for any x, y ∈ Rn, ρ(x + y) ≤ R[ρ(x) +
ρ(y)].

By [12, p. 5, Lemma 2.2], we know that, for a given dilation A, there exist some r ∈
(1, ∞) and an open ellipsoid ∆, with |∆| = 1, such that ∆ ⊂ r∆ ⊂ A∆. Then, for any
i ∈ Z, it is easy to see that Bi := Ai∆ is open, Bi ⊂ rBi ⊂ Bi+1 and |Bi| = bi. For any
x ∈ Rn and i ∈ Z, x + Bi is called a dilated ball. Let

B := {x + Bi : x ∈ Rn and i ∈ Z} , (2.1)

and

τ := inf
{

i ∈ Z : ri ≥ 2
}

. (2.2)

For any given dilation A, due to [12, p. 6, Lemma 2.4], we can use the step homogeneous
quasi-norm ρ defined by setting, for any x ∈ Rn,

ρ(x) := ∑
i∈Z

bi1Bi+1\Bi
(x) when x 6=~0n, or else ρ(~0n) := 0,

for convenience. Let λ− and λ+ be two positive numbers such that

1 < λ− ≤ min{|λ| : λ ∈ σ(A)} ≤ max{|λ| : λ ∈ σ(A)} ≤ λ+.

In particular, when A is diagonalizable over C, we can let

λ− := min{|λ| : λ ∈ σ(A)} and λ+ := max{|λ| : λ ∈ σ(A)}.

Otherwise, we can choose them sufficiently close to these equalities in accordance with
what we need in our arguments.

Recall also that a Schwartz function is an infinitely differentiable function φ satisfying,
for any ` ∈ Z+ and multi-index α ∈ Zn

+,

‖φ‖α,` := sup
x∈Rn

[ρ(x)]` |∂αφ(x)| < ∞.
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Let S(Rn) be the set of all Schwartz functions as above, equipped with the topology
determined by {‖ · ‖α,`}α∈Zn

+,`∈Z+
, and S′(Rn) its dual space, equipped with the weak-∗

topology. For any N ∈ Z+, let

SN(R
n) :=

φ ∈ S(Rn) : ‖φ‖SN(Rn) := sup
α ∈ Zn

+
|α| ≤ N

sup
x∈Rn

[
|∂αφ(x)|max

{
1, [ρ(x)]N

}]
≤ 1

 .

Throughout this article, for any φ ∈ S(Rn) and i ∈ Z, let φi(·) := b−iφ(A−i·).

3 Anisotropic Hardy–Lorentz spaces

In this section, we first recall the definition of anisotropic Hardy–Lorentz spaces Hp,q
A (Rn)

introduced in [77] and then present various real-variable characterizations of Hp,q
A (Rn)

established recently in [77, 79].

3.1 Definition of anisotropic Hardy–Lorentz spaces

We begin with the notion of Lorentz spaces. Let p ∈ (0, ∞) and q ∈ (0, ∞]. The Lorentz
space Lp,q(Rn) is defined to be the set of all measurable functions f with finite Lp,q(Rn)
quasi-norms ‖ f ‖Lp,q(Rn) given by

‖ f ‖Lp,q(Rn) :=


{

q
p

∫ ∞

0

[
t1/p f ∗(t)

]q dt
t

}1/q

, when q ∈ (0, ∞),

sup
t∈(0,∞)

[
t1/p f ∗(t)

]
, when q = ∞,

where f ∗ denotes the non-increasing rearrangement of f , namely, for any t ∈ (0, ∞)

f ∗(t) := inf{α ∈ (0, ∞) : d f (α) ≤ t}.

Here and thereafter, for any α ∈ (0, ∞),

d f (α) := |{x ∈ Rn : | f (x)| > α}|. (3.1)

Then, when q ∈ (0, ∞),

‖ f ‖Lp,q(Rn) ∼
{∫ ∞

0
αq−1 [d f (α)

]q/p dα

}1/q

∼
{

∑
k∈Z

[
2k
{

d f (2k)
}1/p

]q
}1/q

(3.2)

and

‖ f ‖Lp,∞(Rn) ∼ sup
α∈(0,∞)

{
α
[
d f (α)

]1/p
}
∼ sup

k∈Z

{
2k
[
d f (2k)

]1/p
}

,

where the positive equivalence constants are independent of f ; see [46].
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Definition 3.1. Let ϕ ∈ S(Rn) and f ∈ S′(Rn). The non-tangential maximal function
Mϕ( f ) with respect to ϕ is defined by setting, for any x ∈ Rn,

Mϕ( f )(x) := sup
y∈x+Bk , k∈Z

| f ∗ ϕk(y)|. (3.3)

Moreover, for any given N ∈ N, the non-tangential grand maximal function MN( f ) of
f ∈ S′(Rn) is defined by setting, for any x ∈ Rn,

MN( f )(x) := sup
ϕ∈SN(Rn)

Mϕ( f )(x). (3.4)

The following notion of anisotropic Hardy–Lorentz spaces is just [77, Definition 2.5].

Definition 3.2. Let p ∈ (0, ∞), q ∈ (0, ∞] and

N(p) :=


⌊(

1
p
− 1
)

ln b
ln λ−

⌋
+ 2, when p ∈ (0, 1],

2, when p ∈ (1, ∞).

For any N ∈ N ∩ [N(p), ∞), the anisotropic Hardy–Lorentz space Hp,q
A (Rn) is defined by

setting
Hp,q

A (Rn) :=
{

f ∈ S′(Rn) : MN( f ) ∈ Lp,q(Rn)
}

and, for any f ∈ Hp,q
A (Rn), let ‖ f ‖Hp,q

A (Rn) := ‖MN( f )‖Lp,q(Rn).

Remark 3.1. (i) Even though the quasi-norm of Hp,q
A (Rn) in Definition 3.2 depends on

N, from [77, Theorem 3.6] (see also Theorem 3.1 below), it follows that the space
Hp,q

A (Rn) is independent of the choice of N as long as N ∈N∩ [N(p), ∞).

(ii) Obviously, when p = q, Hp,q
A (Rn) becomes the anisotropic Hardy space Hp

A(R
n)

introduced by Bownik in [12] and, when q = ∞, Hp,q
A (Rn) is the anisotropic weak

Hardy space Hp,∞
A (Rn) investigated by Ding and Lan in [27].

(iii) Very recently, via the variable Lorentz spaces Lp(·),q(·)(Rn) in [31], where

p(·), q(·) : (0, ∞)→ (0, ∞)

are bounded measurable functions, Almeida et al. [2] investigated the anisotropic
variable Hardy–Lorentz spaces Hp(·),q(·)(Rn, A). Clearly, when p(·) ≡ a constant ∈
(0, ∞) and q(·) ≡ a constant ∈ (0, ∞), the space Hp(·),q(·)(Rn, A) goes back to the
anisotropic Hardy–Lorentz space Hp,q

A (Rn). However, the space Hp(·),q(·)(Rn, A)

cannot cover the space Hp,∞
A (Rn), because the variable exponent q(·) in Lp(·),q(·)(Rn)

belongs to (0, ∞).

(iv) Let p ∈ (0, ∞), q ∈ (0, ∞] and N ∈ N ∩ [N(p), ∞). Then Hp,q
A (Rn) ⊂ S′(Rn) with

continuous inclusion and Hp,q
A (Rn) is complete; see [77, Propositions 2.7 and 2.8].
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3.2 Some equivalent characterizations of Hp,q
A (Rn)

Recall that the notion of anisotropic (p, r, s)-atoms was first introduced by Bownik in [12,
p. 19, Definition 4.1].

Definition 3.3. An anisotropic triplet (p, r, s) is said to be admissible if p ∈ (0, 1], r ∈
(1, ∞] and

s ∈ Z+ ∩
[⌊(

1
p
− 1
)

ln b
ln λ−

⌋
, ∞
)

. (3.5)

For an admissible anisotropic triplet (p, r, s), a measurable function a on Rn is called an
anisotropic (p, r, s)-atom (shortly, a (p, r, s)-atom) if

(i) supp a := {x ∈ Rn : a(x) 6= 0} ⊂ B, where B ∈ B and B is as in (2.1);

(ii) ‖a‖Lr(Rn) ≤ |B|1/r−1/p;

(iii) for any α ∈ Zn
+ with |α| ≤ s,

∫
Rn a(x)xαdx = 0.

Via (p, r, s)-atoms, Liu et al. [77] introduced the anisotropic atomic Hardy–Lorentz
space Hp,r,s,q

A (Rn) as follows.

Definition 3.4. Let A be a dilation, (p, r, s) an admissible anisotropic triplet and q ∈
(0, ∞]. The anisotropic atomic Hardy–Lorentz space Hp,r,s,q

A (Rn) is defined to be the set
of all f ∈ S′(Rn) satisfying that there exist a sequence of (p, r, s)-atoms, {ak

i }i∈N,k∈Z,
supported, respectively, in {Bk

i }i∈N,k∈Z ⊂ B, and a positive constant C̃ such that
∑i∈N 1Bk

i
(x) ≤ C̃ for any x ∈ Rn and k ∈ Z, and

f = ∑
k∈Z

∑
i∈N

λk
i ak

i in S′(Rn),

where λk
i ∼ 2k|Bk

i |1/p for any k ∈ Z and i ∈ N with the positive equivalence constants
independent of k and i.

Moreover, for any f ∈ Hp,r,s,q
A (Rn), let

‖ f ‖Hp,r,s,q
A (Rn) := inf


∑

k∈Z

(
∑

i∈N

|λk
i |p
)q/p

1/q

: f = ∑
k∈Z

∑
i∈N

λk
i ak

i


with the usual modification made when q = ∞, where the infimum is taken over all the
decompositions of f as above.

We next recall the definition of anisotropic molecular Hardy–Lorentz spaces
Hp,r,s,ε,q

A (Rn) from [77].



382 J. Liu, D. D. Haroske and D. Yang / Anal. Theory Appl., 36 (2020), pp. 373-456

Definition 3.5. (i) An anisotropic quadruple (p, r, s, ε) is said to be admissible if p ∈
(0, 1], r ∈ (1, ∞], s is as in (3.5) and ε ∈ (0, ∞). For an admissible anisotropic
quadruple (p, r, s, ε), a measurable function m is called an anisotropic (p, r, s, ε)-
molecule (shortly, a (p, r, s, ε)-molecule) associated with a dilated ball B ∈ B if

(i)1 for each j ∈ Z+,
‖m‖Lr(Uj(B)) ≤ b−jε|B|1/r−1/p,

where U0(B) := B and, for any j ∈N, Uj(B) := (AjB) \ (Aj−1B);

(i)2 for any α ∈ Zn
+ with |α| ≤ s, ∫

Rn
m(x)xαdx = 0.

(ii) Let (p, r, s, ε) be an admissible anisotropic quadruple and q ∈ (0, ∞]. The
anisotropic molecular Hardy–Lorentz space Hp,r,s,ε,q

A (Rn) is defined to be the set
of all f ∈ S′(Rn) satisfying that there exist a sequence of (p, r, s, ε)-molecules,
{mk

i }i∈N,k∈Z, associated, respectively, with dilated balls {Bk
i }i∈N,k∈Z ⊂ B, and a

positive constant C̃ such that ∑i∈N 1Bk
i
(x) ≤ C̃ for any k ∈ Z and x ∈ Rn, and

f = ∑
k∈Z

∑
i∈N

λk
i mk

i in S′(Rn),

where λk
i ∼ 2k|Bk

i |1/p for any k ∈ Z and i ∈N. Moreover, for any f ∈ Hp,r,s,ε,q
A (Rn),

let

‖ f ‖Hp,r,s,ε,q
A (Rn) := inf


∑

k∈Z

(
∑

i∈N

|λk
i |p
)q/p

1/q

: f = ∑
k∈Z

∑
i∈N

λk
i mk

i


with the usual modification made when q = ∞, where the infimum is taken over
all the decompositions of f as above.

The following atomic and molecular characterizations are, respectively, from [77, The-
orems 3.6 and 3.9].

Theorem 3.1. Let (p, r, s, ε) be an admissible anisotropic quadruple as in Definition 3.5 with
ε ∈ (max{1, (s + 1) logb(λ+)}, ∞), q ∈ (0, ∞] and N ∈N∩ [N(p), ∞). Then

Hp,r,s,q
A (Rn) = Hp,q

A (Rn) = Hp,r,s,ε,q
A (Rn)

with equivalent quasi-norms.
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Let ϕ ∈ S(Rn). The radial maximal function M0
ϕ( f ) of f ∈ S′(Rn), with respect to ϕ,

is defined by setting, for any x ∈ Rn,

M0
ϕ( f )(x) := sup

k∈Z

| f ∗ ϕk(x)|. (3.6)

In [77, Theorem 4.9], the authors also obtained the maximal function characterizations
of Hp,q

A (Rn) as follows.

Theorem 3.2. Suppose that p ∈ (0, ∞), q ∈ (0, ∞] and ϕ ∈ S(Rn) satisfying
∫

Rn ϕ(x)dx 6= 0.
Then, for any f ∈ S′(Rn), the following statements are mutually equivalent:

(i) f ∈ Hp,q
A (Rn);

(ii) Mϕ( f ) ∈ Lp,q(Rn);

(iii) M0
ϕ( f ) ∈ Lp,q(Rn).

Moreover, there exist two positive constants C and C̃, independent of f , such that

‖ f ‖Hp,q
A (Rn) ≤ C

∥∥∥M0
ϕ( f )

∥∥∥
Lp,q(Rn)

≤ C‖Mϕ( f )‖Lp,q(Rn) ≤ C̃‖ f ‖Hp,q
A (Rn).

Definition 3.6. For an admissible anisotropic triplet (p, r, s), q ∈ (0, ∞], the anisotropic fi-
nite atomic Hardy–Lorentz space Hp,r,s,q

A,fin (Rn) is defined to be the set of all f ∈ S′(Rn) sat-
isfying that there exist K, I ∈N, a finite sequence of (p, r, s)-atoms, {ak

i }i∈[1,I]∩N,k∈[1,K]∩Z,
supported, respectively, in {Bk

i }i∈[1,I]∩N,k∈[1,K]∩Z ⊂ B, and a positive constant C̃, inde-
pendent of I and K, such that ∑I

i=1 1Bk
i
(x) ≤ C̃ for any x ∈ Rn and k ∈ [1, K] ∩Z, and

f =
K

∑
k=1

I

∑
i=1

λk
i ak

i in S′(Rn),

where λk
i ∼ 2k|Bk

i |1/p for any k ∈ [1, K] ∩Z and i ∈ [1, I] ∩N with the positive equiva-
lence constants independent of k, K and i, I. Moreover, for any f ∈ Hp,r,s,q

A,fin (Rn), let

‖ f ‖Hp,r,s,q
A,fin (Rn) := inf


 K

∑
k=1

(
I

∑
i=1
|λk

i |p
) q

p


1
q

: f =
K

∑
k=1

I

∑
i=1

λk
i ak

i , K, I ∈N


with the usual modification made when q = ∞, where the infimum is taken over all the
decompositions of f as above.

In what follows, denote by C(Rn) the set of all continuous functions. The following
conclusion was established in [77, Theorem 5.7].

Theorem 3.3. Let (p, r, s) be an admissible anisotropic triplet and q ∈ (0, ∞].

(i) If r ∈ (1, ∞), then ‖ · ‖Hp,r,s,q
A,fin (Rn) and ‖ · ‖Hp,q

A (Rn) are equivalent quasi-norms on

Hp,r,s,q
A,fin (Rn);

(ii) ‖ · ‖Hp,∞,s,q
A,fin (Rn) and ‖ · ‖Hp,q

A (Rn) are equivalent quasi-norms on Hp,∞,s,q
A,fin (Rn) ∩ C(Rn).
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3.3 Littlewood–Paley function characterizations of Hp,q
A (Rn)

In this subsection, we display the characterizations of Hp,q
A (Rn) in terms of the anisotropic

Lusin area function, the anisotropic Littlewood–Paley g-function or g∗λ-function; see [79].
Meanwhile, we also correct some errors and seal some gaps existing in the proof of
the sufficiency of [79, Theorem 2.7], namely, the Lusin area function characterizations
of Hp,q

A (Rn).
Recall that a distribution f ∈ S′(Rn) is said to vanish weakly at infinity if, for

each ψ ∈ S(Rn), f ∗ ψk → 0 in S′(Rn) as k → ∞. Denote by S′0(R
n) the set of all

f ∈ S′(Rn) vanishing weakly at infinity. Let ı :=
√
−1 and, for any x := (x1, · · · , xn),

v := (v1, · · · , vn) ∈ Rn, x · v := ∑n
k=1 xkvk. For any f ∈ L1(Rn), denote by f̂ the Fourier

transform of f , which is defined by setting, for any v ∈ Rn,

f̂ (v) :=
∫

Rn
f (x)e−2πıx·vdx. (3.7)

The following Calderón reproducing formula is just [17, Proposition 2.14]. In what
follows, C∞

c (Rn) denotes the set of all infinitely differentiable functions with compact
support on Rn.

Lemma 3.1. Let s ∈ Z+ and A := (ai,j)1≤i,j≤n be a dilation. Assume that θ ∈ C∞
c (Rn) satisfies

supp θ ⊂ B0, ∫
Rn

xγθ(x)dx = 0 for any γ ∈ Zn
+ with |γ| ≤ s,

and θ̂(ξ) ≥ C for any ξ ∈ {x ∈ Rn : (2‖A‖)−1 ≤ ρ(x) ≤ 1}, where C is a positive constant
and

‖A‖ :=
( n

∑
i,j=1
|ai,j|2

)1/2
.

Then there exists some ψ ∈ S(Rn) such that

(i) supp ψ̂ is compact and away from the origin;

(ii) for any ξ ∈ Rn \ {~0n},

∑
j∈Z

ψ̂
(
(A∗)j ξ

)
θ̂
(
(A∗)j ξ

)
= 1,

where A∗ denotes the adjoint matrix of A.

Moreover, for any f ∈ S′0(R
n), f = ∑j∈Z f ∗ ψj ∗ θj in S′(Rn).

Let θ ∈ S(Rn) be as in Lemma 3.1 with s as in (3.5). For any f ∈ S′(Rn) and λ ∈ (0, ∞),
the anisotropic Lusin area function S( f ), the anisotropic Littlewood–Paley g-function



J. Liu, D. D. Haroske and D. Yang / Anal. Theory Appl., 36 (2020), pp. 373-456 385

g( f ) and the anisotropic Littlewood–Paley g∗λ-function g∗λ( f ) are defined, respectively,
by setting, for any x ∈ Rn,

S( f )(x) :=

[
∑

k∈Z

b−k
∫

x+Bk

| f ∗ θk(y)|2 dy

]1/2

, (3.8)

g( f )(x) :=

[
∑

k∈Z

| f ∗ θk(x)|2
]1/2

,

and

g∗λ( f )(x) :=

{
∑

k∈Z

b−k
∫

Rn

[
bk

bk + ρ(x− y)

]λ

| f ∗ θk(y)|2 dy

}1/2

.

In [79, Theorems 2.7 through 2.9], the authors characterized the space Hp,q
A (Rn), respec-

tively, in terms of the anisotropic Lusin area function, the anisotropic Littlewood–Paley
g-function or g∗λ-function as follows.

Theorem 3.4. Let p ∈ (0, 1] and q ∈ (0, ∞]. Then

(i) f ∈ Hp,q
A (Rn) if and only if f ∈ S′0(R

n) and S( f ) ∈ Lp,q(Rn). Moreover, there exists a
positive constant C such that, for any f ∈ Hp,q

A (Rn),

1
C
‖S( f )‖Lp,q(Rn) ≤ ‖ f ‖Hp,q

A (Rn) ≤ C ‖S( f )‖Lp,q(Rn) .

(ii) The conclusion as in (i) remains true if S( f ) is replaced, respectively, by g( f ) or g∗λ( f ) with
λ ∈ (2/p, ∞).

Remark 3.2. Let Sθ( f ) and Sψ( f ) be the anisotropic Lusin area functions defined, respec-
tively, by using θ and ψ as in Lemma 3.1. We should point out that, in the original proof of
the sufficiency of Theorem 3.4(i) (namely, [79, Theorem 2.7]), the authors used both Sθ( f )
and Sψ( f ); see, respectively, the proofs of [79, (3.23) and (3.29)]. Thus, the following fact
is needed: for any f ∈ S′0(R

n), the Lp,q(Rn) quasi-norms of the anisotropic Lusin area
function S( f ) are independent of the choices of θ and ψ as in Lemma 3.1. However, in
the original proof of the sufficiency of [79, Theorem 2.7], the authors did not present the
proof of this necessary fact. To seal this gap, we first present the following conclusions.

Theorem 3.5. Let p ∈ (0, 1], q ∈ (0, ∞] and θ, ψ be as in Lemma 3.1 with s as in (3.5). Then
there exists a positive constant C such that, for any f ∈ S′0(R

n),

1
C
‖Sθ( f )‖Lp,q(Rn) ≤

∥∥Sψ( f )
∥∥

Lp,q(Rn)
≤ C ‖Sθ( f )‖Lp,q(Rn) ,

where Sθ( f ) and Sψ( f ) are the anisotropic Lusin area functions as in (3.8) defined, respectively,
via θ and ψ.
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To prove Theorem 3.5, we first recall the notion of anisotropic Hardy–Littlewood max-
imal operators as follows.

Definition 3.7. The anisotropic Hardy–Littlewood maximal operator MHL is defined by
setting, for any f ∈ L1

loc(R
n) and x ∈ Rn,

MHL( f )(x) := sup
k∈Z

sup
y∈x+Bk

1
|Bk|

∫
y+Bk

| f (z)|dz = sup
x∈B∈B

1
|B|

∫
B
| f (z)|dz, (3.9)

where B is as in (2.1).

The following Fefferman–Stein vector-valued inequality of the maximal operator
MHL on the Lorentz space Lp,q(Rn) was obtained in [79, Lemma 4.5(i)], which plays a
key role in the proof of Theorem 3.5.

Lemma 3.2. Let p ∈ (1, ∞), q ∈ (0, ∞] and r ∈ (1, ∞]. Then there exists a positive constant C
such that, for any sequence { f j}j of measurable functions,∥∥∥∥∥∥

{
∑

j

[
MHL( f j)

]r

}1/r
∥∥∥∥∥∥

Lp,q(Rn)

≤ C

∥∥∥∥∥∥
[
∑

j

∣∣ f j
∣∣r]1/r

∥∥∥∥∥∥
Lp,q(Rn)

.

We also need the following conclusion, which is just [17, Lemma 2.3] and originates
from [21, Theorem 11].

Lemma 3.3. Let A be a dilation. Then there exists a set

Q :=
{

Qk
α ⊂ Rn : k ∈ Z, α ∈ Ek

}
of open subsets, where Ek is an index set, such that

(i) for each k ∈ Z, |Rn \⋃α Qk
α| = 0 and, when α 6= β, Qk

α ∩Qk
β = ∅;

(ii) for any α, β, k, ` with ` ≥ k, either Qk
α ∩Q`

β = ∅ or Q`
α ⊂ Qk

β;

(iii) for each (`, β) and each k < `, there exists a unique α such that Q`
β ⊂ Qk

α;

(iv) there exist some v ∈ Z \Z+ and u ∈ N such that, for any Qk
α with k ∈ Z and α ∈ Ek,

there exists an xQk
α
∈ Qk

α such that, for any x ∈ Qk
α,

xQk
α
+ Bvk−u ⊂ Qk

α ⊂ x + Bvk+u.

Henceforth, we call Q := {Qk
α}k∈Z,α∈Ek from Lemma 3.3 dyadic cubes and k the level,

denoted by `(Qk
α), of the dyadic cube Qk

α for any k ∈ Z and α ∈ Ek.
The following technical lemma is necessary, which is just [51, Lemma 6.14]. In what

follows, for any t ∈ R, we denote by dte the least integer not less than t.
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Lemma 3.4. Let s be as in (3.5), v and u as in Lemma 3.3(iv) and

r ∈
(

ln b
ln b + (s + 1) ln λ−

, 1
]

.

Then there exists a positive constant C such that, for any k, i ∈ Z, {cQ}Q∈Q ⊂ [0, ∞) with Q as
in Lemma 3.3, and x ∈ Rn,

∑
`(Q)=d k−u

v ei f k≥u

`(Q)=b k−u
v ci f k<u

|Q| b(k∨i)(s+1) ln λ−
ln b[

b(k∨i) + ρ(x− zQ)
](s+1) ln λ−

ln b +1
cQ

≤Cb−[k−(k∨i)](1/r−1)

MHL

 ∑
`(Q)=d k−u

v ei f k≥u

`(Q)=b k−u
v ci f k<u

[cQ]
r 1Q

 (x)


1/r

,

where `(Q) denotes the level of Q ∈ Q, zQ ∈ Q and, for any k, i ∈ Z, k ∨ i := max{k, i}.

We now prove Theorem 3.5.

Proof of Theorem 3.5. By symmetry, to show this theorem, we only need to prove that, for
any f ∈ S′0(R

n),

‖Sθ( f )‖Lp,q(Rn) . ‖Sψ( f )‖Lp,q(Rn). (3.10)

To this end, for any i ∈ Z, x ∈ Rn and y ∈ x + Bi, let

I(i)θ ( f )(y) := f ∗ θi(y).

