Hausdorff Dimension of a Class of Weierstrass Functions

Huojun Ruan^{*} and Na Zhang

School of Mathematical Sciences, Zhejiang University, Hangzhou, Zhejiang 310027, China

Received 20 September 2020; Accepted (in revised version) 5 November 2020

Dedicated to Professor Weiyi Su on the occasion of her 80th birthday

Abstract. It was proved by Shen that the graph of the classical Weierstrass function $\sum_{n=0}^{\infty} \lambda^n \cos(2\pi b^n x)$ has Hausdorff dimension $2 + \log \lambda / \log b$, for every integer $b \ge 2$ and every $\lambda \in (1/b, 1)$ [Hausdorff dimension of the graph of the classical Weierstrass functions, Math. Z., 289 (2018), 223–266]. In this paper, we prove that the dimension formula holds for every integer $b \ge 3$ and every $\lambda \in (1/b, 1)$ if we replace the function cos by sin in the definition of Weierstrass function. A class of more general functions are also discussed.

Key Words: Hausdorff dimension, Weierstrass function, SRB measure. **AMS Subject Classifications**: 28A80

1 Introduction

Weierstrass functions are classical fractal functions. The non-differentiability of these functions were studied by Weierstrass and Hardy [2]. Recently, Shen [7] proved that the graph of the classical Weierstrass function $\sum_{n=0}^{\infty} \lambda^n \cos(2\pi b^n x)$ has Hausdorff dimension $2 + \log \lambda / \log b$, for every integer $b \ge 2$ and every $\lambda \in (1/b, 1)$, which solved a long-standing conjecture. Some relevant results can be found in [1, 3–5, 8]. Naturally, we want to study the Hausdorff dimension of the graph of Weierstrass functions with the following form:

$$W_{\lambda,b, heta}(x) = \sum_{n=0}^\infty \lambda^n \cos(2\pi b^n x + heta), \quad x \in \mathbb{R},$$

where $b \ge 2$ is an integer, $\lambda \in (1/b, 1)$ and $\theta \in \mathbb{R}$.

Denote $D_{\lambda,b} = 2 + \log \lambda / \log b$. Denote by dim_H $\Gamma W_{\lambda,b,\theta}$ the Hausdorff dimension of the graph of $W_{\lambda,b,\theta}$. Our main result is:

http://www.global-sci.org/ata/

482

©2020 Global-Science Press

^{*}Corresponding author. Email addresses: ruanhj@zju.edu.cn (H. J. Ruan), 21535049@zju.edu.cn (N. Zhang)

Theorem 1.1. If $\theta = -\pi/2$, then $\dim_{\mathrm{H}} \Gamma W_{\lambda,b,\theta} = D_{\lambda,b}$ for every integer $b \ge 3$ and every $\lambda \in (1/b, 1)$. If the integer $b \ge 7$, then the dimension formula holds for every $\lambda \in (1/b, 1)$ and every $\theta \in \mathbb{R}$.

The paper is organized as follows. In next section, we present necessary notations and properties introduced by Shen [7] and Tsujii [8]. In Sections 3 and 4, we prove the main result.

2 Preliminaries

In this section, we present necessary notations and properties introduced in [7,8]. Denote $\gamma = 1/(\lambda b)$, $\phi_{\theta}(x) = \cos(2\pi x + \theta)$, and $\psi_{\theta}(x) = \phi'_{\theta}(x)$. Let $\mathcal{A} = \{0, 1, \dots, b-1\}$. Given $x \in \mathbb{R}$ and $\mathbf{u} = \{u_n\}_{n=1}^{\infty} \in \mathcal{A}^{\mathbb{Z}^+}$, we define

$$S_{\theta}(x,\mathbf{u}) = \sum_{n=1}^{\infty} \gamma^{n-1} \psi_{\theta}(x(\mathbf{u}|_n)),$$

where $\mathbf{u}|_n = (u_1, \cdots, u_n)$ and

$$x(\mathbf{u}|_n) = \frac{x}{b^n} + \frac{u_1}{b^n} + \frac{u_2}{b^{n-1}} + \dots + \frac{u_n}{b}$$

For simplicity, we will use $S(x, \mathbf{u})$ to denote $S_{\theta}(x, \mathbf{u})$ if no confusion occurs.