Then, by Lemma 3.1 and the Lebesgue dominated convergence theorem, we find that, for
any i ∈ Z, x ∈ Rn and y ∈ x + Bi,

I(i)θ ( f )(y) = ∑
k∈Z

f ∗ ψk ∗ θk ∗ θi(y) = ∑
k∈Z

∫
Rn

f ∗ ψk(z)θk ∗ θi(y− z)dz

= ∑
k∈Z

∑
`(Q)=d k−u

v ei f k≥u

`(Q)=b k−u
v ci f k<u

∫
Q

f ∗ ψk(z)θk ∗ θi(y− z)dz (3.11)

in S′(Rn), where all the symbols are the same as those used in Lemma 3.4.
On another hand, by [17, Lemma 5.4], we know that, for any k, i ∈ Z and x ∈ Rn,

|θk ∗ θi(x)| . b−(s+1)|k−i| ln λ−
ln b

b(k∨i)(s+1) ln λ−
ln b

[b(k∨i) + ρ(x)](s+1) ln λ−
ln b +1

.
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This further implies that, for any Q ∈ Q with

`(Q) =


⌈

k− u
v

⌉
, when k ∈ [u, ∞) ∩Z,⌊

k− u
v

⌋
, when k ∈ (−∞, u) ∩Z,

(3.12)

there exists some zQ ∈ Q such that, for any k, i ∈ Z, x ∈ Rn, y ∈ x + Bi and z ∈ Q,

|θk ∗ θi(y− z)| . b−(s+1)|k−i| ln λ−
ln b

b(k∨i)(s+1) ln λ−
ln b

[b(k∨i) + ρ(x− zQ)]
(s+1) ln λ−

ln b +1
. (3.13)

Moreover, for any Q ∈ Q satisfying (3.12), we have Bv`(Q)+u ⊂ Bk. From this, the Hölder
inequality and Lemma 3.3(iv), we deduce that, for any z ∈ Q,

1
|Q|

∣∣∣∣∫Q
f ∗ ψk(y)dy

∣∣∣∣ ≤ [ 1
|Q|

∫
Q
| f ∗ ψk(y)|2 dy

]1/2

≤
[

1
|Bv`(Q)−u|

∫
z+Bv`(Q)+u

| f ∗ ψk(y)|2 dy

]1/2

.
[

b−k
∫

z+Bk

| f ∗ ψk(y)|2 dy
]1/2

∼ Υ(k)
ψ ( f )(z),

where, for any k ∈ Z and z ∈ Rn,

Υ(k)
ψ ( f )(z) :=

[
b−k

∫
z+Bk

| f ∗ ψk(y)|2 dy
]1/2

.

Thus, for any k ∈ Z and Q ∈ Q satisfying (3.12),

1
|Q|

∣∣∣∣∫Q
f ∗ ψk(y)dy

∣∣∣∣ . inf
z∈Q

Υ(k)
ψ ( f )(z).

By this, (3.11), (3.13) and Lemma 3.4, we conclude that, for any given r ∈ ( ln b
ln b+(s+1) ln λ−

, 1]
and for any i ∈ Z, x ∈ Rn and y ∈ x + Bi,∣∣∣I(i)θ ( f )(y)

∣∣∣ . ∑
k∈Z

b−(s+1)|k−i| ln λ−
ln b ∑

`(Q)=d k−u
v ei f k≥u

`(Q)=b k−u
v ci f k<u

|Q| b(k∨i)(s+1) ln λ−
ln b[

b(k∨i) + ρ(x− zQ)
](s+1) ln λ−

ln b +1
inf
z∈Q

Υ(k)
ψ ( f )(z)

. ∑
k∈Z

b−(s+1)|k−i| ln λ−
ln b b−[k−(k∨i)](1/r−1)

×

MHL

 ∑
`(Q)=d k−u

v ei f k≥u

`(Q)=b k−u
v ci f k<u

inf
z∈Q

[
Υ(k)

ψ ( f )(z)
]r

1Q

 (x)


1/r

= : J(r,i)(x). (3.14)
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By (3.5), we can choose some r ∈ ( ln b
ln b+(s+1) ln λ−

, p). Therefore, from (3.14), it follows that,
for any x ∈ Rn,

[Sθ( f )(x)]2 = ∑
i∈Z

b−i
∫

x+Bi

∣∣∣I(i)θ ( f )(y)
∣∣∣2 dy . ∑

i∈Z

[
J(r,i)(x)

]2
.

This, together with the Hölder inequality and the fact that r > ln b
ln b+(s+1) ln λ−

, implies that,
for any x ∈ Rn,

[Sθ( f )(x)]2 . ∑
i∈Z

∑
k∈Z

b−(s+1)|k−i| ln λ−
ln b b−[k−(k∨i)](1/r−1)

×

MHL

 ∑
`(Q)=d k−u

v ei f k≥u

`(Q)=b k−u
v ci f k<u

inf
z∈Q

[
Υ(k)

ψ ( f )(z)
]r

1Q

 (x)


2/r

. ∑
k∈Z

MHL

 ∑
`(Q)=d k−u

v ei f k≥u

`(Q)=b k−u
v ci f k<u

inf
z∈Q

[
Υ(k)

ψ ( f )(z)
]r

1Q

 (x)


2/r

. ∑
k∈Z

{
MHL

([
Υ(k)

ψ ( f )
]r)

(x)
}2/r

.

Thus, by the fact that r < p and Lemma 3.2, we find that

‖Sθ( f )‖Lp,q(Rn) .

∥∥∥∥∥∥
(

∑
k∈Z

{
MHL

([
Υ(k)

ψ ( f )
]r)

(x)
}2/r

)r/2
∥∥∥∥∥∥

1/r

Lp/r,q/r(Rn)

.

∥∥∥∥∥∥
(

∑
k∈Z

[
Υ(k)

ψ ( f )
]2
)1/2

∥∥∥∥∥∥
Lp,q(Rn)

∼
∥∥Sψ( f )

∥∥
Lp,q(Rn)

,

which implies (3.10) holds true and hence completes the proof of Theorem 3.5.

Recall that, for any given N ∈ N, the radial grand maximal function M0
N( f ) of f ∈

S′(Rn) is defined by setting, for any x ∈ Rn,

M0
N( f )(x) := sup

ϕ∈SN(Rn)

M0
ϕ( f )(x) (3.15)

with M0
ϕ( f ) as in (3.6).

Finally, we give out the proof of the sufficiency of Theorem 3.4(i).
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Proof of the sufficiency of Theorem 3.4(i). Let ψ be as in Lemma 3.1, f ∈ S′0(R
n) and S( f ) ∈

Lp,q(Rn). Then, by Theorem 3.5, we know that Sψ( f ) ∈ Lp,q(Rn). Thus, we only need to
show that f ∈ Hp,q

A (Rn) and

‖ f ‖Hp,q
A (Rn) .

∥∥Sψ( f )
∥∥

Lp,q(Rn)
. (3.16)

To this end, for any k ∈ Z, let Ωk := {x ∈ Rn : Sψ( f )(x) > 2k} and

Qk :=
{

Q ∈ Q : |Q ∩Ωk| >
|Q|
2

and |Q ∩Ωk+1| ≤
|Q|
2

}
.

Obviously, for any Q ∈ Q, there exists a unique k ∈ Z such that Q ∈ Qk. Let {Qk
i }i be the

set of all maximal dyadic cubes in Qk, namely, there exists no Q ∈ Qk such that Qk
i $ Q

for any i.
For any Q ∈ Q, let

Q̂ :=
{
(y, t) ∈ Rn+1

+ := Rn × (0, ∞) : y ∈ Q, t ∼ bv`(Q)+u
}

, (3.17)

here and thereafter, t ∼ bv`(Q)+u always means

bv`(Q)+u+τ ≤ t < bv[`(Q)−1]+u+τ, (3.18)

where u, v are as in Lemma 3.3(iv) and `(Q) denotes the level of Q. Observe that, in the
above inequality (3.18), v is negative. Clearly, {Q̂}Q∈Q are mutually disjoint and

Rn+1
+ =

⋃
k∈Z

⋃
i

Bk,i, (3.19)

where, for any k ∈ Z and i, Bk,i :=
⋃

Q⊂Qk
i ,Q∈Qk

Q̂. Then, by Lemma 3.3(ii) and (3.17), we
easily find that {Bk,i}k∈Z,i are also mutually disjoint.

Let ψ and θ be as in Lemma 3.1 with s as in (3.5). Then θ has the vanishing moments
up to order s. From Lemma 3.1, the properties of the tempered distributions (see, for
instance, [46, Theorem 2.3.20]) and (3.19), we deduce that, for any f ∈ S′0(R

n) such that
Sψ( f ) ∈ Lp,q(Rn), and for any x ∈ Rn,

f (x) = ∑
k∈Z

f ∗ ψk ∗ θk(x) =
∫

Rn+1
+

f ∗ ψt(y) ∗ θt(x− y)dydm(t) in S′(Rn), (3.20)

here and thereafter, m(t) denotes the counting measure on R, namely, for any set E ⊂ R,
m(E) is the number of integers contained in E if E has only finitely many elements, or
else m(E) := ∞. For each k ∈ Z, i and x ∈ Rn, let

hk
i (x) :=

∫
Bk,i

f ∗ ψt(y) ∗ θt(x− y)dydm(t).
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Next we prove the sufficiency of Theorem 3.4(i) in three steps.
Step 1) The aim of this step is to show that

∑
k∈Z

∑
i

hk
i converges in S′(Rn). (3.21)

For this purpose, we claim that, for any given r ∈ (1, ∞),

(i) for any k ∈ Z, i and x ∈ Rn,

hk
i (x) = ∑

Q⊂Qk
i ,Q∈Qk

∫
Q̂

f ∗ ψt(y)θt(x− y)dydm(t) =: ∑
Q⊂Qk

i ,Q∈Qk

eQ(x) (3.22)

holds true in Lr(Rn) and hence also in S′(Rn);

(ii) for any k ∈ Z and i, hk
i is a multiple of a (p, r, s)-atom.

Indeed, from [79, (3.23)], it follows that, for any x ∈ Rn,Sθ

 ∑
Q⊂Qk

i ,Q∈Qk

eQ

 (x)

2

. ∑
Q⊂Qk

i ,Q∈Qk

[MHL (cQ1Q) (x)]2 ,

where MHL denotes the Hardy–Littlewood maximal operator as in (3.9) and, for any
Q ⊂ Qk

i and Q ∈ Qk,

cQ :=
[∫

Q̂
|ψt ∗ f (y)|2dy

dm(t)
t

]1/2

.

We first show assertion (i). To this end, for any k ∈ Z, let

Ω̂k :=
{

x ∈ Rn : MHL (1Ωk) (x) >
1
2

b−2u
}

with u as in Lemma 3.3(iv). Then, by an argument similar to that used in the estimation
of [79, (3.26)], we conclude that, for any given r ∈ (1, ∞) and for any k ∈ Z and i,∥∥∥∥∥∥ ∑

Q⊂Qk
i ,Q∈Qk

eQ

∥∥∥∥∥∥
Lr(Rn)

.

∥∥∥∥∥∥∥
 ∑

Q⊂Qk
i ,Q∈Qk

(cQ)
2 1Q∩(Ω̂k\Ωk+1)

1/2
∥∥∥∥∥∥∥

Lr(Rn)

. (3.23)

On another hand, for any k ∈ Z, Q ∈ Qk, x ∈ Q and (y, t) ∈ Q̂, by Lemma 3.3(iv)
and [12, p. 8, (2.11)], we have

x− y ∈ Bv`(Q)+u + Bv`(Q)+u ⊂ Bv`(Q)+u+τ,
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which, combined with (3.18) and the disjointness of {Q̂}Q⊂Qk
i
, further implies that, for

any x ∈ Rn,

∑
Q⊂Qk

i ,Q∈Qk

(cQ)
2 1Q∩(Ω̂k\Ωk+1)

(x)

= ∑
Q⊂Qk

i ,Q∈Qk

∫
Q̂
|ψt ∗ f (y)|2dy

dm(t)
t

1Q∩(Ω̂k\Ωk+1)
(x)

.
[
Sψ( f )(x)

]2 1Qk
i ∩(Ω̂k\Ωk+1)

(x).

By this and Lemma 3.3(iv) again, we find that, for any given r ∈ (1, ∞) and for any k ∈ Z

and i, ∥∥∥∥∥∥∥
 ∑

Q⊂Qk
i ,Q∈Qk

(cQ)
2 1Q∩(Ω̂k\Ωk+1)


1/2
∥∥∥∥∥∥∥

r

Lr(Rn)

≤
∫

Rn

[
Sψ( f )(x)

]r 1Qk
i ∩(Ω̂k\Ωk+1)

(x)dx

.2kr
∣∣∣Qk

i

∣∣∣ . 2krbvk+u < ∞. (3.24)

For any k ∈ Z and N ∈ N, let Qk,N := {Q ∈ Qk : |`(Q)| > N}. Then, replacing
∑Q⊂Qk

i ,Q∈Qk
eQ by ∑Q⊂Qk

i ,Q∈Qk,N
eQ in (3.23), we know that, for any k ∈ Z, N ∈N and i,

∥∥∥∥∥∥ ∑
Q⊂Qk

i ,Q∈Qk,N

eQ

∥∥∥∥∥∥
Lr(Rn)

.

∥∥∥∥∥∥∥
 ∑

Q⊂Qk
i ,Q∈Qk,N

(cQ)
2 1Q∩(Ω̂k\Ωk+1)

1/2
∥∥∥∥∥∥∥

Lr(Rn)

.

From this, (3.24) and the Lebesgue dominated convergence theorem, we deduce that, for
any given r ∈ (1, ∞) and for any k ∈ Z and i,∥∥∥∥∥∥ ∑

Q⊂Qk
i ,Q∈Qk,N

eQ

∥∥∥∥∥∥
Lr(Rn)

→ 0

as N → ∞, and hence∥∥∥∥∥∥
∫
∪Q⊂Qk

i ,Q∈Qk,N
Q̂

f ∗ ψt(y)θt(x− y)dydm(t)

∥∥∥∥∥∥
Lr(Rn)

→ 0

as N → ∞. Therefore, hk
i = ∑Q⊂Qk

i ,Q∈Qk
eQ in Lr(Rn). This finishes the proof of the above

assertion (i).
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We now show assertion (ii). For this purpose, by assertion (i), we find that, for any
x ∈ supp hk

i , hk
i (x) 6= 0 implies that there exists some Q ⊂ Qk

i and Q ∈ Qk such that
eQ(x) 6= 0 and hence there exists a (y, t) ∈ Q̂ such that x − y ∈ Bv[`(Q)−1]+u+τ. By this,
Lemma 3.3(iv) and [12, p. 8, (2.11)], we have, for any x ∈ supp eQ,

x ∈ y + Bv[`(Q)−1]+u+τ ⊂ xQ + Bv`(Q)+u + Bv[`(Q)−1]+u+τ ⊂ xQ + Bv[`(Q)−1]+u+2τ.

Therefore, we obtain
supp eQ ⊂ xQ + Bv[`(Q)−1]+u+2τ.

From this, the fact that hk
i = ∑Q⊂Qk

i ,Q∈Qk
eQ, (ii) and (iv) of Lemma 3.3 and [12, p. 8, (2.11)]

again, it follows that

supp hk
i ⊂

⋃
Q⊂Qk

i ,Q∈Qk

(
xQ + Bv[`(Q)−1]+u+2τ

)
⊂xQk

i
+ Bv`(Qk

i )+u + Bv[`(Qk
i )−1]+u+2τ

⊂xQk
i
+ Bv[`(Qk

i )−1]+u+3τ =: Bk
i . (3.25)

On another hand, by assertion (i) again, (3.23), the estimation of (3.24) and Lemma
3.3(iv), we conclude that∥∥∥hk

i

∥∥∥
Lr(Rn)

.
{∫

Rn

[
Sψ( f )(x)

]r 1Qk
i ∩(Ω̂k\Ωk+1)

(x)dx
}1/r

.2k
∣∣∣Qk

i

∣∣∣1/r
≤ C(r)2

k
∣∣∣Bk

i

∣∣∣1/r
, (3.26)

where C(r) is a positive constant independent of f , k and i. In addition, recall that θ has
the vanishing moments up to order s ≥ b(1/p− 1) ln b/ ln λ−c and so does eQ. For any
k ∈ Z, i, γ ∈ Zn

+ with |γ| ≤ s and x ∈ Rn, let g(x) := xγ1Bk
i
(x) with Bk

i as in (3.25).

Clearly, g ∈ Lr′(Rn) with r ∈ (1, ∞) satisfying 1/r + 1/r′ = 1. Thus, by the fact that
(Lr′(Rn))∗ = Lr(Rn), (3.25) and the inclusion

supp eQ ⊂ xQ + Bv[`(Q)−1]+u+2τ ⊂ Bk
i ,

we further have∫
Rn

hk
i (x)xγdx = 〈hk

i , g〉 = ∑
Q⊂Qk

i ,Q∈Qk

〈eQ, g〉 = ∑
Q⊂Qk

i ,Q∈Qk

∫
Rn

eQ(x)xγdx = 0.

This, together with (3.25) and (3.26), implies that hk
i is a multiple of a (p, r, s)-atom sup-

ported in Bk
i , which completes the proof of the above assertion (ii).

Now we prove (3.21). For any k ∈ Z and i, let

λk
i := C(r)2

k
∣∣∣Bk

i

∣∣∣1/p
and ak

i :=
(

λk
i

)−1
hk

i , (3.27)
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where C(r) is as in (3.26). Then, for any k ∈ Z and i, ak
i is a (p, r, s)-atom. To show (3.21),

we next consider two cases: i ∈N and i ∈ {1, · · · , I} with some I ∈N.
Case 1) i ∈N. In this case, to prove (3.21), by (3.27) and [77, Propositions 2.7 and 2.8],

it suffices to show that

lim
l→∞

∥∥∥∥∥ ∑
l≤|k|≤m

∑
l≤i≤m

λk
i ak

i

∥∥∥∥∥
Hp,q

A (Rn)

= 0. (3.28)

To do this, from the fact that, for any l, m ∈ N, ∑l≤|k|≤m ∑l≤i≤m λk
i ak

i ∈ Hp,r,s,q
A (Rn),

Theorem 3.1, the mutual disjointness of {Qk
i }i for any fixed k ∈ Z, and Lemma 3.3(iv),

we deduce that∥∥∥∥∥ ∑
l≤|k|≤m

∑
l≤i≤m

λk
i ak

i

∥∥∥∥∥
Hp,q

A (Rn)

.

 ∑
l≤|k|≤m

(
∑

l≤i≤m
|λk

i |p
)q/p

1/q

∼

 ∑
l≤|k|≤m

(
∑

l≤i≤m
2kp
∣∣∣Bk

i

∣∣∣)q/p
1/q

∼

 ∑
l≤|k|≤m

2kq

(
∑

l≤i≤m

∣∣∣Qk
i

∣∣∣)q/p
1/q

.

[
∑

l≤|k|≤m
2kq|Ωk|q/p

]1/q

with the usual modification made when q = ∞. This, combined with the fact that Sψ( f ) ∈
Lp,q(Rn), (3.2) and the completeness of the space Lp,q(Rn), implies that (3.28) holds true
and hence so does (3.21) for Case 1).

Case 2) i ∈ {1, · · · , I} with some I ∈ N. In this case, to show (3.21), it suffices to
prove that

lim
l→∞

∥∥∥∥∥ ∑
l≤|k|≤m

I

∑
i=1

λk
i ak

i

∥∥∥∥∥
Hp,q

A (Rn)

= 0. (3.29)

Indeed, by a proof similar to that of (3.28), we easily find that (3.29) also holds true. This
finishes the proof of Case 2) and hence of (3.21).

Step 2) In this step, we prove that

f = ∑
k∈Z

∑
i

λk
i ak

i in S′(Rn). (3.30)

To this end, for any x ∈ Rn, let

f̃ (x) := ∑
k∈Z

∑
i

hk
i (x) = ∑

k∈Z

∑
i

∫
Bk,i

f ∗ ψt(y)θt(x− y)dydm(t) in S′(Rn),



J. Liu, D. D. Haroske and D. Yang / Anal. Theory Appl., 36 (2020), pp. 373-456 395

here and thereafter, for any k ∈ Z and i, Bk,i is as in (3.19). Then, to show (3.30), we only
need to prove that

f = f̃ in S′(Rn). (3.31)

To do this, by the above assertion (i), (3.17) and (3.18), we know that, for any given r ∈
(1, ∞) and for any k ∈ Z, i and x ∈ Rn,

hk
i (x) = lim

N→∞

∫ ∞

0

∫
Rn

f ∗ ψt(y)θt(x− y)1∪ Q⊂Qk
i ,Q∈Qk

|`(Q)|≤N

Q̂(y, t)dydm(t)

= lim
N→∞

∫ η(N)

γ(N)

∫
Rn

f ∗ ψt(y)θt(x− y)1Bk,i(y, t)dydm(t) (3.32)

holds true in Lr(Rn) and also in S′(Rn), where, for any N ∈ N, γ(N) := bvN+u+1 and
η(N) := b−v(N+1)+u+1 with v and u as in Lemma 3.3(iv). We next consider two cases:
i ∈N and i ∈ {1, · · · , I} with some I ∈N.

Case 1) i ∈N. To deal with this case, for any M ∈N and x ∈ Rn, let

f̃M(x) := f (x)− ∑
|k|∈Z+∩[0,M]

M

∑
i=1

∫
Bk,i

f ∗ ψt(y)θt(x− y)dydm(t).

Then, by (3.19), (3.20) and (3.32), we conclude that, for any M ∈N and x ∈ Rn,

f̃M(x) = lim
N→∞

∫ η(N)

γ(N)

∫
Rn

f ∗ ψt(y)θt(x− y)1∪k∈Z∪i∈NBk,i (y, t)dydm(t)

− lim
N→∞

∫ η(N)

γ(N)

∫
Rn

f ∗ ψt(y)θt(x− y)1∪|k|∈Z+∩[0,M]∪M
i=1Bk,i

(y, t)dydm(t)

= lim
N→∞

∫ η(N)

γ(N)

∫
Rn

f ∗ ψt(y)θt(x− y)1∪|k|∈N∩[M+1,∞)∪∞
i=M+1Bk,i

(y, t)dydm(t) (3.33)

holds true in S′(Rn). Observe that Hp,q
A (Rn) is continuously embedded into S′(Rn)

(see [77, Proposition 2.7]). Therefore, to show (3.31), it suffices to prove that∥∥∥ f̃M

∥∥∥
Hp,q

A (Rn)
→ 0 as M→ ∞. (3.34)

For this purpose, we borrow some ideas from the proof of the atomic characterizations of
Hp,q

A (Rn) (see [77, Theorem 3.6]). Indeed, for any ε ∈ (0, 1), M ∈N and x ∈ Rn, let

f̃ (ε)M (x) :=
∫ α/ε

ε

∫
Rn

f ∗ ψt(y)θt(x− y)1∪|k|∈N∩[M+1,∞)∪∞
i=M+1Bk,i(y, t)dydm(t),
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here and thereafter, α := b−v+2(u+1). Then, from the Lebesgue dominated convergence
theorem, it follows that, for any ε ∈ (0, 1), M ∈N and x ∈ Rn,

f̃ (ε)M (x) = ∑
|k|∈N∩[M+1,∞)

∑
i∈N∩[M+1,∞)

∫ α/ε

ε

∫
Rn

f ∗ ψt(y)θt(x− y)1Bk,i(y, t)dydm(t)

= : ∑
|k|∈N∩[M+1,∞)

∑
i∈N∩[M+1,∞)

h(ε)k,i (x)

in S′(Rn).
On another hand, for any ε ∈ (0, 1) and Q ∈ Q, let

Q̂ε :=
{
(y, t) ∈ Rn × (ε, α/ε) : y ∈ Q and t ∼ bv`(Q)+u

}
,

where v and u are as in Lemma 3.3(iv) and `(Q) denotes the level of Q. Obviously, for
any given ε ∈ (0, 1), {Q̂ε}Q∈Q are mutually disjoint and

Rn × (ε, α/ε) =
⋃

k∈Z

⋃
i∈N

B(ε)
k,i ,

where, for any k ∈ Z and i ∈ N, B(ε)
k,i :=

⋃
Q⊂Qk

i ,Q∈Qk
Q̂ε. Then, by Lemma 3.3(ii), we eas-

ily know that, for any given ε ∈ (0, 1), {B(ε)
k,i }k∈Z,i∈N are also mutually disjoint. Moreover,

by some arguments similar to these used in the proofs of the above assertions (i) and (ii)
in Step 1) with some slight modifications, we conclude that, for any ε ∈ (0, 1), M ∈ N,
|k|, i ∈N∩ [M + 1, ∞) and x ∈ Rn,

h(ε)k,i (x) = ∑
Q⊂Qk

i ,Q∈Qk

e(ε)Q (x) in S′(Rn),

where, for any Q ⊂ Qk
i , Q ∈ Qk and x ∈ Rn,

e(ε)Q (x) :=
∫

Q̂ε

f ∗ ψt(y)θt(x− y)dydm(t)

and, for any given r ∈ (1, ∞), h(ε)k,i is a multiple of a (p, r, s)-atom, namely, there exist

{λk,i}|k|,i∈N∩[M+1,∞) ⊂ C

and a sequence of (p, r, s)-atoms, {a(ε)k,i }|k|,i∈N∩[M+1,∞), supported, respectively, in

{Bk,i}|k|,i∈N∩[M+1,∞) ⊂ B
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such that, for any |k|, i ∈ N ∩ [M + 1, ∞), h(ε)k,i = λk,ia
(ε)
k,i and λk,i ∼ 2k |Bk,i|1/p, here,

for any |k|, i ∈ N ∩ [M + 1, ∞), λk,i and Bk,i are independent of ε. Thus, for any given
ε ∈ (0, 1), M ∈N and x ∈ Rn,

f̃ (ε)M (x) = ∑
|k|∈N∩[M+1,∞)

∑
i∈N∩[M+1,∞)

λk,ia
(ε)
k,i (x) in S′(Rn), (3.35)

and  ∑
|k|∈N∩[M+1,∞)

(
∑

i∈N∩[M+1,∞)

|λk,i|p
)q/p

1/q

< ∞ (3.36)

with the usual modification made when q = ∞.
For any M ∈N, |k| ∈N∩ [M + 1, ∞) and p ∈ (0, 1], let

µM,k :=

(
∑

i∈N∩[M+1,∞)

|Bk,i|
)1/p

and β :=
(

ln b
ln λ−

+ N(p) − 1
)

ln λ−
ln b

>
1
p

,

where N(p) is as in Definition 3.2. Then, for any r ∈ (1, ∞), there exists a δ ∈ (1/r, 1) such
that 1

β < δp < 1. We now rewrite (3.35) as

f̃ (ε)M (x) = ∑
k∈Z

∑
i∈N∩[M+1,∞)

λk,ia
(ε)
k,i (x) in S′(Rn),

where, for any |k| ∈ Z+ ∩ [0, M] and i ∈ N ∩ [M + 1, ∞), λk,i = 0. In addition, let
ε := γ(N) with N ∈N∩ [b−u−1

v c+ 1, ∞). Then, by (3.33), we find that

M0
N(p)

(
f̃M

)
= M0

N(p)

(
lim

N→∞
f̃ (γ(N))
M

)
≤ lim inf

N→∞
M0

N(p)

(
f̃ (γ(N))
M

)
, (3.37)

where M0
N(p)

is as in (3.15) with N replaced by N(p). Notice that, for any fixed k0 ∈ Z and
for any x ∈ Rn,

M0
N(p)

(
f̃ (γ(N))
M

)
(x)

≤M0
N(p)

(
k0−1

∑
k=−∞

∞

∑
i=M+1

λk,ia
(γ(N))
k,i

)
(x) +

∞

∑
k=k0

∞

∑
i=M+1

|λk,i|M0
N(p)

(
a(γ(N))

k,i

)
(x)

= : φk0(x) + wk0(x).

To prove (3.34), we now consider two cases: q/p ∈ [1, ∞] and q/p ∈ (0, 1).
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Case 1.1) q/p ∈ [1, ∞]. In this case, to show the desired conclusion, by a calculation
similar to that of [77, (3.22)], we claim that

2k0 p
[
dφk0

(2k0)
]δ

.
k0−1

∑
k=−∞

[
2k (µM,k)

δ
]p

and 2k0δpdwk0
(2k0) .

∞

∑
k=k0

[
2kδµM,k

]p
,

where dφk0
and dwk0

are as in (3.1) with f replaced, respectively, by φk0 and wk0 . Then,
from [12, p. 17, Proposition 3.10], (3.37), [1, Lemma 1.2], the facts that δ ∈ (0, q/p) and
|Bk,i| ∼

|λk,i |p
2kp , we deduce that, for any M ∈N,∥∥∥ f̃M

∥∥∥
Hp,q

A (Rn)
=
∥∥∥M0

N(p)

(
f̃M

)∥∥∥
Lp,q(Rn)

≤
∥∥∥∥lim inf

N→∞
M0

N(p)

(
f̃ (γ(N))
M

)∥∥∥∥
Lp,q(Rn)

.
∥∥∥{2kµM,k

}
k∈Z

∥∥∥
`q
.

∑
k∈Z

(
∑

i∈N∩[M+1,∞)

|λk,i|p
)q/p

1/q

∼

 ∑
|k|∈N∩[M+1,∞)

(
∑

i∈N∩[M+1,∞)

|λk,i|p
)q/p

1/q

. (3.38)

This, combined with (3.36), implies that (3.34) holds true.
Case 1.2) q/p ∈ (0, 1). In this case, similarly to [77, (3.23) and (3.26)], we conclude

that, for any M ∈N,

2k0 p
[
dφk0

(2k0)
]δ

.

[
k0−1

∑
k=−∞

2
kp
δ (µM,k)

p

]δ

and 2k0δpdwk0
(2k0) .

∞

∑
k=k0

[
2kδµM,k

]p
.

This further respectively implies that

∑
k0∈Z

2k0q
∣∣∣{x ∈ Rn : φk0(x) > 2k0

}∣∣∣q/p

. ∑
k0∈Z

2k0(q−q/δ)
k0−1

∑
k=−∞

2
kq
δ (µM,k)

q

∼ ∑
k∈Z

∞

∑
k0=k+1

2k0(q−q/δ)2
kq
δ (µM,k)

q . ∑
k∈Z

2kq (µM,k)
q ,

and

∑
k0∈Z

2k0q
∣∣∣{x ∈ Rn : wk0(x) > 2k0

}∣∣∣q/p

. ∑
k0∈Z

2k0 δ̃q
∞

∑
k=k0

[
2k(1−δ̃)µM,k

]q
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∼ ∑
k∈Z

[
2k(1−δ̃)µM,k

]q k

∑
k0=−∞

2k0 δ̃q . ∑
k∈Z

2kq (µM,k)
q ,

where δ̃ := 1−δ
2 . From this, [12, p. 17, Proposition 3.10], (3.37), the facts that |Bk,i| ∼

|λk,i |p
2kp

and µM,k := (∑∞
i=M+1 |Bk,i|)1/p, it follows that, for any M ∈ N, (3.38) holds true, which,

together with (3.36), implies that (3.34) also holds true in this case. This finishes the proof
of (3.34) and hence of (3.30) for Case 1).

Case 2) i ∈ {1, · · · , I} with some I ∈ N. For this case, repeating the proof of (3.30)
for Case 1) with some slight modifications, it is easy to see that (3.30) also holds true for
Case 2), which completes the proof of (3.30).

Step 3) By (3.30), the mutual disjointness of {Qk
i }i for any fixed k ∈ Z, Lemma 3.3(iv)

and (3.2), we know that

‖ f ‖Hp,q
A (Rn) .

∑
k∈Z

(
∑

i
|λk

i |p
)q/p

1/q

∼

∑
k∈Z

(
∑

i
2kp
∣∣∣Bk

i

∣∣∣)q/p
1/q

∼

∑
k∈Z

2kq

(
∑

i

∣∣∣Qk
i

∣∣∣)q/p
1/q

.

(
∑

k∈Z

2kq|Ωk|q/p

)1/q

∼ ‖Sψ( f )‖Lp,q(Rn)

with the usual modification made when q = ∞, which implies that f ∈ Hp,q
A (Rn) and

(3.16) holds true. This finishes the proof of the sufficiency of Theorem 3.4(i).

Remark 3.3. Let all symbols be the same as those used in the proof of the sufficiency of
Theorem 3.4(i). Observe that, in the original proof of the sufficiency of Theorem 3.4(i)
(namely, [79, Theorem 2.7]), the authors used the following two equalities: for any f ∈
S′0(R

n) such that S( f ) ∈ Lp,q(Rn), and any x ∈ Rn,∫
Rn+1

+

f ∗ ψt(y) ∗ θt(x− y)dydm(t) = ∑
k∈Z

∑
i

∫
Bk,i

f ∗ ψt(y) ∗ θt(x− y)dydm(t) (3.39)

in S′(Rn) (see [79, p. 15]) and, for each k ∈ Z, i and x ∈ Rn,∫
Bk,i

f ∗ ψt(y) ∗ θt(x− y)dydm(t) = ∑
Q⊂Qk

i ,Q∈Qk

∫
Q̂

f ∗ ψt(y) ∗ θt(x− y)dydm(t) (3.40)

in S′(Rn) (see [79, (3.22)]); however, the authors therein did not prove these two equal-
ities. In the present article, we present the proofs of both (3.39) and (3.40) and hence
seal these gaps existing in the original proof of the sufficiency of [79, Theorem 2.7]; see,
respectively, the proofs of (3.31) and (3.22) above for the details.
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3.4 Real interpolation of Hp,q
A (Rn)

In this subsection, as an application of the atomic decomposition of the anisotropic
Hardy–Lorentz space Hp,q

A (Rn), we give the real interpolation properties on Hp,q
A (Rn);

see [77, Subsection 6.1].
We first recall some basic notions about the real interpolation (see [6, 102]). Assume

that (X1, X2) is a compatible couple of quasi-normed spaces, namely, X1 and X2 are two
quasi-normed linear spaces which are continuously embedded in some larger topological
vector space. Let

X1 + X2 := { f1 + f2 : f1 ∈ X1, f2 ∈ X2}.

For any t ∈ (0, ∞], the Peetre K-functional on X1 + X2 is defined by setting, for any
f ∈ X1 + X2,

K(t, f ; X1, X2) := inf {‖ f1‖X1 + t‖ f2‖X2 : f = f1 + f2, f1 ∈ X1 and f2 ∈ X2} .

Moreover, for any θ ∈ (0, 1) and q ∈ (0, ∞], the real interpolation space (X1, X2)θ,q is
defined as

(X1, X2)θ,q :=

{
f ∈ X1 + X2 : ‖ f ‖θ,q :=

[∫ ∞

0

{
t−θK(t, f ; X1, X2)

}q dt
t

]1/q

< ∞

}
(3.41)

with the usual modification made when q = ∞.
The following Theorem 3.6 is just [77, Theorem 6.1].

Theorem 3.6. Let p ∈ (0, ∞) and q1, q, q2 ∈ (0, ∞].

(i) If p1, p2 ∈ (0, ∞) satisfy p1 6= p2 and 1/p = (1− θ)/p1 + θ/p2 with θ ∈ (0, 1), then(
Hp1,q1

A (Rn), Hp2,q2
A (Rn)

)
θ,q = Hp,q

A (Rn).

(ii) If 1/q = (1− θ)/q1 + θ/q2, where θ ∈ (0, 1), then(
Hp,q1

A (Rn), Hp,q2
A (Rn)

)
θ,q = Hp,q

A (Rn).

As an immediate consequence of Theorem 3.6(i), we easily obtain the following con-
clusion; see also [77, Corollary 6.5].

Corollary 3.1. Let q ∈ (0, ∞]. Assume that p, p1, p2 ∈ (0, ∞) satisfy p1 6= p2 and 1/p =
(1− θ)/p1 + θ/p2 with θ ∈ (0, 1). Then(

Hp1
A (Rn), Hp2

A (Rn)
)

θ,q = Hp,q
A (Rn),

where both Hp1
A (Rn) and Hp2

A (Rn) denote the anisotropic Hardy spaces of Bownik [12].
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Remark 3.4. (i) If A := dIn×n for some d ∈ R with |d| ∈ (1, ∞), here and there-
after, In×n denotes the n× n unit matrix, then Hpi ,qi

A (Rn), Hp,qi
A (Rn), i ∈ {1, 2}, and

Hp,q
A (Rn) in Theorem 3.6 become the classical isotropic Hardy–Lorentz spaces. In

this case, by Theorem 3.6(i), we know that

(Hp1,q1(Rn), Hp2,q2(Rn))θ,q = Hp,q(Rn)

with all indexes as in Theorem 3.6(i), which is a well-known real interpolation result
for classical isotropic Hardy–Lorentz spaces (see [37, p. 75, (2)]). In addition, by
Theorem 3.6(ii), we have

(Hp,q1(Rn), Hp,q2(Rn))θ,q = Hp,q(Rn)

with all indexes as in Theorem 3.6(ii), which generalizes [1, Theorem 2.5].

(ii) If A is as in (i) of this remark, then Hp1
A (Rn), Hp2

A (Rn) and Hp,q
A (Rn) in Corollary 3.1

become, respectively, the classical isotropic Hardy and Hardy–Lorentz spaces. In
this case, by Corollary 3.1, we have

(Hp1(Rn), Hp2(Rn))θ,q = Hp,q(Rn) with all indexes as in Corollary 3.1.

In particular, (Hp1(Rn), Hp2(Rn))θ,p = Hp(Rn), provided that 1/p = (1− θ)/p1 +

θ/p2, θ ∈ (0, 1).

(iii) For any given p ∈ (1, ∞) and q ∈ (0, ∞], from Corollary 3.1 and [84, Theorem 3],
we deduce that

Hp,q
A (Rn) =

(
Hp1

A (Rn), Hp2
A (Rn)

)
θ,q = (Lp1(Rn), Lp2(Rn))θ,q = Lp,q(Rn),

where p1, p2 ∈ (1, ∞) with p1 6= p2 and θ ∈ (0, 1) such that 1/p = (1− θ)/p1 +
θ/p2.

3.5 Applications to the boundedness of Calderón–Zygmund operators

As another application, in this subsection, we present the boundedness of anisotropic
Calderón–Zygmund operators. To this end, we first recall the notion of anisotropic
Calderón–Zygmund operators from [12] as follows.

Definition 3.8. Let δ ∈ (0, ln λ−
ln b ], τ be as in (2.2) and T a linear bounded operator on

L2(Rn). Then

(i) T is called an anisotropic convolutional δ-type Calderón–Zygmund operator if its
kernel k ∈ S′(Rn) coincides with a locally integrable function on Rn \ {~0n} and



402 J. Liu, D. D. Haroske and D. Yang / Anal. Theory Appl., 36 (2020), pp. 373-456

satisfies that there exists a positive constant C such that, for any x, y ∈ Rn with
ρ(x) > b2τρ(y),

|k(x− y)− k(x)| ≤ C
[ρ(y)]δ

[ρ(x)]1+δ
(3.42)

and, for any f ∈ L2(Rn), T( f )(x) := p.v. k ∗ f (x).

(ii) T is called an anisotropic non-convolutional δ-type Calderón–Zygmund operator if
it satisfies that, for any f ∈ L2(Rn) with compact support and x /∈ supp f ,

T( f )(x) =
∫

supp f
K(x, y) f (y)dy,

where K denotes a standard kernel on (Rn ×Rn) \ {(x, x) : x ∈ Rn} in the follow-
ing sense: there exists a positive constant C such that, for any x, y, x̃, ỹ ∈ Rn,

|K(x, y)| ≤ C
ρ(x− y)

, when x 6= y,

|K(x, y)−K(x, ỹ)| ≤ C
[ρ(y− ỹ)]δ

[ρ(x− y)]1+δ
, when ρ(x− y) ≥ b2τρ(y− ỹ),

|K(x, y)−K(x̃, y)| ≤ C
[ρ(x− x̃)]δ

[ρ(x− y)]1+δ
, when ρ(x− y) ≥ b2τρ(x− x̃).

In [77, Theorem 6.8 and Remark 6.10], the authors obtained the boundedness
of anisotropic δ-type Calderón–Zygmund operators from Hp

A(R
n) to Lp,∞(Rn) (or to

Hp,∞
A (Rn)) in the critical case.

Theorem 3.7. Let δ ∈ (0, ln λ−
ln b ] and p = 1

1+δ .

(i) If T is an anisotropic convolutional (or non-convolutional) δ-type Calderón–Zygmund op-
erator, then there exists a positive constant C such that, for any f ∈ Hp

A(R
n),

‖T( f )‖Lp,∞(Rn) ≤ C‖ f ‖Hp
A(R

n).

(ii) If T is either an anisotropic convolutional δ-type Calderón–Zygmund operator or non-
convolutional δ-type Calderón–Zygmund operator satisfying T∗1 = 0 (namely, for any
ã ∈ L1(Rn) with compact support, if

∫
Rn ã(x)dx = 0, then

∫
Rn T(ã)(x)dx = 0), then

there exists a positive constant C̃ such that, for any f ∈ Hp
A(R

n),

‖T( f )‖Hp,∞
A (Rn) ≤ C̃‖ f ‖Hp

A(R
n).
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Remark 3.5. (i) If A is as in Remark 3.4(i), then ln λ−
ln b = 1

n , and Hp
A(R

n) and Hp,∞
A (Rn)

become, respectively, the classical isotropic Hardy and weak Hardy spaces. In this
case, by Theorem 3.7(ii), we know that, if δ ∈ (0, 1], p = n

n+δ and T is the Calderón–
Zygmund operator satisfying all conditions of Theorem 3.7(ii) with (3.42) replaced
by

|k(x− y)− k(x)| . |y|δ
|x|n+δ

, |x| ≥ 2|y|,

where the implicit positive constant is independent of x and y, then T is bounded
from H

n
n+δ (Rn) to H

n
n+δ ,∞(Rn), which is just [72, Theorem 1]. Here n

n+δ is called
the critical index. In this sense, Theorem 3.7(i) also establishes the boundedness of
Calderón–Zygmund operators from Hp

A(R
n) to Lp,∞(Rn) in the critical case under

the present anisotropic setting.

(ii) Let δ ∈ (0, ln λ−
ln b ] and p ∈ ( 1

1+δ , 1]. For the boundedness of anisotropic δ-type
Calderón–Zygmund operators from Hp

A(R
n) to itself (or to Lp(Rn)), we refer the

reader to [12, p. 68, Theorem 9.8 and p. 69, Theorem 9.9].

The following boundedness of δ-type Calderón–Zygmund operators from Hp,q
A (Rn)

to itself (or to Lp,q(Rn)) was presented in [77, Theorem 6.16].

Theorem 3.8. Let δ ∈ (0, ln λ−
ln b ], p ∈ ( 1

1+δ , 1] and q ∈ (0, ∞].

(i) If T is as in Theorem 3.7(i), then there exists a positive constant C such that, for any
f ∈ Hp,q

A (Rn),
‖T( f )‖Lp,q(Rn) ≤ C‖ f ‖Hp,q

A (Rn).

(ii) If T is as in Theorem 3.7(ii), then there exists a positive constant C̃ such that, for any
f ∈ Hp,q

A (Rn),
‖T( f )‖Hp,q

A (Rn) ≤ C̃‖ f ‖Hp,q
A (Rn).

Remark 3.6. If A is as in Remark 3.4(i), then ln λ−
ln b = 1

n and T becomes the classical δ-type
Calderón–Zygmund operator. In this case, we know that, if δ ∈ (0, 1], p ∈ ( n

n+δ , 1] and
q ∈ (0, ∞], then Theorem 3.8 implies that T is bounded from the classical Hardy–Lorentz
space Hp,q(Rn) to itself (or to Lp,q(Rn)). Moreover, when p = q, (i) and (ii) of Theorem 3.8
imply the boundedness of classical δ-type Calderón–Zygmund operators from Hp(Rn)
to Lp(Rn), respectively, from Hp(Rn) to Hp(Rn) for δ ∈ (0, 1] and p ∈ ( n

n+δ , 1], which is
a well-known result (see, for instance, [3, 96]).

Theorem 3.9. Let p ∈ (0, 1], q ∈ (p, ∞], r ∈ (1, ∞) and k be the kernel of some Calderón–
Zygmund operator T. Moreover, assume that T is bounded from Lr(Rn) to Lr,∞(Rn) and ωp
satisfies a Dini-type condition of order q/(q− p), namely,

A(p,q) :=
{∫ 1

0

[
ωp(δ)

]q/(q−p) dδ

δ

}(q−p)/q

< ∞, (3.43)
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where, for any δ ∈ (0, 1],

ωp(δ) := sup
B

1
|B|

∫
ρ(x−yB)>

b2τ

δ |B|

∫
B

∣∣∣∣∣∣k(x, y)− ∑
|β|≤N

(y− yB)
βkβ(x, yB)

∣∣∣∣∣∣ dy

p

dx,

N := b(1/p− 1) ln b
ln λ−
c, β := (β1, · · · , βn) ∈ Zn

+,

kβ(x, yB) :=
1
β!

∂βk(x, y)|y=yB

and the supremum is taken over all dilated balls B ∈ B centered at yB. Then there exists a positive
constant C such that, for any f ∈ Hp,q

A (Rn),

‖T( f )‖Lp,∞(Rn) ≤ C
[

A(p,q)

]1/p
‖ f ‖Hp,q

A (Rn).

Remark 3.7. (i) If A is as in Remark 3.4(i), then ln b
ln λ−

= n, N = bn(1/p − 1)c and
Hp,q

A (Rn) becomes the classical Hardy–Lorentz space. In this case, Theorem 3.9 is
just [1, Theorem 2.2].

(ii) It is well known that the Hörmander condition implies the boundedness of the
Calderón–Zygmund operator T from H1

A(R
n) to L1(Rn). Observe that H1

A(R
n) $

H1,q
A (Rn) with q ∈ (1, ∞]. Thus, to define T on H1,q

A (Rn) with q ∈ (1, ∞], it is
natural to require T to satisfy some conditions stronger than the usual Hörmander
condition. This was accomplished by the variable dilations (the Dini-type condition
(3.43)) of Fefferman and Soria [39] (see also [1]). Moreover, recall that we consider
p = 1

1+δ or p ∈ ( 1
1+δ , 1] with δ ∈ (0, ln λ−

ln b ] in Theorem 3.7 and Remark 3.5(ii), which
implies

N =

⌊
ln b

ln λ−

(
1
p
− 1
)⌋
≤ 1.

While, in Theorem 3.9, we consider p ∈ (0, 1]. If p becomes smaller, then N be-
comes larger. Thus, more regularity of the kernel of T is needed. This justifies the
definition of ωp(δ) in Theorem 3.9.

(iii) We point out that both the dual spaces and the wavelet characterizations of
anisotropic Hardy–Lorentz spaces Hp,q

A (Rn) are still unknown. In addition, one can
also consider the corresponding multiplier theorem on the space Hp,q

A (Rn), similar
to that studied by Wang in [110] on anisotropic Hardy spaces Hp

A(R
n).

4 Anisotropic variable Hardy spaces

In this section, we first recall the definition of anisotropic variable Hardy spaces Hp(·)
A (Rn)

and then give the real-variable theory of these spaces; see [75].
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4.1 Definition of anisotropic variable Hardy spaces

For any measurable function p(·) : Rn → (0, ∞], let

p− := ess inf
x∈Rn

p(x), p+ := ess sup
x∈Rn

p(x) and p := min{p−, 1}. (4.1)

Denote by P(Rn) the set of all measurable functions p(·) satisfying 0 < p− ≤ p+ < ∞.
For any p(·) ∈ P(Rn), the variable Lebesgue space Lp(·)(Rn) is defined to be the

set of all measurable functions f such that $p(·)( f ) < ∞, equipped with the quasi-norm
‖ f ‖Lp(·)(Rn), where, for any measurable function f , the modular functional $p(·)( f ) and the
Luxembourg (also called Luxembourg-Nakano) quasi-norm ‖ f ‖Lp(·)(Rn) of f are defined,
respectively, by setting

$p(·)( f ) :=
∫

Rn
| f (x)|p(x)dx,

‖ f ‖Lp(·)(Rn) := inf
{

λ ∈ (0, ∞) : $p(·)( f /λ) ≤ 1
}

,

see, for instance, [22, 26].
Let Clog(Rn) be the set of all functions p(·) ∈ P(Rn) satisfying the globally log-Hölder

continuity condition, namely, there exist Clog(p), C∞ ∈ (0, ∞) and p∞ ∈ R such that, for
any x, y ∈ Rn,

|p(x)− p(y)| ≤
Clog(p)

log(e + 1/ρ(x− y))
(4.2)

and

|p(x)− p∞| ≤
C∞

log(e + ρ(x))
. (4.3)

The following anisotropic variable Hardy space was originally introduced in [75, Defini-
tion 2.4]

Definition 4.1. Let p(·) ∈ Clog(Rn) and

N ∈N∩
[⌊(

1
p
− 1

)
ln b

ln λ−

⌋
+ 2, ∞

)
, (4.4)

where p is as in (4.1). The anisotropic variable Hardy space Hp(·)
A (Rn) is defined by setting

Hp(·)
A (Rn) :=

{
f ∈ S′(Rn) : MN( f ) ∈ Lp(·)(Rn)

}
and, for any f ∈ Hp(·)

A (Rn), let ‖ f ‖
Hp(·)

A (Rn)
:= ‖MN( f )‖Lp(·)(Rn), where MN( f ) denotes

the non-tangential grand maximal function of f as in (3.4).
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Remark 4.1. (i) The quasi-norm of Hp(·)
A (Rn) in Definition 4.1 depends on N, however,

by Theorem 4.1 below, we know that the space Hp(·)
A (Rn) is independent of the

choice of N as long as N is as in (4.4). In addition, when p(·) ≡ p ∈ (0, ∞), the
space Hp(·)

A (Rn) becomes the anisotropic Hardy space Hp
A(R

n) from [12] and, when

A := dIn×n for some d ∈ R with |d| ∈ (1, ∞), the space Hp(·)
A (Rn) goes back to the

classical variable Hardy space (see [23, 87]).