Given $\varepsilon, \delta > 0$. Two words $\mathbf{i}, \mathbf{j} \in \mathcal{A}^{\mathbb{Z}^+}$ are called (ε, δ) -*tangent* at a point $x_0 \in \mathbb{R}$ if

$$|S(x_0,\mathbf{i}) - S(x_0,\mathbf{j})| \le \varepsilon$$
 and $|S'(x_0,\mathbf{i}) - S'(x_0,\mathbf{j})| \le \delta$

Let $E(q, x_0; \varepsilon, \delta)$ denote the set of pairs $(\mathbf{k}, \mathbf{l}) \in \mathcal{A}^q \times \mathcal{A}^q$ for which there exist $\mathbf{u}, \mathbf{v} \in \mathcal{A}^{\mathbb{Z}^+}$ such that **ku** and **lv** are (ε, δ) -tangent at x_0 . Let

$$e(q, x_0; \varepsilon, \delta) = \max_{\mathbf{k} \in \mathcal{A}^{\mathbb{Z}^+}} \#\{\mathbf{l} \in \mathcal{A}^q : (\mathbf{k}, \mathbf{l}) \in E(q, x_0; \varepsilon, \delta)\},\$$

$$E(q, x_0) = \bigcap_{\varepsilon > 0} \bigcap_{\delta > 0} E(q, x_0; \varepsilon, \delta),\$$

$$e(q, x_0) = \max_{\mathbf{k} \in \mathcal{A}^q} \#\{\mathbf{l} \in \mathcal{A}^q : (\mathbf{k}, \mathbf{l}) \in E(q, x_0)\}.$$

For $J \subset \mathbb{R}$, define

$$E(q, J; \varepsilon, \delta) = \bigcup_{x_0 \in J} E(q, x_0; \varepsilon, \delta),$$

$$E(q, J) = \bigcap_{\varepsilon > 0} \bigcap_{\delta > 0} E(q, J; \varepsilon, \delta),$$

$$e(q, J) = \max_{\mathbf{k} \in \mathcal{A}^q} \#\{\mathbf{l} \in \mathcal{A}^q : (\mathbf{k}, \mathbf{l}) \in E(q, J)\}.$$

Tsujii's notation e(q) is defined as

$$e(q) = \lim_{p \to \infty} \max_{k=0}^{b^p - 1} e\left(q, \left[\frac{k}{b^p}, \frac{k+1}{b^p}\right]\right).$$

It is well-known that $e(q) = \max_{x \in [0,1)} e(q, x)$. For details, please see [7].

Now we define another useful function $\sigma(q)$ introduced by Shen [7]. A measurable function $\omega : [0,1) \rightarrow [0,\infty)$ is called a weight function if $\|\omega\|_{\infty} < \infty$ and $\|1/\omega\|_{\infty} < \infty$. A *testing function of order q* is a measurable function $V : [0,1) \times \mathcal{A}^q \times \mathcal{A}^q \rightarrow [0,\infty)$. A testing function of order *q* is called admissible if there exist $\varepsilon > 0$ and $\delta > 0$ such that the following hold: For any $x \in [0,1)$, if $(\mathbf{u}, \mathbf{v}) \in E(q, x; \varepsilon, \delta)$, then

$$V(x, \mathbf{u}, \mathbf{v})V(x, \mathbf{v}, \mathbf{u}) \geq 1.$$

Given a weight function ω and an admissible testing function V of order q, we define a new measurable function $\Sigma_{V,\omega}^q$: $[0,1) \to \mathbb{R}$ as follows: for each $x \in [0,1)$, let

$$\Sigma_{V,\omega}^q(x) = \sup\left\{\frac{\omega(x)}{\omega(x(\mathbf{u}))}\sum_{\mathbf{v}\in\mathcal{A}^q}V(x,\mathbf{u},\mathbf{v}):\,\mathbf{u}\in\mathcal{A}^q\right\}.$$

Define

$$\sigma(q) = \inf \|\Sigma_{V,\omega}^q\|_{\infty},$$

where the infimum is taken over all weight functions ω and admissible testing functions *V* of order *q*.