(ii) Recall that, in [51], Huang et al. established various real-variable characterizations
of anisotropic mixed-norm Hardy spaces H~p

A(R
n). We point out that the integrable

exponent of the Hardy space H~p
A(R

n) from [51] is a vector ~p ∈ (0, ∞)n, whose
associated basic function space is the mixed-norm Lebesgue space L~p(Rn), which
has different orders of integrability in different variables; however, the integrable
exponent of the anisotropic variable Hardy space Hp(·)

A (Rn) is a variable exponent
function,

p(·) : Rn → (0, ∞],

satisfying the so-called globally log-Hölder continuity condition, whose associated
basic function space is the variable Lebesgue space Lp(·)(Rn). Obviously, L~p(Rn)
and Lp(·)(Rn) cannot cover each other, so do the anisotropic mixed-norm Hardy
space H~p

A(R
n) of [51] and the Hardy space Hp(·)

A (Rn) in Definition 4.1.

(iii) Let Hp(·),q(·)(Rn, A) be the anisotropic variable Hardy–Lorentz space defined via
the variable Lorentz space Lp(·),q(·)(Rn) (see [2, 31]), where

p(·), q(·) : (0, ∞)→ (0, ∞)

are two measurable functions (see also Remark 3.1(iii)). As was mentioned in [59,
Remark 2.6], the space Lp(·),q(·)(Rn) in [31] never goes back to the space Lp(·)(Rn),
because the variable exponent p(·) in Lp(·),q(·)(Rn) is only defined on (0, ∞) while
not on Rn. Thus, it is easy to see that the space Hp(·)

A (Rn), in this article, is not
covered by the space Hp(·),q(·)(Rn, A) in [2].

4.2 Equivalent characterizations of Hp(·)
A (Rn)

In [75, Theorem 3.10], the authors established the radial or the non-tangential maximal
function characterizations of Hp(·)

A (Rn) as follows.

Theorem 4.1. Let p(·) ∈ Clog(Rn) and φ ∈ S(Rn) satisfying
∫

Rn φ(x)dx 6= 0. Then, for any
f ∈ S′(Rn), the following statements are mutually equivalent:

(i) f ∈ Hp(·)
A (Rn);
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(ii) Mφ( f ) ∈ Lp(·)(Rn);

(iii) M0
φ( f ) ∈ Lp(·)(Rn),

where Mφ( f ) and M0
φ( f ) are, respectively, as in (3.3) and (3.6). Moreover, there exist two positive

constants C and C̃, independent of f , such that

‖ f ‖
Hp(·)

A (Rn)
≤ C

∥∥∥M0
φ( f )

∥∥∥
Lp(·)(Rn)

≤ C
∥∥Mφ( f )

∥∥
Lp(·)(Rn)

≤ C̃‖ f ‖
Hp(·)

A (Rn)
.

We now recall the notions of anisotropic variable atomic Hardy spaces and finite
atomic Hardy spaces from [75].

Definition 4.2. Let p(·) ∈ Clog(Rn), q ∈ (1, ∞] and

s ∈
[⌊(

1
p−
− 1
)

ln b
ln λ−

⌋
, ∞
)
∩Z+. (4.5)

(i) An anisotropic (p(·), q, s)-atom (shortly, a (p(·), q, s)-atom) is a measurable function
a on Rn satisfying

(i)1 supp a := {x ∈ Rn : a(x) 6= 0} ⊂ B, where B ∈ B and B is as in (2.1);

(i)2 ‖a‖Lq(Rn) ≤
|B|1/q

‖1B‖Lp(·)(Rn)
;

(i)3 for any γ ∈ Zn
+ with |γ| ≤ s,

∫
Rn a(x)xγdx = 0.

(ii) The anisotropic variable atomic Hardy space Hp(·),q,s
A (Rn) is defined to be the set of

all f ∈ S′(Rn) satisfying that there exist {λi}i∈N ⊂ C and a sequence of (p(·), q, s)-
atoms, {ai}i∈N, supported, respectively, in {B(i)}i∈N ⊂ B such that

f = ∑
i∈N

λiai in S′(Rn).

Moreover, for any f ∈ Hp(·),q,s
A (Rn), let

‖ f ‖
Hp(·),q,s

A (Rn)
:= inf

∥∥∥∥∥∥
{

∑
i∈N

[
|λi|1B(i)

‖1B(i)‖Lp(·)(Rn)

]p}1/p
∥∥∥∥∥∥

Lp(·)(Rn)

,

where the infimum is taken over all the decompositions of f as above.

(iii) The anisotropic variable finite atomic Hardy space Hp(·),q,s
A,fin (Rn) is defined to be

the set of all f ∈ S′(Rn) satisfying that there exist I ∈ N, {λi}i∈[1,I]∩N ⊂ C
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and a finite sequence of (p(·), q, s)-atoms, {ai}i∈[1,I]∩N, supported, respectively, in
{B(i)}i∈[1,I]∩N ⊂ B such that

f =
I

∑
i=1

λiai in S′(Rn).

Moreover, for any f ∈ Hp(·),q,s
A,fin (Rn), let

‖ f ‖
Hp(·),q,s

A,fin (Rn)
:= inf

∥∥∥∥∥∥
{

I

∑
i=1

[
|λi|1B(i)

‖1B(i)‖Lp(·)(Rn)

]p}1/p
∥∥∥∥∥∥

Lp(·)(Rn)

,

where the infimum is taken over all the decompositions of f as above.

The following atomic and finite atomic characterizations of Hp(·)
A (Rn) were just [75,

Theorems 4.8 and 5.4].

Theorem 4.2. Let p(·) ∈ Clog(Rn), q ∈ (max{p+, 1}, ∞] with p+ as in (4.1), s be as in (4.5)
and N as in (4.4). Then

(i) Hp(·)
A (Rn) = Hp(·),q,s

A (Rn) with equivalent quasi-norms;

(ii) ‖ · ‖
Hp(·),q,s

A,fin (Rn)
and ‖ · ‖

Hp(·)
A (Rn)

are equivalent quasi-norms on Hp(·),q,s
A,fin (Rn) for each q ∈

(max{p+, 1}, ∞);

(iii) ‖ · ‖
Hp(·),∞,s

A,fin (Rn)
and ‖ · ‖

Hp(·)
A (Rn)

are equivalent quasi-norms on Hp(·),∞,s
A,fin (Rn) ∩ C(Rn).

4.3 Littlewood–Paley function characterizations of Hp(·)
A (Rn)

In this subsection, we present the characterizations of Hp(·)
A (Rn) in terms of the

anisotropic Lusin area function, the anisotropic Littlewood–Paley g-function or g∗λ-
function; see [75]. Meanwhile, we also correct some errors existing in the proof of the
sufficiency of [75, Theorem 6.1], namely, the Lusin area function characterizations of
Hp(·)

A (Rn).
First, recall that the following Fefferman–Stein vector-valued inequality of the max-

imal operator MHL on the variable Lebesgue space Lp(·)(Rn) was established in [78,
Lemma 4.3].

Lemma 4.1. Let r ∈ (1, ∞]. Assume that p(·) ∈ Clog(Rn) satisfies 1 < p− ≤ p+ < ∞. Then
there exists a positive constant C such that, for any sequence { fk}k∈N of measurable functions,∥∥∥∥∥∥

{
∑

k∈N

[MHL( fk)]
r

}1/r
∥∥∥∥∥∥

Lp(·)(Rn)

≤ C

∥∥∥∥∥∥
(

∑
k∈N

| fk|r
)1/r

∥∥∥∥∥∥
Lp(·)(Rn)
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with the usual modification made when r = ∞, where MHL denotes the Hardy–Littlewood maxi-
mal operator as in (3.9).

Via Lemmas 4.1 and 3.4, following the proof of Theorem 3.5 with some slight modifi-
cations, we easily obtain the following conclusion; the details are omitted.

Theorem 4.3. Let p(·) ∈ Clog(Rn) and θ, ψ be as in Lemma 3.1 with s as in (4.5). Then there
exists a positive constant C such that, for any f ∈ S′0(R

n),

1
C
‖Sθ( f )‖Lp(·)(Rn) ≤

∥∥Sψ( f )
∥∥

Lp(·)(Rn)
≤ C ‖Sθ( f )‖Lp(·)(Rn) ,

where Sθ( f ) and Sψ( f ) are the anisotropic Lusin area functions as in (3.8) defined, respectively,
via θ and ψ.

In [75, Theorems 6.1 through 6.3], the authors characterized the space Hp(·)
A (Rn), re-

spectively, in terms of the anisotropic Lusin area function, the anisotropic Littlewood–
Paley g-function or g∗λ-function as follows.

Theorem 4.4. Let p(·) ∈ Clog(Rn). Then

(i) f ∈ Hp(·)
A (Rn) if and only if f ∈ S′0(R

n) and S( f ) ∈ Lp(·)(Rn). Moreover, there exists a
positive constant C such that, for any f ∈ Hp(·)

A (Rn),

1
C
‖S( f )‖Lp(·)(Rn) ≤ ‖ f ‖

Hp(·)
A (Rn)

≤ C ‖S( f )‖Lp(·)(Rn) .

(ii) The conclusion as in (i) remains true if S( f ) is replaced, respectively, by g( f ) or g∗λ( f ) with
λ ∈ (1 + 2

min{p−,2} , ∞).

To show the sufficiency of Theorem 4.4(i), we need the following lemma, whose proof
is similar to that of [52, Lemma 4.7] (see also the proof of [91, Lemma 4.1]); we omit the
details here.

Lemma 4.2. Let p(·) ∈ Clog(Rn), k0 ∈ Z, ε ∈ (0, ∞) and r ∈ [1, ∞] ∩ (p+, ∞] with p+ as
in (4.1). Assume that {λi}i∈N ⊂ C, {B(i)}i∈N ⊂ B and {m(ε)

i }i∈N ⊂ Lr(Rn) satisfy that, for
any ε ∈ (0, ∞) and i ∈N,

supp m(ε)
i :=

{
x ∈ Rn : m(ε)

i (x) 6= 0
}
⊂ Ak0 B(i),∥∥∥m(ε)

i

∥∥∥
Lr(Rn)

≤ |B(i)|1/r

‖1B(i)‖Lp(·)(Rn)

,∥∥∥∥∥∥
{

∑
i∈N

[
|λi|1B(i)

‖1B(i)‖Lp(·)(Rn)

]p}1/p
∥∥∥∥∥∥

Lp(·)(Rn)

< ∞,
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with p as in (4.1). Then∥∥∥∥∥∥lim inf
ε→0+

[
∑

i∈N

∣∣∣λim
(ε)
i

∣∣∣p]1/p
∥∥∥∥∥∥

Lp(·)(Rn)

≤ C

∥∥∥∥∥∥
{

∑
i∈N

[
|λi|1B(i)

‖1B(i)‖Lp(·)(Rn)

]p}1/p
∥∥∥∥∥∥

Lp(·)(Rn)

,

where C is a positive constant independent of λi, B(i), m(ε)
i and ε.

Now we prove the sufficiency of Theorem 4.4(i).

Proof of the sufficiency of Theorem 4.4(i). Let ψ be as in Lemma 3.1, f ∈ S′0(R
n) and S( f ) ∈

Lp(·)(Rn). Then, by Theorem 4.3, we know that Sψ( f ) ∈ Lp(·)(Rn). Thus, to show the

sufficiency of Theorem 4.4(i), we need to prove that f ∈ Hp(·)
A (Rn) and

‖ f ‖
Hp(·)

A (Rn)
. ‖Sψ( f )‖Lp(·)(Rn). (4.6)

For this purpose, for any k ∈ Z, let Ωk := {x ∈ Rn : Sψ( f )(x) > 2k} and

Qk :=
{

Q ∈ Q : |Q ∩Ωk| >
|Q|
2

and |Q ∩Ωk+1| ≤
|Q|
2

}
.

Clearly, for any Q ∈ Q, there exists a unique k ∈ Z such that Q ∈ Qk. Let {Qk
i }i be the

set of all maximal dyadic cubes in Qk, namely, there exists no Q ∈ Qk such that Qk
i $ Q

for any i.
For any Q ∈ Q, let

Q̂ :=
{
(y, t) ∈ Rn+1

+ := Rn × (0, ∞) : y ∈ Q, t ∼ bv`(Q)+u
}

, (4.7)

where t ∼ bv`(Q)+u means the same as in (3.18). Obviously, {Q̂}Q∈Q are mutually disjoint
and

Rn+1
+ =

⋃
k∈Z

⋃
i

Bk,i, (4.8)

where, for any k ∈ Z and i, Bk,i :=
⋃

Q⊂Qk
i ,Q∈Qk

Q̂. Then, by Lemma 3.3(ii), we easily find
that {Bk,i}k∈Z,i are also mutually disjoint.

Let ψ and θ be as in Lemma 3.1 with s as in (4.5). Then θ has the vanishing moments
up to order s and, for any f ∈ S′0(R

n) such that Sψ( f ) ∈ Lp(·)(Rn), and for any x ∈ Rn,
similarly to (3.20), we have

f (x) = ∑
k∈Z

f ∗ ψk ∗ θk(x) =
∫

Rn+1
+

f ∗ ψt(y) ∗ θt(x− y)dydm(t) (4.9)
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in S′(Rn), where m(t) denotes the counting measure on R as in (3.20). For each k ∈ Z, i
and x ∈ Rn, let

hk
i (x) :=

∫
Bk,i

f ∗ ψt(y) ∗ θt(x− y)dydm(t).

Next we prove the sufficiency of Theorem 4.4(i) in three steps.
Step 1) The target of this step is to show that

∑
k∈Z

∑
i

hk
i converges in S′(Rn). (4.10)

To this end, following the proofs of assertions (i) and (ii) in the proof of the sufficiency
of Theorem 3.4(i) with some slight modifications, we conclude that, for any given r ∈
(max{p+, 1}, ∞),

(i) for any k ∈ Z, i and x ∈ Rn,

hk
i (x) = ∑

Q⊂Qk
i ,Q∈Qk

∫
Q̂

f ∗ ψt(y)θt(x− y)dydm(t) (4.11)

holds true in Lr(Rn) and hence also in S′(Rn);

(ii) for any k ∈ Z and i, hk
i = λk

i ak
i is a multiple of a (p(·), r, s)-atom, where, for any k ∈

Z and i, λk
i ∼ 2k‖1Bk

i
‖Lp(·)(Rn) with the positive equivalence constants independent

of k and i, and ak
i is a (p(·), r, s)-atom satisfying, for any r ∈ (max{p+, 1}, ∞), k ∈ Z,

i and γ ∈ Zn
+ as in Definition 4.2(i)3,

supp ak
i ⊂ Bk

i := xQk
i
+ Bv[`(Qk

i )−1]+u+3τ with v and u as in Lemma 3.3(iv),∥∥∥ak
i

∥∥∥
Lr(Rn)

≤
∥∥∥1Bk

i

∥∥∥−1

Lp(·)(Rn)

∣∣∣Bk
i

∣∣∣1/r
and

∫
Rn

ak
i (x)xγdx = 0.

To show (4.10), we next consider two cases: i ∈N and i ∈ {1, · · · , I} with some I ∈N.
Case 1) i ∈N. In this case, by [75, Lemma 4.3], to prove (4.10), it suffices to show that

lim
l→∞

∥∥∥∥∥ ∑
l≤|k|≤m

∑
l≤i≤m

λk
i ak

i

∥∥∥∥∥
Hp(·)

A (Rn)

= 0. (4.12)

Indeed, for any k ∈ Z and i ∈ N, by the fact that |Qk
i ∩Ωk| ≥

|Qk
i |

2 , we find that, for any
x ∈ Rn,

MHL

(
1Qk

i ∩Ωk

)
(x) &

1
|Qk

i |

∫
Qk

i

1Qk
i ∩Ωk

(y)dy ∼
|Qk

i ∩Ωk|
|Qk

i |
&

1
2

,
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where MHL denotes the Hardy–Littlewood maximal operator as in (3.9). This, together
with [75, Lemma 3.4] and Lemma 4.1, implies that, for any l, m ∈N,∥∥∥∥∥ ∑

l≤|k|≤m
∑

l≤i≤m

(
2k1Bk

i

)p
∥∥∥∥∥

1/p

Lp(·)/p(Rn)

=

∥∥∥∥∥∥
[

∑
l≤|k|≤m

∑
l≤i≤m

2kp
(

1Bk
i

)2
]1/2

∥∥∥∥∥∥
2/p

L2p(·)/p(Rn)

.

∥∥∥∥∥∥
{

∑
l≤|k|≤m

∑
l≤i≤m

2kp
[

MHL

(
1Qk

i ∩Ωk

)]2
}1/2

∥∥∥∥∥∥
2/p

L2p(·)/p(Rn)

.

∥∥∥∥∥ ∑
l≤|k|≤m

∑
l≤i≤m

(
2k1Qk

i ∩Ωk

)p
∥∥∥∥∥

1/p

Lp(·)/p(Rn)

, (4.13)

where p is defined in (4.1). In addition, from the fact that, for any l, m ∈ N,

∑l≤|k|≤m ∑l≤i≤m λk
i ak

i ∈ Hp(·)
A (Rn), Theorem 4.2(i) and [75, Lemma 3.4] again, we deduce

that ∥∥∥∥∥ ∑
l≤|k|≤m

∑
l≤i≤m

λk
i ak

i

∥∥∥∥∥
Hp(·)

A (Rn)

.

∥∥∥∥∥∥∥
 ∑

l≤|k|≤m
∑

l≤i≤m

[
λk

i 1Bk
i

‖1Bk
i
‖Lp(·)(Rn)

]p


1/p
∥∥∥∥∥∥∥

Lp(·)(Rn)

∼

∥∥∥∥∥∥
[

∑
l≤|k|≤m

∑
l≤i≤m

(
2k1Bk

i

)p
]1/p

∥∥∥∥∥∥
Lp(·)(Rn)

∼
∥∥∥∥∥ ∑

l≤|k|≤m
∑

l≤i≤m

(
2k1Bk

i

)p
∥∥∥∥∥

1/p

Lp(·)/p(Rn)

, (4.14)

where p is as in (4.1). On another hand, from [75, Lemma 3.4], it follows that, for any l,
m ∈N, ∥∥∥∥∥∥

[
∑

l≤|k|≤m

(
2k1Ωk

)p
]1/p

∥∥∥∥∥∥
p

Lp(·)(Rn)

=

∥∥∥∥∥∥
[

∑
l≤|k|≤m

(
2k1Ωk\Ωk+1

+ 2k1Ωk+1

)p
]1/p

∥∥∥∥∥∥
p

Lp(·)(Rn)
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.

∥∥∥∥∥∥
[

∑
l≤|k|≤m

(
2k1Ωk\Ωk+1

)p
]1/p

∥∥∥∥∥∥
p

Lp(·)(Rn)

+

(
1
2

)p
∥∥∥∥∥∥
[

∑
l≤|k|≤m

(
2k+11Ωk+1

)p
]1/p

∥∥∥∥∥∥
p

Lp(·)(Rn)

.

Therefore, as l → ∞, we have∥∥∥∥∥∥
[

∑
l≤|k|≤m

(
2k1Ωk

)p
]1/p

∥∥∥∥∥∥
Lp(·)(Rn)

∼

∥∥∥∥∥∥
[

∑
l≤|k|≤m

(
2k1Ωk\Ωk+1

)p
]1/p

∥∥∥∥∥∥
Lp(·)(Rn)

. (4.15)

This, combined with (4.14) and (4.13), further implies that, as l → ∞,∥∥∥∥∥ ∑
l≤|k|≤m

∑
l≤i≤m

λk
i ak

i

∥∥∥∥∥
Hp(·)

A (Rn)

∼
∥∥∥∥∥ ∑

l≤|k|≤m
∑

l≤i≤m

(
2k1Qk

i ∩Ωk

)p
∥∥∥∥∥

1/p

Lp(·)/p(Rn)

.

∥∥∥∥∥∥
[

∑
l≤|k|≤m

(
2k1Ωk

)p
]1/p

∥∥∥∥∥∥
Lp(·)(Rn)

∼

∥∥∥∥∥∥
[

∑
l≤|k|≤m

(
2k1Ωk\Ωk+1

)p
]1/p

∥∥∥∥∥∥
Lp(·)(Rn)

∼

∥∥∥∥∥∥Sψ( f )

(
∑

l≤|k|≤m
1Ωk\Ωk+1

)1/p
∥∥∥∥∥∥

Lp(·)(Rn)

→ 0.

Thus, (4.12) holds true and so does (4.10) in Case 1).
Case 2) i ∈ {1, · · · , I} with some I ∈ N. In this case, to show (4.10), it suffices to

prove that

lim
l→∞

∥∥∥∥∥ ∑
l≤|k|≤m

I

∑
i=1

λk
i ak

i

∥∥∥∥∥
Hp(·)

A (Rn)

= 0. (4.16)

Indeed, by a proof similar to that of (4.12), it is easy to see that (4.16) also holds true. This
finishes the proof of (4.10) in Case 2) and hence of (4.10).

Step 2) In this step, we prove that

f = ∑
k∈Z

∑
i

λk
i ak

i in S′(Rn). (4.17)

To this end, for any x ∈ Rn, let

f̃ (x) := ∑
k∈Z

∑
i

hk
i (x) = ∑

k∈Z

∑
i

∫
Bk,i

f ∗ ψt(y)θt(x− y)dydm(t)

in S′(Rn), where, for any k ∈ Z and i, Bk,i is as in (4.8). Then, to show (4.17), it suffices to
prove that

f = f̃ in S′(Rn). (4.18)
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For this purpose, by the above assertion (i) and (4.7), we know that, for any given r ∈
(max{p+, 1}, ∞) and for any k ∈ Z, i and x ∈ Rn,

hk
i (x) = lim

N→∞

∫ ∞

0

∫
Rn

f ∗ ψt(y)θt(x− y)1∪ Q⊂Qk
i ,Q∈Qk

|`(Q)|≤N

Q̂(y, t)dydm(t)

= lim
N→∞

∫ η(N)

γ(N)

∫
Rn

f ∗ ψt(y)θt(x− y)1Bk,i(y, t)dydm(t) (4.19)

holds true in Lr(Rn) and also in S′(Rn), where, for any N ∈ N, γ(N) and η(N) are as in
(3.32). For the convenience of symbols, we rewrite f̃ as, for any x ∈ Rn,

f̃ (x) = ∑
`∈N

∫
R(`)

f ∗ ψt(y)θt(x− y)dydm(t),

where {R(`)}`∈N is an arbitrary permutation of {Bk,i}k∈Z,i. For any L ∈ N and x ∈ Rn,
let

f̃L(x) := f (x)−
L

∑
`=1

∫
R(`)

f ∗ ψt(y)θt(x− y)dydm(t).

Then, from (4.8), (4.9) and (4.19), it follows that, for any L ∈N and x ∈ Rn,

f̃L(x) = lim
N→∞

∫ η(N)

γ(N)

∫
Rn

f ∗ ψt(y)θt(x− y)1∪∞
`=1R(`)(y, t)dydm(t)

− lim
N→∞

∫ η(N)

γ(N)

∫
Rn

f ∗ ψt(y)θt(x− y)1∪L
`=1R(`)(y, t)dydm(t)

= lim
N→∞

∫ η(N)

γ(N)

∫
Rn

f ∗ ψt(y)θt(x− y)1∪∞
`=L+1R(`)(y, t)dydm(t) (4.20)

holds true in S′(Rn).
Note that Hp(·)

A (Rn) is continuously embedded into S′(Rn) (see [75, Lemma 4.3]).
Thus, to prove (4.18), we only need to show that∥∥∥ f̃L

∥∥∥
Hp(·)

A (Rn)
→ 0 as L→ ∞. (4.21)

To do this, we borrow some ideas from the proof of the atomic characterizations of
Hp(·)

A (Rn) (see [75, Theorem 4.8]). Indeed, for any ε ∈ (0, 1), L ∈N and x ∈ Rn, let

f̃ (ε)L (x) :=
∫ α/ε

ε

∫
Rn

f ∗ ψt(y)θt(x− y)1∪∞
`=L+1R(`)(y, t)dydm(t),



J. Liu, D. D. Haroske and D. Yang / Anal. Theory Appl., 36 (2020), pp. 373-456 415

where α := b−v+2(u+1) with v and u as in Lemma 3.3(iv). Then, by the Lebesgue domi-
nated convergence theorem, we find that, for any ε ∈ (0, 1), L ∈N and x ∈ Rn,

f̃ (ε)L (x) =
∞

∑
`=L+1

∫ α/ε

ε

∫
Rn

f ∗ ψt(y)θt(x− y)1R(`)(y, t)dydm(t) =:
∞

∑
`=L+1

h(ε)` (x)

in S′(Rn). Moreover, by some arguments similar to those used in the proofs of as-
sertions (i) and (ii) in the proof of the sufficiency of Theorem 3.4(i) with some slight
modifications, we conclude that, for any ε ∈ (0, 1), r ∈ (max{p+, 1}, ∞), L ∈ N

and ` ∈ N ∩ [L + 1, ∞), h(ε)` is a multiple of a (p(·), r, s)-atom, namely, there exist

{λ`}`∈N∩[L+1,∞) ⊂ C and a sequence of (p(·), r, s)-atoms, {a(ε)` }`∈N∩[L+1,∞), supported,

respectively, in {B(`)}`∈N∩[L+1,∞) ⊂ B such that, for any ` ∈N∩ [L + 1, ∞), h(ε)` = λ`a
(ε)
` ,

where, for any ` ∈ N ∩ [L + 1, ∞), λ` and B(`) are independent of ε. Therefore, for any
ε ∈ (0, 1), L ∈N and x ∈ Rn,

f̃ (ε)L (x) =
∞

∑
`=L+1

λ`a
(ε)
` (x) in S′(Rn) (4.22)

and ∥∥∥∥∥∥
{

∞

∑
`=L+1

[
|λ`|1B(`)

‖1B(`)‖Lp(·)(Rn)

]p}1/p
∥∥∥∥∥∥

Lp(·)(Rn)

< ∞. (4.23)

On another hand, for any given

N0 ∈N∩
[⌊(

1
p
− 1

)
ln b

ln λ−

⌋
+ 2, ∞

)

with p as in (4.1), let M0
N0

denote the radial grand maximal function as in (3.15) with N

replaced by N0. Then, by the fact that, for any ε ∈ (0, 1) and L ∈ N, {a(ε)` }`∈N∩[L+1,∞) is
a sequence of (p(·), r, s)-atoms and [78, (4.8)], we know that, for any ` ∈ N ∩ [L + 1, ∞)
and x ∈ Rn,

M0
N0

(
a(ε)`

)
(x) . M0

N0

(
a(ε)`

)
(x)1Aτ B(`)(x) +

1
‖1B(`)‖Lp(·)(Rn)

[MHL (1B(`)) (x)]β , (4.24)

where τ is as in (2.2) and

β :=
(

ln b
ln λ−

+ s + 1
)

ln λ−
ln b

>
1
p

. (4.25)
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Moreover, since r > 1, then, from the boundedness of MHL on Lr(Rn) (see [78, Lemma
3.3(ii)]), we deduce that, for any ε ∈ (0, 1), L ∈N and ` ∈N∩ [L + 1, ∞),∥∥∥M0

N0

(
a(ε)`

)
1Aτ B(`)

∥∥∥
Lr(Rn)

.
∥∥∥MHL

(
a(ε)`

)
1Aτ B(`)

∥∥∥
Lr(Rn)

.
|B(`)|1/r

‖1B(`)‖Lp(·)(Rn)

,

which, combined with Lemma 4.2, further implies that∥∥∥∥∥∥lim inf
ε→0+

{
∞

∑
`=L+1

[
|λ`|M0

N0

(
a(ε)`

)
1Aτ B(`)

]p
}1/p

∥∥∥∥∥∥
Lp(·)(Rn)

.

∥∥∥∥∥∥
{

∞

∑
`=L+1

[
|λ`|1B(`)

‖1B(`)‖Lp(·)(Rn)

]p}1/p
∥∥∥∥∥∥

Lp(·)(Rn)

. (4.26)

In addition, let ε := γ(N) with N ∈N∩ [b−u−1
v c+ 1, ∞). Then, by (4.20), we find that

M0
N0

(
f̃L

)
= M0

N0

(
lim

N→∞
f̃ (γ(N))
L

)
≤ lim inf

N→∞
M0

N0

(
f̃ (γ(N))
L

)
.

From this, [12, p. 17, Proposition 3.10], (4.22) and (4.24), it follows that, for any L ∈N,∥∥∥ f̃L

∥∥∥
Hp(·)

A (Rn)
≤
∥∥∥∥lim inf

N→∞
M0

N0

(
f̃ (γ(N))
L

)∥∥∥∥
Lp(·)(Rn)

≤
∥∥∥∥∥lim inf

N→∞

∞

∑
`=L+1

|λ`|M0
N0

(
a(γ(N))
`

)∥∥∥∥∥
Lp(·)(Rn)

.

∥∥∥∥∥lim inf
N→∞

∞

∑
`=L+1

|λ`|M0
N0

(
a(γ(N))
`

)
1Aτ B(`)

∥∥∥∥∥
Lp(·)(Rn)

+

∥∥∥∥∥ ∞

∑
`=L+1

|λ`|
‖1Aτ B(`)‖Lp(·)(Rn)

[MHL (1B(`))]
β

∥∥∥∥∥
Lp(·)(Rn)

.

This, together with (4.26), [75, Lemma 3.4], Lemma 4.1, (4.25), further implies that, for
any L ∈N,∥∥∥ f̃L

∥∥∥
Hp(·)

A (Rn)
.

∥∥∥∥∥∥lim inf
N→∞

{
∞

∑
`=L+1

[
|λ`|M0

N0

(
a(γ(N))
`

)
1Aτ B(`)

]p
}1/p

∥∥∥∥∥∥
Lp(·)(Rn)

+

∥∥∥∥∥∥
{

∞

∑
`=L+1

|λ`|
‖1B(`)‖Lp(·)(Rn)

[MHL (1B(`))]
β

}1/β
∥∥∥∥∥∥

β

Lβp(·)(Rn)

.

∥∥∥∥∥∥
{

∞

∑
`=L+1

[
|λ`|1B(`)

‖1B(`)‖Lp(·)(Rn)

]p}1/p
∥∥∥∥∥∥

Lp(·)(Rn)

.
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By this and (4.23), we know that (4.21) holds true, which completes the proof of (4.17).

Step 3) By (4.17), Theorem 4.2(i) and some arguments similar to those used in the
estimations of both (4.13) and (4.15), we conclude that

‖ f ‖
Hp(·)

A (Rn)
∼

∥∥∥∥∥∥∥
∑

k∈Z

∑
i

[
λk

i 1Bk
i

‖1Bk
i
‖Lp(·)(Rn)

]p


1/p
∥∥∥∥∥∥∥

Lp(·)(Rn)

∼

∥∥∥∥∥∥
[

∑
k∈Z

∑
i

(
2k1Bk

i

)p
]1/p

∥∥∥∥∥∥
Lp(·)(Rn)

.

∥∥∥∥∥∑
k∈Z

∑
i

(
2k1Qk

i ∩Ωk

)p
∥∥∥∥∥

1/p

Lp(·)/p(Rn)

.

∥∥∥∥∥∥
[

∑
k∈Z

(
2k1Ωk

)p
]1/p

∥∥∥∥∥∥
Lp(·)(Rn)

∼

∥∥∥∥∥∥
[

∑
k∈Z

(
2k1Ωk\Ωk+1

)p
]1/p

∥∥∥∥∥∥
Lp(·)(Rn)

.

∥∥∥∥∥∥Sψ( f )

[
∑

k∈Z

1Ωk\Ωk+1

]1/p
∥∥∥∥∥∥

Lp(·)(Rn)

∼
∥∥Sψ( f )

∥∥
Lp(·)(Rn)

,

which implies that f ∈ Hp(·)
A (Rn) and (4.6) holds true. This finishes the proof of the

sufficiency of Theorem 4.4(i).

Remark 4.2. Let us point out that, in the original proof of the sufficiency of Theorem
4.4(i) (namely, [75, Theorem 6.1]), the method used therein is the same as that used in the
proof of the sufficiency of [79, Theorem 2.7]; see [75, p. 1199]. Thus,

(i) similarly to Remark 3.2, the following fact is needed: for any f ∈ S′0(R
n), the

Lp(·)(Rn) quasi-norms of the anisotropic Lusin area function S( f ) are independent
of the choices of θ and ψ as in Lemma 3.1. However, in the original proof of the suf-
ficiency of [75, Theorem 6.1]), the authors did not give the proof of this necessary
fact. In the present article, we seal this gap in Theorem 4.3 above;

(ii) similarly to Remark 3.3, both the equalities (3.39) and (3.40) are also used in the orig-
inal proof of the sufficiency of Theorem 4.4(i) (namely, [75, Theorem 6.1]). However,
the authors therein did not prove these two equalities. In the present article, we also
seal these gaps existing in the original proof of the sufficiency of [75, Theorem 6.1];
see, respectively, the proofs of (4.18) and (4.11) above for the details.

4.4 Some applications

In this subsection, we give some applications for the anisotropic summability of Fourier
transforms introduced in [76].
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Let f ∈ Lp(Rn) for some p ∈ [1, 2]. Recall that the Fourier inversion formula, namely,
for any x ∈ Rn,

f (x) :=
∫

Rn
f̂ (t)e2πıx·tdt

holds true if f̂ ∈ L1(Rn), where f̂ denotes the Fourier transform of f as in (3.7). This
motivates the following definition of summability. We always assume that

θ ∈ C0(R), θ(| · |) ∈ L1(Rn), θ(0) = 1 and θ is even, (4.27)

where C0(R) denotes the set of all continuous functions f on R satisfying that
lim|x|→∞ f (x) = 0. Let A∗ be the adjoint matrix of A. The m-th anisotropic θ-mean of
the function f ∈ Lp(Rn), with p ∈ [1, 2], is defined by setting, for any m ∈ Z and x ∈ Rn,

σθ
m f (x) :=

∫
Rn

θ
(
|(A∗)−mu|

)
f̂ (u)e2πıx·udu.

Let θ0(x) := θ(|x|) for any x ∈ Rn and assume that

θ̂0 ∈ L1(Rn). (4.28)

It was proved in [76] that, for any m ∈ Z, f ∈ L1(Rn) and x ∈ Rn, we can rewrite σθ
m f as

σθ
m f (x) = bm

∫
Rn

f (t)θ̂0(Am(x− t))dt.

Moreover, we can extend the definition of the anisotropic θ-means to any f ∈ Lp(·)(Rn)
with p− ∈ [1, ∞) by setting, for any x ∈ Rn,

σθ
m f (x) := bm

∫
Rn

f (x− t)θ̂0(Amt)dt.

Then we define the maximal θ-operator σθ
∗ by setting, for any f ∈ Lp(·)(Rn) with p− ∈

[1, ∞),

σθ
∗ f := sup

m∈Z

∣∣∣σθ
m f
∣∣∣ . (4.29)

The following boundedness of maximal θ-operators from Hp(·)
A (Rn) to Lp(·)(Rn) is

just [75, Theorem 7.4].

Theorem 4.5. Let θ and θ0 be, respectively, as in (4.27) and (4.28) satisfying that there exists a
constant β ∈ (1, ∞) such that, for any α ∈ Zn

+ and x ∈ Rn \ {~0n},∣∣∣∂α θ̂0(x)
∣∣∣ ≤ C(α,β)|x|−β,
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where C(α,β) is a positive constant independent of x. If p(·) ∈ Clog(Rn),

β ∈
(

ln b
ln λ−

, ∞
)

and p− ∈
(

ln b
β ln λ−

, ∞
)

,

then there exists a positive constant C(p−,p+), with p− and p+ as in (4.1), such that, for any

f ∈ Hp(·)
A (Rn), ∥∥∥σθ

∗ f
∥∥∥

Lp(·)(Rn)
≤ C(p−,p+)‖ f ‖

Hp(·)
A (Rn)

.

Remark 4.3. If A := dIn×n for some d ∈ R with |d| ∈ (1, ∞), then ln b
ln λ−

= n and Theorem
4.5 goes back to the classical result with β ∈ (n, ∞) and p ∈ (n/β, ∞) (see Weisz [111]).
The classical result was proved in a special case, namely, for the Bochner-Riesz means, in
Stein et al. [97]. For the same case, a counterexample was also given in [97] to show that
the same conclusion is not true for p ∈ (0, n/β].

Corollary 4.1. Let all the assumptions be the same as in Theorem 4.5.

(i) If f ∈ Hp(·)
A (Rn), then σθ

m f converges pointwisely almost everywhere as well as in the
Lp(·)(Rn) quasi-norm as m→ ∞;

(ii) If f ∈ Hp(·)
A (Rn) and there exists a subset I ⊂ Rn such that the restriction f |I ∈ Lr(·)(I)

with r− ∈ [1, ∞), then
lim

m→∞
σθ

m f (x) = f (x)

pointwisely for almost every x ∈ I as well as in the Lp(·)(I) quasi-norm;

(iii) If f ∈ Lp(·)(Rn) with p− ∈ (1, ∞), then

lim
m→∞

σθ
m f (x) = f (x)

pointwisely for almost every x ∈ Rn as well as in the Lp(·)(Rn) norm.

Remark 4.4. Corollary 4.1(iii) for the Bochner–Riesz means in the classical case (namely,
when p(·) = a constant ∈ (0, ∞) and A := dIn×n for some d ∈ R with |d| ∈ (1, ∞)) can
be found in Stein et al. [97] and Weisz [111].

Let α ∈ (0, ∞) and γ ∈ N. Recall also that the Bochner–Riesz summation and the
Weierstrass summation are, respectively, defined by setting, for any t ∈ Rn,

θ0(t) :=
{

(1− |t|γ)α, when |t| ∈ [0, 1),
0, when |t| ∈ [1, ∞),

(4.30)

and

θ0(t) := e−|t|
2/2. (4.31)

As special cases of Theorem 4.5, we further obtain the following conclusions (see [75,
Theorems 7.10 and 7.11]).
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Theorem 4.6. Let p(·) ∈ Clog(Rn).

(i) If θ0 is as in (4.30) with

α ∈
(

max
{

n− 1
2

,
ln b

ln λ−
− n + 1

2

}
, ∞
)

and p− ∈
(

ln b
ln λ−(n/2 + α + 1/2)

, ∞
)

,

then there exists a positive constant C(p−,p+), with p− and p+ as in (4.1), such that, for any

f ∈ Hp(·)
A (Rn), ∥∥∥σθ

∗ f
∥∥∥

Lp(·)(Rn)
≤ C(p−,p+)‖ f ‖

Hp(·)
A (Rn)

; (4.32)

(ii) If θ0 is as in (4.31), then (4.32) also holds true for any f ∈ Hp(·)
A (Rn) with p− ∈ (0, ∞).

Remark 4.5. (i) Let θ0 be as in (4.30) or (4.31). Then the corresponding conclusions in
Corollaries 4.1 hold true as well.

(ii) We point out that the dual spaces and the characterizations, respectively, in terms of
wavelets and molecules, of the anisotropic variable Hardy space Hp(·)

A (Rn) are still
unknown. In addition, it is an interesting question to consider the boundedness of
Calderón–Zygmund operators on Hp(·)

A (Rn).

(iii) Recall that Wang [110] obtained a multiplier theorem on anisotropic Hardy spaces
Hp

A(R
n); however, the corresponding conclusion on the space Hp(·)

A (Rn) is still un-
clear.

5 Anisotropic variable Hardy–Lorentz spaces

In this section, we present the real-variable theory of anisotropic variable Hardy–Lorentz
spaces from [76, 78]. To do so, we first recall the following notion of variable Lorentz
spaces Lp(·),q(Rn), which are known as special cases of the variable Lorentz spaces
Lp(·),q(·)(Rn) investigated by Kempka and Vybı́ral in [59].

Definition 5.1. Let p(·) ∈ P(Rn). The variable Lorentz space Lp(·),q(Rn) is defined to be
the set of all measurable functions f such that

‖ f ‖Lp(·),q(Rn) :=


[∫ ∞

0
λq
∥∥∥1{x∈Rn : | f (x)|>λ}

∥∥∥q

Lp(·)(Rn)

dλ

λ

]1/q

, when q ∈ (0, ∞),

sup
λ∈(0,∞)

[
λ
∥∥∥1{x∈Rn : | f (x)|>λ}

∥∥∥
Lp(·)(Rn)

]
, when q = ∞,

is finite.
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Moreover, in [78, Definition 2.10], the authors introduced anisotropic variable Hardy–
Lorentz spaces as follows.

Definition 5.2. Let p(·) ∈ Clog(Rn), q ∈ (0, ∞] and N be as in (4.4). The anisotropic
variable Hardy–Lorentz space Hp(·),q

A (Rn) is defined by setting

Hp(·),q
A (Rn) :=

{
f ∈ S′(Rn) : M0

N( f ) ∈ Lp(·),q(Rn)
}

and, for any f ∈ Hp(·),q
A (Rn), let

‖ f ‖
Hp(·),q

A (Rn)
:= ‖M0

N( f )‖Lp(·),q(Rn),

where M0
N( f ) denotes the radial grand maximal function as in (3.15).

Remark 5.1. (i) Even though the quasi-norm of Hp(·),q
A (Rn) in Definition 5.2 depends

on N, it follows from Theorem 5.1 below that the space Hp(·),q
A (Rn) is independent

of the choice of N as long as N is as in (4.4). If p(·) ≡ p ∈ (0, ∞), then the space
Hp(·),q

A (Rn) is just the anisotropic Hardy–Lorentz space Hp,q
A (Rn) investigated by

Liu et al. in [77] (see also Definition 3.2) and, if A := dIn×n for some d ∈ R with
|d| ∈ (1, ∞) and q = ∞, then the space Hp(·),∞

A (Rn) becomes the variable weak
Hardy space introduced by Yan et al. in [114].

(ii) Very recently, via the variable Lorentz spaces Lp(·),q(·)(Rn) in [31], where

p(·), q(·) : (0, ∞)→ (0, ∞)

are bounded measurable functions, Almeida et al. [2] investigated another sort of
anisotropic variable Hardy–Lorentz spaces Hp(·),q(·)(Rn, A). As was mentioned
in [59, Remark 2.6], the space Lp(·),q(·)(Rn) in [31] never coincides with the space
Lp(·)(Rn), because the variable exponent p(·) in Lp(·),q(·)(Rn) is only defined on
(0, ∞) while not on Rn. On another hand, the space Hp(·),q

A (Rn), in Definition 5.2,
is defined via the variable Lorentz space Lp(·),q(·)(Rn) (with q(·) ≡ a constant ∈
(0, ∞]) from [59], which is not covered by the space Hp(·),q(·)(Rn, A) in [2]. More-
over, as was pointed out in [2, p. 6], the key tool of [2] is the fact that the set
L1

loc(R
n)∩ Hp(·),q(·)(Rn, A) is dense in Hp(·),q(·)(Rn, A). Therefore, the method used

in [2] does not work for Hp(·),q
A (Rn) in [78], due to the lack of a dense function sub-

space of Hp(·),∞
A (Rn) even when p(·) ≡ a constant ∈ (0, ∞) and A := dIn×n for

some d ∈ R with |d| ∈ (1, ∞).

5.1 Several equivalent characterizations of Hp(·),q
A (Rn)

The following radial or non-tangential maximal function characterizations of Hp(·),q
A (Rn)

are established in [78, Theorem 3.8].
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Theorem 5.1. Suppose that p(·) ∈ Clog(Rn) and φ ∈ S(Rn) satisfying
∫

Rn φ(x)dx 6= 0. Then,
for any f ∈ S′(Rn), the following statements are mutually equivalent:

(i) f ∈ Hp(·),q
A (Rn);

(ii) Mφ( f ) ∈ Lp(·),q(Rn);

(iii) M0
φ( f ) ∈ Lp(·),q(Rn),

where Mφ( f ) and M0
φ( f ) are, respectively, as in (3.3) and (3.6). Moreover, there exist two positive

constants C and C̃, independent of f , such that

‖ f ‖
Hp(·),q

A (Rn)
≤ C

∥∥∥M0
φ( f )

∥∥∥
Lp(·),q(Rn)

≤ C
∥∥Mφ( f )

∥∥
Lp(·),q(Rn)

≤ C̃‖ f ‖
Hp(·),q

A (Rn)
.

Definition 5.3. Let p(·) ∈ Clog(Rn), q ∈ (0, ∞], r ∈ (1, ∞] and s be as in (4.5).

(i) The anisotropic variable atomic Hardy–Lorentz space Hp(·),r,s,q
A (Rn) is defined to be

the set of all f ∈ S′(Rn) satisfying that there exist a sequence of (p(·), r, s)-atoms,
{ak

i }i∈N,k∈Z, supported, respectively, in {Bk
i }i∈N,k∈Z ⊂ B and a positive constant C̃

such that, for any x ∈ Rn and k ∈ Z, ∑i∈N 1Aj0 Bk
i
(x) ≤ C̃ with some j0 ∈ Z \N, and

f = ∑
k∈Z

∑
i∈N

λk
i ak

i in S′(Rn),

where λk
i ∼ 2k‖1Bk

i
‖Lp(·)(Rn) for any k ∈ Z and i ∈ N with the positive equivalence

constants independent of k and i. Moreover, for any f ∈ Hp(·),r,s,q
A (Rn), let

‖ f ‖
Hp(·),r,s,q

A (Rn)
:= inf

∑
k∈Z

∥∥∥∥∥∥∥
∑

i∈N

[
λk

i 1Bk
i

‖1Bk
i
‖Lp(·)(Rn)

]p


1/p
∥∥∥∥∥∥∥

q

Lp(·)(Rn)


1/q

with the usual modification made when q = ∞, where the infimum is taken over
all the decompositions of f as above.

(ii) The anisotropic variable finite atomic Hardy–Lorentz space Hp(·),r,s,q
A,fin (Rn) is de-

fined to be the set of all f ∈ S′(Rn) satisfying that there exist K, I ∈ N, a fi-
nite sequence of (p(·), r, s)-atoms, {ak

i }i∈[1,I]∩N,k∈[1,K]∩N, supported, respectively, in
{Bk

i }i∈[1,I]∩N,k∈[1,K]∩N ⊂ B and a positive constant C̃, independent of I and K, such
that ∑I

i=1 1Aj0 Bk
i
(x) ≤ C̃ for any x ∈ Rn and k ∈ [1, K] ∩N, with some j0 ∈ Z \N,

and

f =
K

∑
k=1

I

∑
i=1

λk
i ak

i in S′(Rn),
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where, for any k ∈ [1, K] ∩N and i ∈ [1, I] ∩N, λk
i ∼ 2k‖1Bk

i
‖Lp(·)(Rn) with the

positive equivalence constants independent of k, K, i and I. Moreover, for any
f ∈ Hp(·),r,s,q

A,fin (Rn), let

‖ f ‖
Hp(·),r,s,q

A,fin (Rn)
:= inf

 K

∑
k=1

∥∥∥∥∥∥∥
 I

∑
i=1

[
λk

i 1Bk
i

‖1Bk
i
‖Lp(·)(Rn)

]p


1/p
∥∥∥∥∥∥∥

q

Lp(·)(Rn)


1
q

with the usual modification made when q = ∞, where the infimum is taken over
all the decompositions of f as above.

The following conclusions are just [78, Theorem 4.8] and [76, Theorem 2.14].

Theorem 5.2. Let p(·) ∈ Clog(Rn), q ∈ (0, ∞] and s be as in (4.5) and r ∈ (max{p+, 1}, ∞]
with p+ as in (4.1). Then

(i) Hp(·),q
A (Rn) = Hp(·),r,s,q

A (Rn) with equivalent quasi-norms;

(ii) ‖ · ‖
Hp(·),r,s,q

A,fin (Rn)
and ‖ · ‖

Hp(·),q
A (Rn)

are equivalent quasi-norms on Hp(·),r,s,q
A,fin (Rn) for each

r ∈ (max{p+, 1}, ∞);

(iii) ‖ · ‖
Hp(·),∞,s,q

A,fin (Rn)
and ‖ · ‖

Hp(·),q
A (Rn)

are equivalent quasi-norms on Hp(·),∞,s,q
A,fin (Rn)∩C(Rn).

5.2 Littlewood–Paley function characterizations of Hp(·),q
A (Rn)

In this subsection, we display the characterizations of Hp(·),q
A (Rn) in terms of the

anisotropic Lusin area function, the anisotropic Littlewood–Paley g-function or g∗λ-
function; see [76, 78]. Meanwhile, we also correct some errors existing in the proof of
the sufficiency of [78, Theorem 5.2], namely, the Lusin area function characterizations of
Hp(·),q

A (Rn).
The following Fefferman–Stein vector-valued inequality of the maximal operator

MHL on the variable Lorentz space Lp(·),q(Rn) is just [76, Lemma 3.5].

Lemma 5.1. Let r ∈ (1, ∞]. Assume that p(·) ∈ Clog(Rn) satisfies 1 < p− ≤ p+ < ∞. Then
there exists a positive constant C such that, for any sequence { fk}k∈N of measurable functions,∥∥∥∥∥∥

{
∑

k∈N

[MHL( fk)]
r

}1/r
∥∥∥∥∥∥

Lp(·),q(Rn)

≤ C

∥∥∥∥∥∥
(

∑
k∈N

| fk|r
)1/r

∥∥∥∥∥∥
Lp(·),q(Rn)

with the usual modification made when r = ∞, where MHL denotes the Hardy–Littlewood maxi-
mal operator as in (3.9).
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Via Lemmas 5.1 and 3.4 as well as a proof similar to that of Theorem 3.5, we have the
following conclusion; the details are omitted.