Let \mathbb{P} be the Bernoulli measure on $\mathcal{A}^{\mathbb{Z}^+}$ with uniform probabilities $\{1/b, 1/b, \dots, 1/b\}$. For each $x \in \mathbb{R}$, define a Borel probability measure m_x on \mathbb{R} by

$$m_x(A) = \mathbb{P}(\{\mathbf{v}: S(x, \mathbf{v}) \in A\}), \quad A \subset \mathbb{R}.$$

Then m_x 's are the conditional measures along vertical fibers of the unique SRB measure ν of the skew product map $T : \mathbb{R}/\mathbb{Z} \times \mathbb{R} \to \mathbb{R}/\mathbb{Z} \times \mathbb{R}$,

$$T(x,y) = (bx \mod 1, \gamma y + \psi_{\theta}(x)).$$

That is, the SRB measure ν can be defined by

$$\nu(B) = \int_0^1 m_x(B_x) dx$$

for each Borel set $B \subset \mathbb{R}/\mathbb{Z} \times \mathbb{R}$, where $B_x = \{y \in \mathbb{R} : (x, y) \in B\}$.

We will use the following two theorems to prove our main result.

Theorem 2.1 ([7]). If there exists $q \in \mathbb{Z}^+$, such that $\sigma(q) < (\gamma b)^q$, then the SRB measure ν is absolutely continuous with respect to the Lebesgue measure on $\mathbb{R}/\mathbb{Z} \times \mathbb{R}$ with square integrable density. In particular, for Lebesgue a.e. $x \in [0,1)$, m_x is absolutely continuous with respect to the Lebesgue measure on \mathbb{R} and with square integrable density. As a result, dim_H $\Gamma W_{\lambda,b,\theta} = D_{\lambda,b}$.

Theorem 2.2 ([7]). $\sigma(q) \le e(q)$.

We remark that Theorem 2.1 strengths a similar result by Tsujii [8], and the dimension formula dim_H $\Gamma W_{\lambda,b,\theta} = D_{\lambda,b}$ follows from Ledrappier's theorem [6]. For details, please see [7].

The following result can be derived from the definitions of E(q, x) and $E(q, J; \varepsilon, \delta)$. The proof for general case is same as the special case $\theta = 0$, which is presented in [7]. Thus we omit the details.

Lemma 2.1 ([7]). Let $x_0 \in \mathbb{R}$, and $\mathbf{k}, \mathbf{l} \in \mathcal{A}^q$. Then

- (1) $(\mathbf{k}, \mathbf{l}) \in E(q, x_0)$ if and only if there exist \mathbf{u} and \mathbf{v} in $\mathcal{A}^{\mathbb{Z}^+}$ such that $F(x) = S(x, \mathbf{ku}) S(x, \mathbf{lv})$ has a multiple zero at x_0 , that is, $F(x_0) = F'(x_0) = 0$.
- (2) If $(\mathbf{k}, \mathbf{l}) \notin E(q, x_0)$, then there is a neighborhood U of x_0 and $\varepsilon, \delta > 0$ such that $(\mathbf{k}, \mathbf{l}) \notin E(q, U; \varepsilon, \delta)$.
- (3) For any compact $K \subset \mathbb{R}$, if $(\mathbf{k}, \mathbf{l}) \notin E(q, K)$, then there exist $\varepsilon, \delta > 0$, such that $(\mathbf{k}, \mathbf{l}) \notin E(q, K; \varepsilon, \delta)$.
- (4) For any $\varepsilon > \varepsilon' > 0$, $\delta > \delta' > 0$, there exists $\eta > 0$, such that if $|x x_0| < \eta$, $(\mathbf{k}, \mathbf{l}) \notin E(q, x_0; \varepsilon, \delta)$, then $(\mathbf{k}, \mathbf{l}) \notin E(q, x; \varepsilon', \delta')$.