Theorem 5.3. Let p(·) ∈ Clog(Rn) and θ, ψ be as in Lemma 3.1 with s as in (4.5). Then there
exists a positive constant C such that, for any f ∈ S′0(R

n),

1
C
‖Sθ( f )‖Lp(·),q(Rn) ≤

∥∥Sψ( f )
∥∥

Lp(·),q(Rn)
≤ C ‖Sθ( f )‖Lp(·),q(Rn) ,

where Sθ( f ) and Sψ( f ) are the anisotropic Lusin area functions as in (3.8) defined, respectively,
via θ and ψ.

In [78, Theorem 5.2] and [76, Theorems 2.9 and 2.10], the authors established the char-
acterizations of the space Hp(·),q

A (Rn), respectively, in terms of the anisotropic Lusin area
function, the anisotropic Littlewood–Paley g-function or g∗λ-function as follows.

Theorem 5.4. Let p(·) ∈ Clog(Rn). Then

(i) f ∈ Hp(·),q
A (Rn) if and only if f ∈ S′0(R

n) and S( f ) ∈ Lp(·),q(Rn). Moreover, there exists
a positive constant C such that, for any f ∈ Hp(·),q

A (Rn),

1
C
‖S( f )‖Lp(·),q(Rn) ≤ ‖ f ‖

Hp(·),q
A (Rn)

≤ C ‖S( f )‖Lp(·),q(Rn) .

(ii) The conclusion as in (i) remains true if S( f ) is replaced, respectively, by g( f ) or g∗λ( f ) with
λ ∈ (1 + 2

min{p−,2} , ∞).

Remark 5.2. We point out that, in the original proof of the sufficiency of Theorem 5.4(i)
(namely, [78, Theorem 5.2]), the method used therein is the same as that used in the proof
of the sufficiency of [79, Theorem 2.7]; see [78, p. 385]. Thus,

(i) similarly to Remark 3.2, the following fact is needed: for any f ∈ S′0(R
n), the

Lp(·),q(Rn) quasi-norms of the anisotropic Lusin area function S( f ) are indepen-
dent of the choices of θ and ψ as in Lemma 3.1. However, in the original proof
of the sufficiency of [78, Theorem 5.2], the authors did not give the proof of this
necessary fact. In the present article, we seal this gap in Theorem 5.3 above;

(ii) similarly to Remark 3.3, both the equalities (3.39) and (3.40) are also used in the
original proof of the sufficiency of [78, Theorem 5.2]. However, the authors therein
did not prove these two equalities. Indeed, by a proof similar to that of the suf-
ficiency of Theorem 3.4(i) (or the sufficiency of Theorem 4.4(i)]), we can also seal
these gaps existing in the original proof of the sufficiency of [78, Theorem 5.2]; we
omit the details.
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5.3 Real interpolation between Hp(·)
A (Rn) and L∞(Rn)

For any given compatible couple of quasi-normed spaces (X1, X2), their real interpolation
space (X1, X2)θ,q, with θ ∈ (0, 1) and q ∈ (0, ∞], is defined as in (3.41).

In [78, Theorem 6.2], the authors obtained the following real interpolation result.

Theorem 5.5. Let p(·) ∈ Clog(Rn), q ∈ (0, ∞] and θ ∈ (0, 1). Then it holds true that(
Hp(·)

A (Rn), L∞(Rn)
)

θ,q
= H p̃(·),q

A (Rn),

where 1
p̃(·) =

1−θ
p(·) .

As a consequence of Theorem 5.5, [119, Corollary 4.20] and [59, Remark 4.2(ii)], we
immediately obtain the following conclusion.

Corollary 5.1. Let p(·) ∈ Clog(Rn). If p− ∈ (1, ∞) and q ∈ (0, ∞], then

Hp(·),q
A (Rn) = Lp(·),q(Rn)

with equivalent quasi-norms.

Remark 5.3. (i) When p(·) ≡ p ∈ (0, 1], Theorem 5.5 goes back to [77, Lemma 6.3],
which states that(

Hp
A(R

n), L∞(Rn)
)

θ,q = Hp/(1−θ),q
A (Rn), θ ∈ (0, 1) and q ∈ (0, ∞].

(ii) When p(·) ≡ p ∈ (1, ∞), Theorem 5.5 coincides with [77, Remark 6.7] (see also [89,
Theorem 7]), namely,

(Lp(Rn), L∞(Rn))θ,q = Lp/(1−θ),q(Rn), θ ∈ (0, 1) and q ∈ (0, ∞].

(iii) Let A := dIn×n for some d ∈ R with |d| ∈ (1, ∞). Then Hp
A(R

n) and Hp/(1−θ),q
A (Rn)

in (i) of this remark become, respectively, the classical isotropic Hardy and Hardy–
Lorentz spaces. In this case, the result in (i) of this remark is just [37, Theorem
1]. In addition, Hp(·)

A (Rn) and H p̃(·),q
A (Rn) in Theorem 5.5 become, respectively, the

classical isotropic variable Hardy and Hardy–Lorentz spaces. In this case, Theorem
5.5 includes the result in [120, Theorem 1.5] as a special case, and Theorem 5.5 with
p− ∈ (1, ∞) coincides with [59, Remark 4.2(ii)].
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5.4 Some applications

The following boundedness of the maximal θ-operator from Hp(·),q
A (Rn) to Lp(·),q(Rn) is

just [76, Theorem 2.17].

Theorem 5.6. Let θ and θ0 be, respectively, as in (4.27) and (4.28) satisfying that there exists
some constant β ∈ (1, ∞) such that, for any α ∈ Zn

+ and x ∈ Rn \ {~0n},∣∣∣∂α θ̂0(x)
∣∣∣ ≤ C(α,β)|x|−β,

where the positive constant C(α,β) is independent of x. If p(·) ∈ Clog(Rn), q ∈ (0, ∞],

β ∈
(

ln b
ln λ−

, ∞
)

and p− ∈
(

ln b
β ln λ−

, ∞
)

,

then there exists a positive constant C(p−,p+,q), with p− and p+ as in (4.1), such that, for any

f ∈ Hp(·),q
A (Rn), ∥∥∥σθ

∗ f
∥∥∥

Lp(·),q(Rn)
≤ C(p−,p+,q)‖ f ‖

Hp(·),q
A (Rn)

,

where σθ
∗ f denotes the maximal θ-operator of f as in (4.29).

Remark 5.4. A comment similar to Remark 4.3 also holds true for Theorem 5.6.

Corollary 5.2. Let all the assumptions be the same as in Theorem 5.6.

(i) If q ∈ (0, ∞) and f ∈ Hp(·),q
A (Rn), then σθ

m f converges pointwisely almost everywhere as
well as in the Lp(·),q(Rn) quasi-norm as m→ ∞;

(ii) If q ∈ (0, ∞) and f ∈ Hp(·),q
A (Rn) satisfy that there exists a subset I ⊂ Rn such that the

restriction f |I ∈ Lr(·),s(I) with r− ∈ [1, ∞) and s ∈ [1, ∞], then

lim
m→∞

σθ
m f (x) = f (x)

pointwisely for almost every x ∈ I as well as in the Lp(·),q(I) quasi-norm;

(iii) If p− ∈ (1, ∞), q ∈ [1, ∞) and f ∈ Lp(·),q(Rn), then

lim
m→∞

σθ
m f (x) = f (x)

pointwisely for almost every x ∈ Rn as well as in the Lp(·),q(Rn) norm.

As special cases of Theorem 5.6, we further obtained the following conclusions
(see [76, Theorems 2.25 and 2.28]).

Theorem 5.7. Let p(·) ∈ Clog(Rn) and q ∈ (0, ∞].
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(i) If θ0 is as in (4.30), with

α ∈
(

max
{

n− 1
2

,
ln b

ln λ−
− n + 1

2

}
, ∞
)

and p− ∈
(

ln b
ln λ−(n/2 + α + 1/2)

, ∞
)

,

then there exists a positive constant C(p−,p+,q), with p− and p+ as in (4.1), such that, for

any f ∈ Hp(·),q
A (Rn), ∥∥∥σθ

∗ f
∥∥∥

Lp(·),q(Rn)
≤ C(p−,p+,q)‖ f ‖

Hp(·),q
A (Rn)

. (5.1)

(ii) If θ0 is as in (4.31), then (5.1) also holds true for any f ∈ Hp(·),q
A (Rn) with p− ∈ (0, ∞).

Remark 5.5. (i) Let θ0 be as in (4.30) or (4.31). Then the corresponding conclusions in
Corollary 5.2 hold true as well.

(ii) The boundedness of Calderón–Zygmund operators from Hp(·),q
A (Rn) to Lp(·),q(Rn)

(or to itself) was obtained by Liu et al. in [82].

(iii) We point out that the dual spaces and the characterizations, respectively, in
terms of wavelets and molecules, of the anisotropic variable Hardy–Lorentz space
Hp(·),q

A (Rn) are still unknown.

(iv) A remark similar to Remark 4.5(iii) should be also made for the space Hp(·),q
A (Rn).

(v) Moreover, observe that the exponent q ∈ (0, ∞] in Hp(·),q
A (Rn) is only a constant. If

the exponent q is replaced by a variable exponent function,

q(·) : Rn → (0, ∞],

satisfying some reasonable conditions (for instance, the so-called globally log-
Hölder continuity condition), then an interesting question is how to develop
a real-variable theory of this sort of anisotropic variable Hardy–Lorentz spaces
Hp(·),q(·)

A (Rn).

6 Anisotropic Musielak–Orlicz Hardy spaces

In this section, we first recall the notion of anisotropic Musielak–Orlicz Hardy spaces
Hϕ

A(R
n) introduced in [68] and then give their dual spaces as well as characterizations

via molecules and wavelets, established recently in [73, 74].
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6.1 Definition of anisotropic Musielak–Orlicz Hardy spaces

We begin with recalling the classes of uniform anisotropic Muckenhoupt weights associ-
ated with A from [68] as follows.

Definition 6.1. Let q ∈ [1, ∞). The class of uniform anisotropic Muckenhoupt weights,
Aq(A) := Aq(Rn; A), is defined to be the set of all measurable functions ϕ : Rn ×
[0, ∞)→ [0, ∞) satisfying, when q ∈ (1, ∞),

sup
t∈(0,∞)

sup
B∈B

{
1
|B|

∫
B

ϕ(y, t)dy
}{

1
|B|

∫
B
[ϕ(y, t)]−

1
q−1 dy

}q−1

< ∞

and, when q = 1,

sup
t∈(0,∞)

sup
B∈B

{
1
|B|

∫
B

ϕ(y, t)dy
}{

ess sup
y∈B

[ϕ(y, t)]−1

}
< ∞,

where B is as in (2.1). Moreover, let

A∞(A) :=
⋃

q∈[1,∞)

Aq(A).

Recall also that a function Φ : [0, ∞) → [0, ∞) is called an Orlicz function if Φ is
non-decreasing, Φ(0) = 0, limt→∞ Φ(t) = ∞ and, for any t ∈ (0, ∞), Φ(t) ∈ (0, ∞) (see,
for instance, [60]). For a given function ϕ : Rn× [0, ∞)→ [0, ∞) satisfying, for any given
x ∈ Rn, ϕ(x, ·) is an Orlicz function, ϕ is said to be of uniformly upper (resp. lower) type
p for some p ∈ (−∞, ∞) if there exists a positive constant C such that, for almost every
x ∈ Rn, s ∈ [1, ∞) (resp. s ∈ (0, 1)) and t ∈ [0, ∞), ϕ(x, st) ≤ Csp ϕ(x, t). Denote by i(ϕ)
the critical uniformly lower type index of ϕ, namely,

i(ϕ) := sup {p ∈ (−∞, ∞) : ϕ is of uniformly lower type p} . (6.1)

The following notion of anisotropic growth functions is just [68, Definition 3].

Definition 6.2. A function ϕ : Rn × [0, ∞) → [0, ∞) is called an anisotropic growth
function if ϕ satisfies the following conditions:

(i) ϕ is a Musielak–Orlicz function, namely,

(i)1 for each given x ∈ Rn, ϕ(x, ·) : [0, ∞)→ [0, ∞) is an Orlicz function;

(i)2 for each given t ∈ [0, ∞), ϕ(·, t) is a Lebesgue measurable function on Rn.

(ii) ϕ ∈ A∞(A).

(iii) ϕ is of uniformly lower type p for some p ∈ (0, 1] and of uniformly upper type 1.
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For any ϕ ∈ A∞(A), let

q(ϕ) := inf
{

q ∈ [1, ∞) : ϕ ∈ Aq(A)
}

. (6.2)

For any ϕ as in Definition 6.2(i), the Musielak–Orlicz space Lϕ(Rn) is defined to be the
set of all measurable functions f with their quasi-norms

‖ f ‖Lϕ(Rn) := inf
{

λ ∈ (0, ∞) :
∫

Rn
ϕ(x, | f (x)|/λ)dx ≤ 1

}
< ∞.

Moreover, in [68, Definition 5], the authors introduced the anisotropic Musielak–
Orlicz Hardy spaces as follows.

Definition 6.3. Let N ∈ N and ϕ be an anisotropic growth function as in Definition 6.2.
The anisotropic Musielak–Orlicz Hardy space Hϕ

N,A(R
n) is defined by setting

Hϕ
N,A(R

n) :=
{

f ∈ S′(Rn) : MN( f ) ∈ Lϕ(Rn)
}

and, for any f ∈ Hϕ
N,A(R

n), let ‖ f ‖Hϕ
N,A(R

n) := ‖MN( f )‖Lϕ(Rn), where MN( f ) denotes the

non-tangential grand maximal function of f ∈ S′(Rn) as in (3.4).

Remark 6.1. (i) By [68, Theorem 33], we know that the space Hϕ
N,A(R

n) is independent
of the choice of N as long as N ∈ N∩ [m(ϕ), ∞), here and thereafter, for any given
ϕ as in Definition 6.2,

m(ϕ) :=
⌊[

q(ϕ)

i(ϕ)
− 1
]

ln b
ln λ−

⌋
(6.3)

with q(ϕ) and i(ϕ), respectively, as in (6.2) and (6.1). Thus, throughout this article,
we always denote simply by Hϕ

A(R
n) the anisotropic Musielak–Orlicz Hardy space.

(ii) Recall that, in Definition 4.1 (see also [75, Definition 2.4]), we present the anisotropic
variable Hardy space Hp(·)

A (Rn) with p(·) ∈ Clog(Rn) (see (4.2) and (4.3)). Similarly
to [114, Remark 2.8], we know that, if

ϕ(x, t) := tp(x) for any x ∈ Rn and t ∈ (0, ∞), (6.4)

then Hϕ
A(R

n) = Hp(·)
A (Rn). However, a general Musielak–Orlicz growth function

ϕ as in Definition 6.2 may not have the form as in (6.4). On another hand, as was
proved in [114, Remark 2.14(iii)], there exists a variable exponent function p(·) sat-
isfying (4.2) and (4.3) which were required in Definition 4.1, but tp(·) is not a uni-
form Muckenhoupt weight which was required in Definitions 6.2 and 6.3. Thus,
the anisotropic Musielak–Orlicz Hardy space Hϕ

A(R
n) and the anisotropic variable

Hardy space Hp(·)
A (Rn) cannot cover each other.
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(iii) When A := dIn×n for some d ∈ R with |d| ∈ (1, ∞), the space Hϕ
A(R

n) becomes
the Musielak–Orlicz Hardy space Hϕ(Rn) (see [60]), which includes the classical
Hardy space of Fefferman and Stein [38] and the classical weighted Hardy space
of Garcı́a-Cuerva [43] as well as the classical Orlicz–Hardy space of Janson [54] as
special cases. In addition, if, for any p ∈ (0, 1], x ∈ Rn and t ∈ (0, ∞),

ϕ(x, t) := w(x)tp

with w ∈ A∞(A) being an anisotropic A∞ Muckenhoupt weight (see, for in-
stance, [16]), then the space Hϕ

A(R
n) coincides with the weighted anisotropic Hardy

space Hp
w(R

n; A) (see [16]), which includes the anisotropic Hardy space Hp
A(R

n) of
Bownik [12] as a special case.

(iv) We should point out that Li et al. [68] also characterized Hϕ
A(R

n), respectively, in
terms of the radial or the non-tangential maximal function and the atom; see, re-
spectively, [68, Theorems 9 and 40] for more details.

6.2 Molecular characterizations of Hϕ
A(R

n) and their applications

Let ϕ be as in Definition 6.2. For any measurable subset E ⊂ Rn, the space Lq
ϕ(E) with

q ∈ [1, ∞] is defined to be the set of all measurable functions f on E satisfying

‖ f ‖Lq
ϕ(E) :=

 sup
t∈(0,∞)

[
1

ϕ(E, t)

∫
E
| f (x)|q ϕ(x, t)dx

]1/q

< ∞, when q ∈ [1, ∞),

‖ f ‖L∞(E) < ∞, when q = ∞,

(6.5)

here and thereafter, for any t ∈ [0, ∞), ϕ(E, t) :=
∫

E ϕ(x, t)dx (see [60]).
The following notion of anisotropic Musielak–Orlicz molecules is just [71, Definition

2.8], which is an anisotropic version of [50, Definition 4.4].

Definition 6.4. Let ϕ be as in Definition 6.2, q ∈ (q(ϕ), ∞] with q(ϕ) as in (6.2), s ∈
Z+ and ε ∈ (0, ∞). A measurable function m is called an anisotropic Musielak–Orlicz
(ϕ, q, s, ε)-molecule (shortly, a (ϕ, q, s, ε)-molecule), associated to some dilated ball B :=
x0 + Bi0 ∈ B with x0 ∈ Rn, i0 ∈ Z and B as in (2.1), if

(i) for each j ∈ Z+,
‖m‖Lq

ϕ(Uj(B)) ≤ b−jε‖1B‖−1
Lϕ(Rn)

,

where U0(B) := B and, for any j ∈N,

Uj(B) = Uj (x0 + Bi0) := x0 +
[(

AjBi0

)
\
(

Aj−1Bi0

)]
;

(ii) for any multi-index α ∈ Zn
+ with |α| ≤ s,

∫
Rn m(x)xαdx = 0.
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By using (ϕ, q, s, ε)-molecules, in [73, Definition 3.3], the authors originally introduced
the anisotropic Musielak–Orlicz molecular Hardy space Hϕ,q,s,ε

A,mol(R
n) as follows.

Definition 6.5. Let ϕ, q, s and ε be as in Definition 6.4. The anisotropic Musielak–Orlicz
molecular Hardy space Hϕ,q,s,ε

A,mol(R
n) is defined to be the set of all f ∈ S′(Rn) satisfying

that there exist {λi}i∈N ⊂ C and a sequence of (ϕ, q, s, ε)-molecules, {mi}i∈N, associated,
respectively, to {B(i)}i∈N ⊂ B such that f = ∑i∈N λimi in S′(Rn) and

∑
i∈N

ϕ
(

B(i), |λi| ‖mi‖Lq
ϕ(B(i))

)
< ∞.

Moreover, for any f ∈ Hϕ,q,s,ε
A,mol(R

n), let

‖ f ‖Hϕ,q,s,ε
A,mol(R

n) := inf {Λ({λimi}i∈N)}

with the infimum being taken over all the decompositions of f as above, where

Λ({λimi}i∈N) := inf

{
λ ∈ (0, ∞) : ∑

i∈N

ϕ

(
B(i),

|λi|
λ‖1B(i)‖Lϕ(Rn)

)
≤ 1

}
.

The following molecular characterizations of Hϕ
A(R

n) were established in [73, Theo-
rem 3.12].

Theorem 6.1. Let ϕ and q be as in Definition 6.2, s ∈ Z+ ∩ [m(ϕ), ∞) with m(ϕ) as in (6.3),
N ∈N∩ [m(ϕ) + 2, ∞) and

ε ∈ (max{1, (s + 1) logb (λ+/λ−)}, ∞) . (6.6)

Then Hϕ
A(R

n) = Hϕ,q,s,ε
A,mol(R

n) with equivalent quasi-norms.

Remark 6.2. (i) When A is as in Remark 3.4(i), Hϕ
A(R

n) and Hϕ,q,s,ε
A,mol(R

n) become,
respectively, the classical isotropic Musielak–Orlicz Hardy space (see [60]) and
Musielak–Orlicz molecular Hardy space (see [50]. In this case, Theorem 6.1 co-
incides with [50, Theorem 4.13].

(ii) When A is a diagonal expansive matrix (see [71]), Theorem 6.1 goes back to [71, The-
orem 2.11]. In addition, Li et al. recently also obtained a kind of molecular charac-
terizations for the space Hϕ

A(R
n) (see [66, Theorem 2.10]), where the size condition

of the (ϕ, q, s, ε)-molecule m associated to some dilated ball B, namely,

‖m‖Lq
ϕ(B) ≤ ‖1B‖−1

Lϕ(Rn)

and, for any j ∈N and x ∈ Uj(B) with Uj(B) as in Definition 6.2,

|m(x)| ≤ b−jε‖1B‖−1
Lϕ(Rn)

,

is much stronger than that used in Definition 6.4(i). In this sense, Theorem 6.1
extends the corresponding result obtained in [66, Theorem 2.10].
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(iii) We should also point out that both [71, Theorem 2.11] and [66, Theorem 2.10] re-
quire the index ε to belong to

(max {q(ϕ)/i(ϕ), s logb(λ+) + 1} , ∞)

with q(ϕ) and i(ϕ), respectively, as in (6.2) and (6.1), which is just a proper subset
of

(max {1, (s + 1) logb (λ+/λ−)} , ∞)

from (6.6). In this sense, the conclusion obtained in Theorem 6.1 is also stronger
than that obtained in [71, Theorem 2.11] or [66, Theorem 2.10].

We next give some applications of Theorem 6.1 to the boundedness of linear oper-
ators. For this purpose, we need to recall the definition of anisotropic Musielak–Orlicz
(ϕ, q, s)-atoms from [68, Definition 30].

Definition 6.6. Let ϕ be as in Definition 6.2 and q(ϕ) as in (6.2).

(i) An anisotropic triplet (ϕ, q, s) is said to be admissible if q ∈ (q(ϕ), ∞] and s ∈
Z+ ∩ [m(ϕ), ∞) with m(ϕ) as in (6.3).

(ii) For any given anisotropic admissible triplet (ϕ, q, s), a measurable function a on Rn

is called an anisotropic Musielak–Orlicz (ϕ, q, s)-atom (shortly, a (ϕ, q, s)-atom) if

(ii)1 supp a := {x ∈ Rn : a(x) 6= 0} ⊂ B, where B ∈ B and B is as in (2.1);

(ii)2 ‖a‖Lq
ϕ(Rn) ≤ ‖1B‖−1

Lϕ(Rn)
;

(ii)3 for any γ ∈ Zn
+ with |γ| ≤ s,

∫
Rn a(x)xγdx = 0.

In [73, Theorem 4.5], the authors established a criterion on the boundedness of linear
operators on Hϕ

A(R
n) as follows.

Theorem 6.2. Assume that T is a linear operator defined on the set of all measurable functions.
Let (ϕ, q, s̃) be an anisotropic admissible triplet (see Definition 6.6(i)). If there exist some j0 ∈
Z and a positive constant C such that, for any (ϕ, q, s̃)-atom ã supported in some dilated ball
x0 + Bi0 ∈ B with x0 ∈ Rn, i0 ∈ Z and B as in (2.1), 1

C T(ã) is a (ϕ, q, s, ε)-molecule associated
to x0 + Bi0+j0 , where s and ε are as in Theorem 6.1, then T has a unique bounded linear extension
on Hϕ

A(R
n).

In what follows, for any r ∈ N, denote by Cr(Rn) the set of all functions on Rn

whose derivatives with order not greater than r are continuous. Recall that Liao et al. [71]
introduced the following notion of integral anisotropic Calderón–Zygmund operators.

Definition 6.7. Let r ∈ N, q ∈ (1, ∞) and ϕ ∈ Aq(A). An anisotropic Calderón–
Zygmund operator T (see Definition 3.8(ii)) is called an integral anisotropic Calderón–
Zygmund operator of order r if its kernel K is a Cr(Rn) function with respect to
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the second variable y and there exists a positive constant C such that, for any di-
lated ball B := x0 + Bi0 ∈ B with x0 ∈ Rn, i0 ∈ Z and B as in (2.1), m ∈ N,
x ∈ x0 + (Bi0+m+τ+1 \ Bi0+m+τ) and α ∈ Zn

+ with 1 ≤ |α| ≤ r,∥∥∥∥∫ 1

0
(1− t)|α|−1∂α

yK̃
(

x, tA−i0−m·
)

dt
∥∥∥∥

Lq′
ϕ̃ (B)
≤ Cb−i0−m,

where ϕ̃ := ϕ1/(1−q), Lq′

ϕ̃ (B) is as in (6.5) with ϕ, E and q replaced, respectively, by ϕ̃, B

and q′ and, for any x, y ∈ Rn satisfying x 6= Ai0+my, K̃(x, y) := K(x, Ai0+my).

Remark 6.3. (i) For any r ∈N, the anisotropic Calderón–Zygmund operator of order r
in [66, Definition 4.3], which originates from [12, p. 61, Definition 9.2], is an integral
anisotropic Calderón–Zygmund operator of order r as in Definition 6.7; see [71,
Remark 4.4(i)] or [73, Remark 4.8(i)] for more details.

(ii) By [71, Remark 4.4(ii)], we know that, for any r ∈ N, the classical isotropic
Calderón–Zygmund operator of order r (see [96, p. 289]) is also an operator as in
Definition 6.7 in the case when A := dIn×n for some d ∈ R with |d| ∈ (1, ∞).

The following vanishing moment condition is just [66, Definition 4.5], which origi-
nates from [12, p. 64, Definition 9.4].

Definition 6.8. Let ϕ be as in Definition 6.2, r ∈N and

q(ϕ)

i(ϕ)
− 1 <

(ln λ−)2

ln b ln λ+
r,

where q(ϕ) and i(ϕ) are, respectively, as in (6.2) and (6.1). An integral anisotropic
Calderón–Zygmund operator T of order r is said to satisfy T∗(xα) = 0 for any α ∈ Zn

+

with |α| ≤ m(ϕ), where m(ϕ) is as in (6.3), if, for any f ∈ L2(Rn) with compact support
and satisfying that, for any γ ∈ Zn

+ with |γ| ≤ r,
∫

Rn f (x)xγdx = 0, it holds true that, for
any α ∈ Zn

+ with |α| ≤ m(ϕ),
∫

Rn T( f )(x)xαdx = 0.

As a further application of the criterion established in Theorem 6.2, we have the fol-
lowing boundedness of integral anisotropic Calderón–Zygmund operators from Hϕ

A(R
n)

to itself (or to Lϕ(Rn)); see [73, Theorems 4.13 and 4.14].

Theorem 6.3. Let ϕ, r, q(ϕ), i(ϕ) and m(ϕ) be as in Definition 6.8. Assume that T is an integral
anisotropic Calderón–Zygmund operator of order r and satisfies T∗(xα) = 0 for any α ∈ Zn

+ with
|α| ≤ m(ϕ). Then there exists a positive constant C such that, for any f ∈ Hϕ

A(R
n),

‖T( f )‖Hϕ
A(R

n) ≤ C‖ f ‖Hϕ
A(R

n).

Theorem 6.4. Let ϕ be as in Definition 6.2 and m(ϕ) as in (6.3). Assume that T is an integral
anisotropic Calderón–Zygmund operator of order r̃ with r̃ ∈ N ∩ [m(ϕ) + 1, ∞). Then there
exists a positive constant C such that, for any f ∈ Hϕ

A(R
n),

‖T( f )‖Lϕ(Rn) ≤ C‖ f ‖Hϕ
A(R

n).
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Remark 6.4. (i) When A is a diagonal expansive dilation (see [71, p. 3]), Theorems 6.3
and 6.4 coincide, respectively, with [71, Theorems 4.7 and 4.6].

(ii) By Remark 6.3(i), we know that Theorems 6.3 and 6.4 extend the corresponding
results obtained in [66, Theorems 4.8 and 4.7], respectively.

(iii) Let r ∈N and p ∈ (0, 1] satisfy

1
p
− 1 ≤ (ln λ−)2

ln b ln λ+
r. (6.7)

If, for any x ∈ Rn and t ∈ (0, ∞), ϕ(x, t) := tp, then q(ϕ) = 1, i(ϕ) = p and Hϕ
A(R

n)
and Lϕ(Rn) become the anisotropic Hardy space Hp

A(R
n) of Bownik [12] and the

Lebesgue space Lp(Rn), respectively. In this case, by Theorems 6.3 and 6.4 and
Remark 6.3(i), we find that, for any r ∈ N and p ∈ (0, 1] as in (6.7), the anisotropic
Calderón–Zygmund operator of order r (see [12, p. 61, Definition 9.2]) is bounded
from Hp

A(R
n) to itself (or to Lp(Rn)) (see [12, p. 68, Theorem 9.8 and p. 69, Theorem

9.9]). Moreover, let A := dIn×n for some d ∈ R with |d| ∈ (1, ∞), r = 1. Then
(ln λ−)2

ln b ln λ+
r = 1

n and Hϕ
A(R

n) and Lϕ(Rn) become the classical isotropic Hardy space
Hp(Rn) and the Lebesgue space Lp(Rn), respectively. In this case, by Theorems
6.3 and 6.4, and Remark 6.3(ii), we further conclude that, for any p ∈ ( n

n+1 , 1],
the classical Calderón–Zygmund operator is bounded from Hp(Rn) to itself (or to
Lp(Rn)), which is a well-known result (see, for instance, [3, 96]).

(iv) Let r := 1 and p ∈ (ln b/[ln b + ln λ−], 1]. If, for any x ∈ Rn and t ∈ [0, ∞),
ϕ(x, t) := w(x)tp, where w is an anisotropic A1 Muckenhoupt weight (see [16]),
then q(ϕ) = 1, i(ϕ) = p and Hϕ

A(R
n) becomes the weighted anisotropic Hardy

space Hp
w(R

n; A) (see [16]). In this case, by Theorem 6.3, we know that, for any p ∈
(ln b/[ln b + ln λ−], 1], the anisotropic Calderón–Zygmund operator (see Definition
3.8(ii)) is bounded on Hp

w(R
n; A), which is just [118, Theorem 3.2].

(v) Recently, Sun et al. [99] established the molecular characterization of the anisotropic
weak Musielak–Orlicz Hardy space WHϕ

A(R
n); as applications, in [99], they

also obtained the boundedness of Calderón–Zygmund operators from Hϕ
A(R

n) to
WHϕ

A(R
n) in the critical case.

6.3 Littlewood–Paley function characterizations of Hϕ
A(R

n)

In this subsection, we present the characterizations of Hϕ
A(R

n) in terms of the anisotropic
Lusin area function, the anisotropic Littlewood–Paley g-function or g∗λ-function; see [67].
Meanwhile, we also correct some errors existing in the proof of the sufficiency of [67,
Theorem 2.8], namely, the Lusin area function characterizations of Hϕ

A(R
n).
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Let ϕ be a Musielak–Orlicz function on Rn (see Definition 6.2(i)). For any r ∈ (0, ∞),
the space Lϕ(Rn, `r) is defined to be the set of all { fi}i∈N of measurable functions on Rn

satisfying (
∑

i∈N

| f j|r
)1/r

∈ Lϕ(Rn)

and, for any { fi}i∈N ∈ Lϕ(Rn, `r), let

‖{ fi}i∈N‖Lϕ(Rn,`r) :=

∥∥∥∥∥∥
(

∑
i∈N

| fi|r
)1/r

∥∥∥∥∥∥
Lϕ(Rn)

.

The following Fefferman–Stein vector-valued inequality on the Musielak–Orlicz
space is just [67, Lemma 3.6].

Lemma 6.1. Let r ∈ (1, ∞], ϕ be a Musielak–Orlicz function with uniformly lower type p−ϕ and
uniformly upper type p+ϕ , q ∈ (1, ∞) and ϕ ∈ Aq(A). If q(ϕ) < p−ϕ ≤ p+ϕ < ∞ with q(ϕ) as
in (6.2), then there exists a positive constant C such that, for any { fi}i∈N ∈ Lϕ(Rn, `r),

∫
Rn

ϕ

x,

{
∑

i∈N

[MHL( fi)(x)]r
}1/r

 dx ≤ C
∫

Rn
ϕ

x,

[
∑
i∈Z

| fi(x)|r
]1/r

 dx,

where MHL denotes the Hardy–Littlewood maximal operator as in (3.9).

Via Lemmas 6.1 and 3.4, similarly to Theorem 3.5, we obtain the following conclusion;
the details are omitted.

Theorem 6.5. Let ϕ be as in Definition 6.2 and θ, ψ as in Lemma 3.1 with s ∈ Z+ ∩ [m(ϕ), ∞),
where m(ϕ) is as in (6.3). Then there exists a positive constant C such that, for any f ∈ S′0(R

n),

1
C
‖Sθ( f )‖Lϕ(Rn) ≤

∥∥Sψ( f )
∥∥

Lϕ(Rn)
≤ C ‖Sθ( f )‖Lϕ(Rn) ,

where Sθ( f ) and Sψ( f ) are the anisotropic Lusin area functions as in (3.8) defined, respectively,
via θ and ψ.

Let (ϕ, q, s) be an anisotropic admissible triplet as in Definition 6.6(i). Notice that a
(ϕ, q, s)-atom as in Definition 6.6(ii) is also a (ϕ, q, s, ε)-molecule for any ε ∈ (0, ∞) as in
Definition 6.4. Thus, by [73, Lemma 3.7], we obtain the following conclusion.

Lemma 6.2. Let (ϕ, q, s) be an anisotropic admissible triplet and N ∈N∩ [m(ϕ) + 2, ∞) with
m(ϕ) as in (6.3). Then there exists a positive constant C(A,ϕ,q,s), depending on A, ϕ, q and s,
such that, for any λ ∈ (0, ∞) and (ϕ, q, s)-atom ã supported in some dilated ball B ∈ B,∫

Rn
ϕ (x, λMN(ã)(x)) dx ≤ C(A,ϕ,q,s)ϕ

(
B, λ‖1B‖−1

Lϕ(Rn)

)
holds true, where B is as in (2.1) and MN as in (3.4).
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In [67, Theorems 2.8, 3.1 and 3.9], Li et al. established the characterizations of Hϕ
A(R

n),
respectively, in terms of the anisotropic Lusin area function, the anisotropic Littlewood–
Paley g-function or g∗λ-function as follows.

Theorem 6.6. Let q ∈ [1, ∞) and ϕ ∈ Aq(A) be as in Definition 6.2. Then

(i) f ∈ Hϕ
A(R

n) if and only if f ∈ S′0(R
n) and S( f ) ∈ Lϕ(Rn). Moreover, there exists a

positive constant C such that, for any f ∈ Hϕ
A(R

n),

1
C
‖S( f )‖Lϕ(Rn) ≤ ‖ f ‖Hϕ

A(R
n) ≤ C ‖S( f )‖Lϕ(Rn) .

(ii) The conclusion as in (i) remains true if S( f ) is replaced, respectively, by g( f ) or g∗λ( f ) with
λ ∈ (2q/p, ∞).

To show the sufficiency of Theorem 6.6(i), we also need the following two lemmas,
which are just, respectively, [71, Lemma 3.5] and [60, Lemma 4.3(i)].

Lemma 6.3. Let ϕ be an anisotropic growth function as in Definition 6.2. Then there exists a
positive constant C such that, for any {(x, ti)}i∈N ⊂ Rn × [0, ∞),

ϕ

(
x, ∑

i∈N

ti

)
≤ C ∑

i∈N

ϕ(x, ti).

Lemma 6.4. Let ϕ be as in Lemma 6.3. Then, for any given positive constant C, there exists a
positive constant C̃ such that, for any λ ∈ (0, ∞) and measurable function f on Rn,∫

Rn
ϕ

(
x,
| f (x)|

λ

)
dx ≤ C implies ‖ f ‖Lϕ(Rn) ≤ C̃λ.

Now we prove the sufficiency of Theorem 6.6(i).

Proof of the sufficiency of Theorem 6.6(i). Let ψ be as in Lemma 3.1, f ∈ S′0(R
n) and S( f ) ∈

Lϕ(Rn). Then, by Theorem 6.5, we know that Sψ( f ) ∈ Lϕ(Rn). Therefore, to finish the
proof of the sufficiency of Theorem 6.6(i), we need to prove that f ∈ Hϕ

A(R
n) and

‖ f ‖Hϕ
A(R

n) . ‖Sψ( f )‖Lϕ(Rn). (6.8)

To this end, for any k ∈ Z, let Ωk := {x ∈ Rn : Sψ( f )(x) > 2k} and

Qk :=
{

Q ∈ Q : |Q ∩Ωk| >
|Q|
2

and |Q ∩Ωk+1| ≤
|Q|
2

}
.

Clearly, for any Q ∈ Q, there exists a unique k ∈ Z such that Q ∈ Qk. Let {Qk
i }i be the

set of all maximal dyadic cubes in Qk, namely, there exists no Q ∈ Qk such that Qk
i $ Q

for any i.
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For any Q ∈ Q, let

Q̂ :=
{
(y, t) ∈ Rn+1

+ := Rn × (0, ∞) : y ∈ Q, t ∼ bv`(Q)+u
}

, (6.9)

where t ∼ bv`(Q)+u means the same as in (3.18). Obviously, {Q̂}Q∈Q are mutually disjoint
and

Rn+1
+ =

⋃
k∈Z

⋃
i

Bk,i, (6.10)

where, for any k ∈ Z and i, Bk,i :=
⋃

Q⊂Qk
i ,Q∈Qk

Q̂. Then, by Lemma 3.3(ii), we easily find
that {Bk,i}k∈Z,i are also mutually disjoint.

Let ψ and θ be as in Lemma 3.1 with s ∈ Z+ ∩ [m(ϕ), ∞), where m(ϕ) is as in (6.3).
Then θ has the vanishing moments up to order s and, for any f ∈ S′0(R

n) such that
Sψ( f ) ∈ Lϕ(Rn), and for any x ∈ Rn, similarly to (3.20), we have

f (x) = ∑
k∈Z

f ∗ ψk ∗ θk(x) =
∫

Rn+1
+

f ∗ ψt(y) ∗ θt(x− y)dydm(t) (6.11)

in S′(Rn), where m(t) denotes the counting measure on R as in (3.20). For each k ∈ Z, i
and x ∈ Rn, let

hk
i (x) :=

∫
Bk,i

f ∗ ψt(y) ∗ θt(x− y)dydm(t).

Next we prove the sufficiency of Theorem 6.6(i) in three steps.
Step 1) The aim of this step is to show that

∑
k∈Z

∑
i

hk
i converges in S′(Rn). (6.12)

For this purpose, repeating the proofs of assertions (i) and (ii) in the proof of the suffi-
ciency of Theorem 3.4(i) with some slight modifications, we conclude that, for any given
r ∈ (q(ϕ), ∞) with q(ϕ) as in (6.2),

(i) for any k ∈ Z, i and x ∈ Rn,

hk
i (x) = ∑

Q⊂Qk
i ,Q∈Qk

∫
Q̂

f ∗ ψt(y)θt(x− y)dydm(t) (6.13)

holds true in S′(Rn);

(ii) for any k ∈ Z and i, hk
i = λk

i ak
i is a multiple of a (ϕ, r, s)-atom, where, for any k ∈ Z

and i, λk
i ∼ 2k‖1Bk

i
‖Lϕ(Rn) with the positive equivalence constants independent of
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k and i, and ak
i is a (ϕ, r, s)-atom satisfying, for any r ∈ (q(ϕ), ∞), k ∈ Z, i and

γ ∈ Zn
+ as in Definition 6.6(ii)3,

supp ak
i ⊂ Bk

i := xQk
i
+ Bv[`(Qk

i )−1]+u+3τ with v and u as in Lemma 3.3(iv),∥∥∥ak
i

∥∥∥
Lq

ϕ(Rn)
≤
∥∥∥1Bk

i

∥∥∥−1

Lϕ(Rn)
and

∫
Rn

ak
i (x)xγdx = 0.

To show (6.12), we next consider two cases: i ∈N and i ∈ {1, · · · , I} with some I ∈N.
Case 1) i ∈ N. In this case, by [68, Propositions 6 and 7], to prove (6.12), it suffices to

show that

lim
l→∞

∥∥∥∥∥ ∑
l≤|k|≤m

∑
l≤i≤m

λk
i ak

i

∥∥∥∥∥
Hϕ

A(R
n)

= 0. (6.14)

Indeed, by the facts that λk
i ∼ 2k‖1Bk

i
‖Lϕ(Rn), |Qk

i ∩Ωk| ≥
|Qk

i |
2 , [73, Lemma 3.4] and the

mutual disjointness of {Qk
i }i∈N for any fixed k ∈ Z, we find that, for any l, m ∈ N and

λ ∈ (0, ∞),

∑
l≤|k|≤m

∑
l≤i≤m

ϕ

(
Bk

i ,
|λk

i |
λ‖1Bk

i
‖Lϕ(Rn)

)

∼ ∑
l≤|k|≤m

∑
l≤i≤m

ϕ

(
Bk

i ,
2k

λ

)
∼ ∑

l≤|k|≤m
∑

l≤i≤m
ϕ

(
Qk

i ,
2k

λ

)

∼ ∑
l≤|k|≤m

∑
l≤i≤m

ϕ

(
Qk

i ∩Ωk,
2k

λ

)
. ∑

l≤|k|≤m
ϕ

(
Ωk,

2k

λ

)
.

This, combined with [68, Theorem 40] and the fact that, for any λ ∈ (0, ∞),

∑
k∈Z

ϕ

(
Ωk,

2k

λ

)
.
∫

Rn
ϕ

(
x,

Sψ( f )(x)
λ

)
dx < ∞, (6.15)

further implies that (6.14) holds true and hence finishes the proof of (6.12) in Case 1).
Case 2) i ∈ {1, · · · , I} with some I ∈ N. In this case, to show (6.12), it suffices to

prove that

lim
l→∞

∥∥∥∥∥ ∑
l≤|k|≤m

I

∑
i=1

λk
i ak

i

∥∥∥∥∥
Hϕ

A(R
n)

= 0. (6.16)

Indeed, by a proof similar to that of (6.14), it is easy to see that (6.16) also holds true,
which completes the proof of (6.12) in Case 2) and hence of (6.12).
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Step 2) In this step, we prove that

f = ∑
k∈Z

∑
i

λk
i ak

i in S′(Rn). (6.17)

For this purpose, for any x ∈ Rn, let

f̃ (x) := ∑
k∈Z

∑
i

hk
i (x) = ∑

k∈Z

∑
i

∫
Bk,i

f ∗ ψt(y)θt(x− y)dydm(t) in S′(Rn),

where, for any k ∈ Z and i, Bk,i is as in (6.10). Then, to show (6.17), it suffices to prove
that

f = f̃ in S′(Rn). (6.18)

To do this, by the above assertion (i) and (6.9), we know that, for any given r ∈
(q(ϕ), ∞) and for any k ∈ Z, i and x ∈ Rn,

hk
i (x) = lim

N→∞

∫ ∞

0

∫
Rn

f ∗ ψt(y)θt(x− y)1∪ Q⊂Qk
i ,Q∈Qk

|`(Q)|≤N

Q̂(y, t)dydm(t)

= lim
N→∞

∫ η(N)

γ(N)

∫
Rn

f ∗ ψt(y)θt(x− y)1Bk,i(y, t)dydm(t) (6.19)

holds true in S′(Rn), where, for any N ∈ N, γ(N) and η(N) are as in (3.32). For the
convenience of symbols, we rewrite f̃ as, for any x ∈ Rn,

f̃ (x) = ∑
`∈N

∫
R(`)

f ∗ ψt(y)θt(x− y)dydm(t),

where {R(`)}`∈N is an arbitrary permutation of {Bk,i}k∈Z,i. For any L ∈ N and x ∈ Rn,
let

f̃L(x) := f (x)−
L

∑
`=1

∫
R(`)

f ∗ ψt(y)θt(x− y)dydm(t).

Then, from (6.10), (6.11) and (6.19), it follows that, for any L ∈N and x ∈ Rn,

f̃L(x) = lim
N→∞

∫ η(N)

γ(N)

∫
Rn

f ∗ ψt(y)θt(x− y)1∪∞
`=1R(`)(y, t)dydm(t)

− lim
N→∞

∫ η(N)

γ(N)

∫
Rn

f ∗ ψt(y)θt(x− y)1∪L
`=1R(`)(y, t)dydm(t)

= lim
N→∞

∫ η(N)

γ(N)

∫
Rn

f ∗ ψt(y)θt(x− y)1∪∞
`=L+1R(`)(y, t)dydm(t) (6.20)
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holds true in S′(Rn).
Note that Hϕ

A(R
n) is continuously embedded into S′(Rn) (see [68, Proposition 6]).

Therefore, to prove (6.18), we only need to show that∥∥∥ f̃L

∥∥∥
Hϕ

A(R
n)
→ 0 as L→ ∞. (6.21)

To this end, we borrow some ideas from the proof of the atomic characterizations of
Hϕ

A(R
n) (see [68, Theorem 40]). Indeed, for any ε ∈ (0, 1), L ∈N and x ∈ Rn, let

f̃ (ε)L (x) :=
∫ α/ε

ε

∫
Rn

f ∗ ψt(y)θt(x− y)1∪∞
`=L+1R(`)(y, t)dydm(t),

where α := b−v+2(u+1) with v and u as in Lemma 3.3(iv). Then, by the Lebesgue domi-
nated convergence theorem, we find that, for any given any ε ∈ (0, 1), L ∈N and x ∈ Rn,

f̃ (ε)L (x) =
∞

∑
`=L+1

∫ α/ε

ε

∫
Rn

f ∗ ψt(y)θt(x− y)1R(`)(y, t)dydm(t) =:
∞

∑
`=L+1

h(ε)` (x)

in S′(Rn). Moreover, by some arguments similar to those used in the proofs of asser-
tions (i) and (ii) in the proof of the sufficiency of Theorem 3.4(i) as well as in the proof of
(6.14) with some slight modifications, we conclude that, for any ε ∈ (0, 1), r ∈ (q(ϕ), ∞),
L ∈ N and ` ∈ N ∩ [L + 1, ∞), h(ε)` is a multiple of a (ϕ, r, s)-atom, namely, there exist

{λ`}`∈N∩[L+1,∞) ⊂ C and a sequence of (ϕ, r, s)-atoms, {a(ε)` }`∈N∩[L+1,∞), supported, re-

spectively, in {B(`)}`∈N∩[L+1,∞) ⊂ B such that, for any ` ∈ N ∩ [L + 1, ∞), h(ε)` = λ`a
(ε)
` ,

where, for any ` ∈ N ∩ [L + 1, ∞), λ` and B(`) are independent of ε. Therefore, for any
ε ∈ (0, 1), L ∈N and x ∈ Rn,

f̃ (ε)L (x) =
∞

∑
`=L+1

λ`a
(ε)
` (x) in S′(Rn), (6.22)

and

∞

∑
`=L+1

ϕ

(
B(`),

|λ`|
‖1B(`)‖Lϕ(Rn)

)
< ∞. (6.23)

On another hand, for any given N ∈ N ∩ [m(ϕ) + 2, ∞) with m(ϕ) as in (6.3), let MN de-
note the non-tangential grand maximal operator as in (3.4) with N replaced by N. More-
over, let ε := γ(N) with N ∈N∩ [b−u−1

v c+ 1, ∞). Then, from (6.20), we deduce that

MN

(
f̃L

)
= MN

(
lim

N→∞
f̃ (γ(N))
L

)
≤ lim inf

N→∞
MN

(
f̃ (γ(N))
L

)
.
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This, together with (6.22) and Lemmas 6.3 and 6.2, further implies that, for any L ∈N,∫
Rn

ϕ
(

x, MN

(
f̃L

))
dx

.
∫

Rn
ϕ

(
x, lim inf

N→∞
MN

(
f̃ (γ(N))
L

))
dx

.
∫

Rn
ϕ

(
x, lim inf

N→∞

∞

∑
`=L+1

|λ`|MN

(
a(γ(N))
`

))
dx

.
∞

∑
`=L+1

ϕ

(
B(`),

|λ`|
‖1B(`)‖Lϕ(Rn)

)
.

By this and (6.23), we easily know that (6.21) holds true, which completes the proof of
(6.17).

Step 3) By (6.17), the facts that λk
i ∼ 2k‖1Bk

i
‖Lϕ(Rn), |Qk

i ∩ Ωk| ≥
|Qk

i |
2 , [73, Lemma

3.4] and the mutual disjointness of {Qk
i }i∈N for any fixed k ∈ Z, we find that, for any

λ ∈ (0, ∞),

∑
k∈Z

∑
i

ϕ

(
Bk

i ,
|λk

i |
λ‖1Bk

i
‖Lϕ(Rn)

)

∼ ∑
k∈Z

∑
i

ϕ

(
Bk

i ,
2k

λ

)
∼ ∑

k∈Z

∑
i

ϕ

(
Qk

i ,
2k

λ

)
∼ ∑

k∈Z

∑
i

ϕ

(
Qk

i ∩Ωk,
2k

λ

)
. ∑

k∈Z

ϕ

(
Ωk,

2k

λ

)
.

From this and (6.15), it follows that, for any λ ∈ (0, ∞),

∑
k∈Z

∑
i

ϕ

(
Bk

i ,
|λk

i |
λ‖1Bk

i
‖Lϕ(Rn)

)
.
∫

Rn
ϕ

(
x,

Sψ( f )(x)
λ

)
dx,

which, combined with [68, Theorem 40], implies that f ∈ Hϕ
A(R

n) and (6.8) holds true.
This finishes the proof of the sufficiency of Theorem 6.6(i).