The following three lemmas are very useful in the proof of the results in [7]. They still hold in our case.

Lemma 2.2 ([7]). Assume that for all $x \in [0, 1)$, $E(q, x) \neq A^q \times A^q$. Then

$$\sigma(q) \le b^q - 2 + 2/\alpha,$$

where $\alpha = \alpha(b,q) > 1$ satisfies $2 - \alpha = (b^q - 2)\alpha(\alpha - 1)$.

Lemma 2.3 ([7]). *Let* $q \in \mathbb{Z}^+$ *. Suppose that there are constants* $\varepsilon > 0$ *and* $\delta > 0$ *and* $K \subset [0, 1)$ *with the following properties:*

- (1) For $x \in K$, $e(q, x; \varepsilon, \delta) = 1$ and for $x \in [0, 1) \setminus K$, $e(q, x; \varepsilon, \delta) \leq 2$;
- (2) If $(\mathbf{u}, \mathbf{v}) \in E(q, x; \varepsilon, \delta)$ for some $x \in [0, 1) \setminus K$ and $u \neq v$, then both $x(\mathbf{u})$ and $x(\mathbf{v})$ belong to K.

Then $\sigma(q) \leq \sqrt{2}$.

Lemma 2.4 ([7]). *Let* $q \in \mathbb{Z}^+$ *. Suppose that there are constants* $\varepsilon > 0$ *and* $\delta > 0$ *and* $K \subset [0, 1]$ *with the following properties:*

- (1) For $x \in K$, $e(q, x; \varepsilon, \delta) = 1$ and for $x \in [0, 1) \setminus K$, $e(q, x; \varepsilon, \delta) \leq 2$;
- (2) If $(\mathbf{u}, \mathbf{v}) \in E(q, x; \varepsilon, \delta)$ for some $x \in [0, 1) \setminus K$ and $\mathbf{u} \neq \mathbf{v}$, then either $x(\mathbf{u}) \in K$ or $x(\mathbf{v}) \in K$.

Then $\sigma(q) \le (\sqrt{5} + 1)/2$ *.*

3 The case when *b* is large

If e(1) = 1, then form $\gamma b = 1/\lambda > 1$, we have $e(1) < \gamma b$. Thus, we always assume that $e(1) \ge 2$. From $e(1) = \max_{x \in [0,1]} e(1,x)$, there exists $x^* \in [0,1)$, such that $e(1,x^*) = e(1)$. We will fix x^* in the sequel of the paper.

From definition, there exists $k \in A$, such that $\#\{\ell \in A : (k, \ell) \in E(1, x^*)\} = e(1)$. Let $\ell^1, \ell^2, \dots, \ell^{e(1)}$ be all elements in A such that $(k, \ell^{(i)}) \in E(1, x^*)$, and

$$\sin(2\pi x^1 + \theta) \le \sin(2\pi x^2 + \theta) \le \cdots \le \sin(2\pi x^{e(1)} + \theta),$$

where $x^{i} = (x^{*} + \ell^{i})/b$, $i = 1, \cdots, e(1)$.

Similarly as Lemma 3.2 and Lemma 3.3 in [7], we have the following two lemmas. Since the proof are same as that of in [7], we omit the details again.

Lemma 3.1. *If* $(k, \ell) \in E(1, x^*)$ *, then*

$$\left|\sin\left(\frac{2\pi(x^*+k)}{b}+\theta\right)-\sin\left(\frac{2\pi(x^*+\ell)}{b}+\theta\right)\right| \le \frac{2\gamma}{1-\gamma},\tag{3.1a}$$

$$\left|\cos\left(\frac{2\pi(x^*+k)}{b}+\theta\right)-\cos\left(\frac{2\pi(x^*+\ell)}{b}+\theta\right)\right| \le \frac{2\gamma}{b-\gamma},\tag{3.1b}$$

$$4\sin^2\frac{\pi(k-\ell)}{b} \le \left(\frac{2\gamma}{1-\gamma}\right)^2 + \left(\frac{2\gamma}{b-\gamma}\right)^2.$$
(3.1c)