Remark 6.5. (i) Let Sθ( f ) and Sψ( f ) be the anisotropic Lusin area functions defined,
respectively, by using θ and ψ. We point out that, in the original proof of the suf-
ficiency of Theorem 6.6(i) (namely, [67, Theorem 2.8]), the authors used both Sθ( f )
and Sψ( f ); see, respectively, the proofs of [67, (2.22) and (2.25)]. Thus, the follow-
ing fact is needed: for any f ∈ S′0(R

n), the Lϕ(Rn) quasi-norms of the anisotropic
Lusin area function S( f ) are independent of the choices of θ and ψ as in Lemma 3.1.
However, in the original proof of the sufficiency of [67, Theorem 2.8], the authors
did not give out the proof of this necessary fact. To seal this gap, we present the
above fact in Theorem 6.5.
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(ii) Let all symbols be the same as those used in the proof of the sufficiency of Theo-
rem 6.6(i). Observe that, in the original proof of the sufficiency of Theorem 6.6(i)
(namely, [67, Theorem 2.8]), the authors used the following two equalities: for any
f ∈ S′0(R

n) with S( f ) ∈ Lϕ(Rn), and x ∈ Rn,∫
Rn+1

+

f ∗ ψt(y) ∗ θt(x− y)dydm(t)

= ∑
k∈Z

∑
i

∫
Bk,i

f ∗ ψt(y) ∗ θt(x− y)dydm(t) (6.24)

in S′(Rn) (see [67, p. 294]) and, for each k ∈ Z, i and x ∈ Rn,∫
Bk,i

f ∗ ψt(y) ∗ θt(x− y)dydm(t)

= ∑
Q⊂Qk

i ,Q∈Qk

∫
Q̂

f ∗ ψt(y) ∗ θt(x− y)dydm(t) (6.25)

in S′(Rn) (see [67, p. 294 and (2.20)]); however, the authors therein did not prove
these two equalities. In the present article, we give the proofs of both (6.24) and
(6.25) and hence seal these gaps existing in the original proof of the sufficiency
of [67, Theorem 2.8]; see, respectively, the proofs of (6.18) and (6.13) above for the
details.

6.4 Dual spaces with applications in wavelet characterizations of Hϕ
A(R

n)

In this subsection, via establishing a John–Nirenberg inequality for elements from
anisotropic Musielak–Orlicz Campanato spaces Lϕ,1,s

A (Rn), we first present that the dual
space of Hϕ

A(R
n) is L

ϕ,1,s
A (Rn). Then, via this duality, we give the characterizations of

Hϕ
A(R

n) in terms of the so-called tight frame multiwavelets.
Let A be some fixed dilation. For any j ∈ Z and k ∈ Zn, let Qj,k := A−j([0, 1)n + k)

and

Q :=
⋃
j∈Z

Qj :=
⋃
j∈Z

{
Qj,k : k ∈ Zn} . (6.26)

For each j ∈ Z and k ∈ Zn, Qj,k is called a dilated cube (see, for instance, [15, p. 1475]).
Clearly, for any k1, k2 ∈ Zn with k1 6= k2, |Qj,k1 ∩ Qj,k2 | = 0. In addition, for each dilated
cube Qj,k, denote by cQj,k its center, by xQj,k its lower-left corner A−jk and by `(Qj,k) its
level, namely, the integer −j. Then [14, Lemma 2.9(a)] implies that there exists some
j(A,n) =: j0 ∈N, only depending on A and n, such that, for any x ∈ Qj,k,

Bρ

(
cQj,k , b−j0−j

)
⊂ Qj,k ⊂ Bρ

(
x, bj0−j

)
,
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where, for any x ∈ Rn and r ∈ (0, ∞), Bρ(x, r) := {y ∈ Rn : ρ(x− y) < r}.
For any s ∈ Z+, denote by Ps(Rn) the set of all polynomials on Rn with degree not

greater than s. For any given f ∈ L1
loc(R

n) and for any Q ∈ Q and s ∈ Z+, let Ps
Q f be the

unique polynomial P ∈ Ps(Rn) such that, for any R ∈ Ps(Rn),∫
Q
[ f (x)− P(x)]R(x)dx = 0.

The following anisotropic Musielak–Orlicz Campanato space was first introduced
in [74, Definition 3.1].

Definition 6.9. Let ϕ be as in Definition 6.2, q ∈ [1, ∞) and s ∈ Z+. The anisotropic
Musielak–Orlicz Campanato space L

ϕ,q,s
A (Rn) is defined to be the set of all f ∈ L1

loc(R
n)

such that their quasi-norms

‖ f ‖Lϕ,q,s
A (Rn) := sup

Q∈Q

1
‖1Q‖Lϕ(Rn)

{∫
Q

[
| f (x)− Ps

Q f (x)|
ϕ(x, ‖1Q‖−1

Lϕ(Rn)
)

]q

ϕ
(

x, ‖1Q‖−1
Lϕ(Rn)

)
dx

}1/q

<∞,

where the supremum is taken over all the dilated cubes Q ∈ Q with Q as in (6.26).

Remark 6.6. (i) When A := dIn×n for some d ∈ R with |d| ∈ (1, ∞), the space
L

ϕ,q,s
A (Rn) becomes the Musielak–Orlicz Campanato space Lϕ,q,s(Rn) from [70].

Moreover,

(i)1 if, for any given p ∈ (0, 1] and for any x ∈ Rn and t ∈ (0, ∞), ϕ(x, t) := tp,
then, Lϕ,q,s

A (Rn) is just the classical isotropic Campanato space L1/p−1,q,s(R
n)

(see [20]);

(i)2 if, for any given p ∈ (0, 1] and for any x ∈ Rn and t ∈ (0, ∞), ϕ(x, t) := w(x)tp

with w being an A∞ Muckenhoupt weight (see, for instance, [43]), then, the
space L

ϕ,q,s
A (Rn) coincides with the weighted Campanato space; see [43] for

n = 1 and, see [117] for n ∈N.

(ii) When q = 1 and s = 0, the space L
ϕ,q,s
A (Rn) becomes the anisotropic BMO

space of Musielak–Orlicz type, BMOϕ
A(R

n) (see [33]), which includes the clas-
sical space BMO(Rn) of John and Nirenberg [56], the anisotropic BMO space
BMOA(R

n) of Bownik [12], the weighted BMO space BMOw(Rn) of Muckenhoupt
and Wheeden [86] and the Orlicz BMO-type space BMOρ(Rn) of Janson [54] and
Strömberg [98] as well as the Musielak–Orlicz BMO-type space BMOϕ(Rn) of
Ky [60] as special cases (see [33, 70] for more details).

(iii) If, for any p ∈ (0, 1], x ∈ Rn and t ∈ (0, ∞), ϕ(x, t) := tp, then the space L
ϕ,q,s
A (Rn)

becomes the anisotropic Campanato space C1/p−1
q,s (Rn) of Bownik (see [12]).
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For any given k ∈ Zn and for any i ∈ N, we divide the cube [0, 1)n + k into 2in

mutually disjoint subcubes of equal size and denote by Θ(k)
i the set of these subcubes.

Moreover, let

Θ(k) :=
⋃

i∈N

Θ(k)
i and Θ :=

{
Aj I : j ∈ Z and I ∈ Θ(k) with k ∈ Zn

}
.

In [74, Theorem 3.8], the authors established a John–Nirenberg inequality for func-
tions from L

ϕ,1,s
A (Rn) as follows.

Theorem 6.7. Let ϕ and s be as in Definition 6.9. Then there exist positive constants C1, C2 and
C3 such that, for any f ∈ L

ϕ,1,s
A (Rn), Q ∈ Q∪Θ and β ∈ (0, ∞), when ϕ ∈ A1(A),

ϕ

({
x ∈ Q :

| f (x)− Ps
Q f (x)|

ϕ(x, ‖1Q‖−1
Lϕ(Rn)

)
> β

}
, ‖1Q‖−1

Lϕ(Rn)

)

≤C1 exp

{
− C2β

‖ f ‖
L

ϕ,1,s
A (Rn)

‖1Q‖Lϕ(Rn)

}

and, when ϕ ∈ Aq(A) for some q ∈ (1, ∞),

ϕ

({
x ∈ Q :

| f (x)− Ps
Q f (x)|

ϕ(x, ‖1Q‖−1
Lϕ(Rn)

)
> β

}
, ‖1Q‖−1

Lϕ(Rn)

)

≤C3

[
1 +

β

‖ f ‖
L

ϕ,1,s
A (Rn)

‖1Q‖Lϕ(Rn)

]−q′

.

Remark 6.7. When A is as in Remark 6.6(i), Theorem 6.7 coincides with [70, Theorem
2.5]. Moreover,

(i) if, for any x ∈ Rn and t ∈ (0, ∞), ϕ(x, t) := t and s = 0, then, by Theorem 3.1,
we know that there exist two positive constants C and C̃ such that, for any f ∈
BMO(Rn), cube Q ⊂ Rn and β ∈ (0, ∞),

|{x ∈ Q : | f (x)− fQ| > β}| ≤ Ce−C̃β/‖ f ‖BMO(Rn) |Q|,

which is the well-known John–Nirenberg inequality obtained by John and Niren-
berg [56];

(ii) if ϕ is as in Remark 6.6(i)1, then Theorem 3.1 was obtained by Li [69];

(iii) if, for any x ∈ Rn and t ∈ (0, ∞), ϕ(x, t) := w(x)t with w as in Remark 6.6(i)2
and s = 0, then Theorem 6.7 is the John–Nirenberg inequality for functions from
the weighted BMO space BMOw(Rn), which was established by Muckenhoupt and
Wheeden [86].
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As a corollary of Theorem 6.7, we have the following conclusion, which shows that
the space L

ϕ,q,s
A (Rn) is independent of the choice of the index q as long as q ∈ [1, [q(ϕ)]′);

see [74, Lemma 3.6 and Theorem 3.8].

Theorem 6.8. Let ϕ be as in Definition 6.2, s ∈ Z+ and q ∈ [1, [q(ϕ)]′), where q(ϕ) is as in
(6.2). Then, for any f ∈ L1

loc(R
n), the following statements are mutually equivalent :

(i)

‖ f ‖
L

ϕ,1,s
A (Rn)

:= sup
Q∈Q

1
‖1Q‖Lϕ(Rn)

∫
Q

∣∣ f (x)− Ps
Q f (x)

∣∣ dx < ∞;

(ii)

‖ f ‖Lϕ,q,s
A (Rn) := sup

Q∈Q

1
‖1Q‖Lϕ(Rn)

{∫
Q

[
| f (x)− Ps

Q f (x)|
ϕ(x, ‖1Q‖−1

Lϕ(Rn)
)

]q

ϕ
(

x, ‖1Q‖−1
Lϕ(Rn)

)
dx

}1/q

<∞;

(iii)

‖ f ‖(∗)
L

ϕ,q,s
A (Rn)

:= sup
Q∈Q

1
‖1Q‖Lϕ(Rn)

{
inf

P∈Ps(Rn)

∫
Q

[
| f (x)− P(x)|

ϕ(x, ‖1Q‖−1
Lϕ(Rn)

)

]q

× ϕ
(

x, ‖1Q‖−1
Lϕ(Rn)

)
dx

}1/q

< ∞,

where Q is as in (6.26).

Let r ∈ (1, ∞]. A function ϕ : Rn × [0, ∞) → [0, ∞) is said to satisfy the anisotropic
uniformly reverse Hölder condition, denoted by ϕ ∈ RHr(A) := RHr(Rn; A), if, when
r ∈ (1, ∞),

sup
t∈(0,∞)

sup
B∈B

{
1
|B|

∫
B

ϕ(y, t)dy
}−1{ 1

|B|

∫
B
[ϕ(y, t)]rdy

}1/r

< ∞

and, when r = ∞,

sup
t∈(0,∞)

sup
B∈B

{
1
|B|

∫
B

ϕ(y, t)dy
}−1

{
ess sup

y∈B
[ϕ(y, t)]

}
< ∞,

where B is as in (2.1). Moreover,
⋃

r∈(1,∞] RHr(A) =
⋃

p∈[1,∞) Ap(A) = A∞(A) (see, for
instance, [73, 115]). Then, for any ϕ ∈ A∞(A), let

r(ϕ) := sup {r ∈ (1, ∞] : ϕ ∈ RHr(A)} . (6.27)

For any r ∈ (0, ∞) and s ∈ Z+, let Lr
c,s(R

n) be the set of all f ∈ Lr(Rn), with compact
support, satisfying that, for any multi-index α ∈ Zn

+ with |α| ≤ s,
∫

Rn f (x)xαdx = 0. The
following dual space of Hϕ

A(R
n) was given in [74, Theorem 3.17].
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Theorem 6.9. Let ϕ be as in Definition 6.2 and s ∈ [m(ϕ), ∞)∩Z+, where m(ϕ) is as in (6.3).
Then the dual space of Hϕ

A(R
n), denoted by (Hϕ

A(R
n))∗, is Lϕ,1,s

A (Rn) in the following sense:

(i) Let g ∈ L
ϕ,1,s
A (Rn). Then the linear functional

Lg : f 7−→ Lg( f ) :=
∫

Rn
f (x)g(x)dx, (6.28)

initially defined for any f ∈ Lr
c,s(R

n), where r ∈ (q(ϕ)[r(ϕ)]′, ∞) with q(ϕ) and r(ϕ),
respectively, as in (6.2) and (6.27), has a bounded extension to Hϕ

A(R
n).

(ii) Conversely, every continuous linear functional on Hϕ
A(R

n) arises as in (6.28) with a unique
g ∈ L

ϕ,1,s
A (Rn).

Moreover, there exists a positive constant C such that, for any g ∈ L
ϕ,1,s
A (Rn),

1
C
‖g‖

L
ϕ,1,s
A (Rn)

≤
∥∥Lg

∥∥
(Hϕ

A(R
n))∗ ≤ C‖g‖

L
ϕ,1,s
A (Rn)

.

Remark 6.8. (i) When A is as in Remark 6.6(i), by Theorem 6.9, we know that [70,
Theorem 3.5] holds true. Moreover,

(i)1 when ϕ is as in Remark 6.6(i)1, Theorem 6.9 was proved by Taibleson and
Weiss [100];

(i)2 when ϕ is as in Remark 6.6(i)2, Theorem 6.9 was obtained by Garcı́a-
Cuerva [43] for the case when n = 1.

(iii) When s = 0 (namely, when L
ϕ,1,s
A (Rn) = BMOϕ

A(R
n); see Remark 6.6(ii)), Theorem

6.9 goes back to [33, Lemma 2.4].

(iv) When ϕ is as in Remark 6.6(iii), Theorem 6.9 coincides with [12, p. 51, Theorem 8.3].

Corollary 6.1. Let ϕ be as in Definition 6.2. Then, for any q ∈ [1, [q(ϕ)]′) and s ∈ [m(ϕ), ∞)∩
Z+, Lϕ,q,s

A (Rn) and L
ϕ,1,m(ϕ)
A (Rn) coincide with equivalent quasi-norms, where q(ϕ) and m(ϕ)

are, respectively, as in (6.2) and (6.3).

Next, we present the characterizations of Hϕ
A(R

n) in terms of wavelets. Recall that
the following adapted anisotropic Musielak–Orlicz atoms and atomic Hardy spaces were
introduced in [74, Definition 4.1].

Definition 6.10. Let ϕ be as in Definition 6.2 and q(ϕ) and r(ϕ), respectively, as in (6.2)
and (6.27).

(i) An anisotropic triplet (ϕ, q, s) is said to be adapted admissible if q ∈ (q(ϕ)[r(ϕ)]′, ∞]
and s ∈ Z+ ∩ [m(ϕ), ∞) with m(ϕ) as in (6.3).
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(ii) For any given adapted admissible triplet (ϕ, q, s), a measurable function a on Rn is
called an adapted anisotropic Musielak–Orlicz (ϕ, q, s)-atom (shortly, a (ϕ, q, s)ad-
atom) if (ii)1 and (ii)3 of Definition 6.6 hold true and, instead of Definition 6.6(ii)2, a
satisfies

‖a‖Lq(Rn) ≤
|B|1/q

‖1B‖Lϕ(Rn)
.

(iii) For any given adapted admissible triplet (ϕ, q, s), the adapted anisotropic
Musielak–Orlicz atomic Hardy space Hϕ,q,s

ad,A(R
n) is defined to be the set of all

f ∈ S′(Rn) satisfying that there exist {λi}i∈N ⊂ C and a sequence of (ϕ, q, s)ad-
atoms, {ai}i∈N, supported, respectively, in {B(i)}i∈N ⊂ B such that

f = ∑
i∈N

λiai in S′(Rn),

∑
i∈N

ϕ
(

B(i), |λi| ‖1B(i)‖−1
Lϕ(Rn)

)
< ∞.

Moreover, for any f ∈ Hϕ,q,s
ad,A(R

n), let

‖ f ‖Hϕ,q,s
ad,A(R

n) := inf
{

Λ̃({λiai}i∈N)
}

with the infimum being taken over all the decompositions of f as above, where

Λ̃({λiai}i∈N) := inf

{
λ ∈ (0, ∞) : ∑

i∈N

ϕ

(
B(i),

|λi|
λ‖1B(i)‖Lϕ(Rn)

)
≤ 1

}
.

In [74, Theorem 4.2], the authors established a new atomic characterization of Hϕ
A(R

n)
as follows, which is different from the one obtained in [68, Theorem 40] and also plays a
key role in the proof of Theorem 6.11 below.

Theorem 6.10. Let (ϕ, q, s) be adapted admissible. Then

Hϕ
A(R

n) = Hϕ,q,s
ad,A(R

n)

with equivalent quasi-norms.

Remark 6.9. Recall that Li et al. [68, Theorem 40] also established an atomic characteri-
zation of Hϕ

A(R
n) (see also [60] for the case A = dIn×n). The size conditions of the atoms

used in [68] are as in Definition 6.6(ii)2, but the size conditions of atoms used in The-
orem 6.10 are as in Definition 6.10(ii). This is the difference between these two atomic
characterizations.
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For any L ∈N, let

Γ(L) := {(`, j, k) : ` ∈ {1, · · · , L}, j ∈ Z and k ∈ Zn} (6.29)

and, for any f ∈ L2(Rn), j ∈ Z, k ∈ Zn and x ∈ Rn,

f j,k(x) := bj/2 f
(

Ajx− k
)

. (6.30)

The following Definitions 6.11 and 6.12 are just, respectively, [12, p. 94, Definitions 4.1
and 4.2 and p. 84, Definition 1.3].

Definition 6.11. (i) Let H be a Hilbert space. A subset X ⊂ H is called a frame if there
exist two positive constants C and C̃ such that, for any f ∈ H,

C‖ f ‖H ≤
[

∑
g∈X
|〈 f , g〉|2

]1/2

≤ C̃‖ f ‖H. (6.31)

Moreover, a frame is said to be tight if (6.31) holds true with C = C̃.

(ii) Let L ∈ N. A tight frame multiwavelet is a finite sequence of L2(Rn) functions,
{ψ(`)}L

`=1, satisfying {ψ(`)
j,k : (`, j, k) ∈ Γ(L)} forms a tight frame with the constant

C = 1 for L2(Rn), where Γ(L) and C are, respectively, as in (6.29) and (6.31) and, for
any (`, j, k) ∈ Γ(L), ψ

(`)
j,k is as in (6.30) with f replaced by ψ(`).

Definition 6.12. Let r ∈ Z+. An r- regular function f is a Cr(Rn) function satisfying, for
any i ∈ N and multi-index α ∈ Zn

+ with |α| ≤ r, there exists a positive constant C(i,α),
depending on i and α, such that, for any x ∈ Rn,

|∂α f (x)| ≤ C(i,α)(1 + |x|)−i.

Furthermore, for any L ∈N, a tight frame multiwavelet {ψ(`)}L
`=1 is said to be r- regular

if, for any ` ∈ {1, · · · , L}, ψ(`) is an r-regular function.

Moreover, we can define an unconditional basis of Hϕ
A(R

n) in terms of r-regular tight
frame multiwavelets as follows.

Definition 6.13. Let ϕ be as in Definition 6.2, L ∈ N and r ∈ Z+. Assume that {ψ(`)}L
`=1

is an r-regular tight frame multiwavelet. The sequence {ψ(`)
j,k : (`, j, k) ∈ Γ(L)} is called

an unconditional basis of Hϕ
A(R

n) if, for any f ∈ Hϕ
A(R

n),

f = ∑
(`,j,k)∈Γ(L)

〈
f , ψ

(`)
j,k

〉
ψ
(`)
j,k in Hϕ

A(R
n), (6.32)

where the convergence is unconditional, namely, for an arbitrary permutation of Γ(L),
denoted by Γ̃(L), the equality (6.32), with Γ(L) replaced by Γ̃(L), also holds true.
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Remark 6.10. Let ϕ, r, L and {ψ(`)}L
`=1 be as in Definition 6.13. Then, by [12, p. 94,

Theorem 4.2] and [74, Proposition 4.14], we know that, for any (`, j, k) ∈ Γ(L), ψ
(`)
j,k ∈

L
ϕ,1,s
A (Rn). Thus, for any f ∈ Hϕ

A(R
n) ⊂ (L

ϕ,1,s
A (Rn))∗ and (`, j, k) ∈ Γ(L), 〈 f , ψ

(`)
j,k 〉

makes sense.

The following conclusion was obtained in [74, Theorem 25].

Theorem 6.11. Let ϕ be as in Definition 6.2 and r ∈N satisfy

q(ϕ)

i(ϕ)
− 1 <

(ln λ−)2

ln b ln λ+
r,

where q(ϕ) and i(ϕ) are, respectively, as in (6.2) and (6.1). Assume that {ψ(`)}L
`=1 with L ∈ N

is an r-regular tight frame multiwavelet.

(i) If, for any ` ∈ {1, · · · , L}, the function ψ(`) has the vanishing moments up to the order
m(ϕ) which is as in (6.3), then, for any f ∈ Hϕ

A(R
n), (6.32) with the convergence being

unconditional holds true, and

‖ f ‖Hϕ
A(R

n) ∼

∥∥∥∥∥∥∥
 ∑
(`,j,k)∈Γ(L)

∣∣∣〈 f , ψ
(`)
j,k

〉∣∣∣2 ∣∣∣ψ(`)
j,k

∣∣∣2
1/2

∥∥∥∥∥∥∥
Lϕ(Rn)

∼

∥∥∥∥∥∥∥
 ∑
(`,j,k)∈Γ(L)

∣∣∣〈 f , ψ
(`)
j,k

〉∣∣∣2 ∣∣∣(1E`
)j,k

∣∣∣2
1/2

∥∥∥∥∥∥∥
Lϕ(Rn)

(6.33)

with the positive equivalence constants independent of f , where, for any ` ∈ {1, · · · , L},
E` is a bounded measurable subset of Rn with |E`| > 0 and, for any j ∈ Z and k ∈ Zn,
(1E`

)j,k is as in (6.30).

(ii) If, with the assumption as in (i), {ψ(`)}L
`=1 is an orthonormal multiwavelet, then, for any

{c(`)j,k }(`,j,k)∈Γ(L) ⊂ R satisfying

 ∑
(`,j,k)∈Γ(L)

∣∣∣c(`)j,k

∣∣∣2 ∣∣∣ψ(`)
j,k

∣∣∣2
1/2

∈ Lϕ(Rn),

there exists a unique f ∈ Hϕ
A(R

n) such that, for any (`, j, k) ∈ Γ(L), c(`)j,k = 〈 f , ψ
(`)
j,k 〉 and

(6.33) holds true.

Remark 6.11. (i) When A := dIn×n for some d ∈ R with |d| ∈ (1, ∞), the space
Hϕ

A(R
n) becomes the classical Musielak–Orlicz Hardy space Hϕ(Rn) (see [60]).
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In this case, by Theorem 6.11, we obtain a kind of wavelet characterizations of
Hϕ(Rn). Recall that, very recently, Fu and Yang [42] also established another sort of
wavelet characterizations of Hϕ(Rn). We should point out that the wavelet system
used in [42] to characterize the space Hϕ(Rn) is required to have compact supports;
however, this requirement is not needed for tight frame multiwavelet used in The-
orem 6.11 to characterize the space Hϕ

A(R
n).

(ii) Let p ∈ (0, 1]. If, for any x ∈ Rn and t ∈ (0, ∞), ϕ(x, t) := tp, then the space
Hϕ

A(R
n) becomes the anisotropic Hardy space Hp

A(R
n) of Bownik (see [12]) and

q(ϕ)/i(ϕ) = 1/p. In this case, Theorem 6.11 goes back to [12, p. 109, Theorem 6.7].

(iii) We point out that the boundedness of maximal θ-operators, defined by the way
similar to (4.29), from Hϕ

A(R
n) to Lϕ(Rn) is still unknown. In addition, a remark

similar to Remark 4.5(iii) should be also made for the space Hϕ
A(R

n).

(iv) Let φ : Rn × [0, ∞) → [0, ∞) be a generalized quasi-Φ-function (see [48, Defini-
tion 2.1]). Recall that Ho [48] introduced a kind of Hardy–Musielak–Orlicz spaces
Hφ(Rn), which includes the classical variable Hardy space (see [23,87]) as a special
case. Observe that, formally, the anisotropic Musielak–Orlicz Hardy space Hϕ

A(R
n)

includes the anisotropic variable Hardy space Hp(·)
A (Rn) as a special case, but ac-

tually they cannot cover each other due to different assumptions, respectively, on
ϕ and p(·) (see Remark 6.1(ii)). An interesting and challenging question is to find
some reasonable assumptions on ϕ such that the real-variable theory on Hϕ

A(R
n)

completely covers the corresponding one of the space Hp(·)
A (Rn) as a special case.
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