Lemma 3.2. Under the above circumstances, and with the assumption that $1 \le i < j \le e(1)$, the followings hold:

1. If $\ell^i = k$ or $\ell^j = k$, then $\sin(2\pi x^j + \theta) - \sin(2\pi x^i + \theta) \ge \frac{2\beta_0(b,\gamma)}{b}$,

2.
$$\sin(2\pi x^j + \theta) - \sin(2\pi x^i + \theta) \ge \frac{2\beta_1(b,\gamma)}{b}$$

3. If
$$\ell^i - \ell^j \neq \pm 1 \mod b$$
, then $\sin(2\pi x^j + \theta) - \sin(2\pi x^i + \theta) \geq \frac{2\beta_2(b,\gamma)}{b}$.

where

$$\beta_0(b,\gamma) = \sqrt{\max\left\{0, \left(b\sin\frac{\pi}{b}\right)^2 - \frac{\gamma^2 b^2}{(b-\gamma)^2}\right\}},$$

$$\beta_1(b,\gamma) = \sqrt{\max\left\{0, \left(b\sin\frac{\pi}{b}\right)^2 - \frac{4\gamma^2 b^2}{(b-\gamma)^2}\right\}},$$

$$\beta_2(b,\gamma) = \sqrt{\max\left\{0, \left(b\sin\frac{2\pi}{b}\right)^2 - \frac{4\gamma^2 b^2}{(b-\gamma)^2}\right\}}.$$

Using these two lemmas and lemmas in Section 2, we can prove the following theorem, which implies that Theorem 1.1 holds if $b \ge 7$.

Theorem 3.1. *1. If* $b \ge 7$ *, then* $e(1) < \gamma b$ *.*

- 2. If b = 4, 5, 6, then either e(1) = 2 or $e(1) < \gamma b$.
- 3. If b = 3, then either $e(1) \le 2$ or $\sigma(1) < \gamma b$.

Proof. Using the exactly same method as in [7], we can obtain the following result: if $b \ge 4$, then either e(1) = 2 or $e(1) < \gamma b$; if b = 3, then either $e(1) \le 2$ or $\sigma(1) < \gamma b$. Thus, we only need to prove the theorem holds if $b \ge 7$ and e(1) = 2. If $\gamma b > 2$, then $\gamma b > e(1)$. Thus it suffices to show it is impossible that e(1) = 2 and $\gamma b \le 2$.

We will prove this by contradiction. Assume that e(1) = 2 and $\gamma b \le 2$, then $(\ell^1, \ell^2) \in E(1, x^*)$. From Lemma 3.1 and $\gamma \le 2/b$, we have

$$4\sin^2 \frac{\pi(\ell^2 - \ell^1)}{b} \le \left(\frac{2\gamma}{1 - \gamma}\right)^2 + \left(\frac{2\gamma}{b - \gamma}\right)^2$$
$$\le \left(\frac{2 \cdot (2/b)}{1 - 2/b}\right)^2 + \left(\frac{2 \cdot (2/b)}{b - 2/b}\right)^2 = \frac{16}{(b - 2)^2} + \frac{16}{(b^2 - 2)^2}.$$

Thus

$$\sin^2 \frac{\pi}{b} \le \frac{4}{(b-2)^2} + \frac{4}{(b^2-2)^2}.$$
(3.2)

Consider the function $g(t) = g_1(t) - g_2(t)$, where

$$g_1(t) = t^2 \sin^2(\pi/t)$$
 and $g_2(t) = \frac{4t^2}{(t-2)^2} + \frac{4t^2}{(t^2-2)^2}$

It is easy to check that g_1 is increasing on $(2, +\infty)$ while g_2 is decreasing on $(2, +\infty)$. Thus, if $b \ge 7$, we have $g(b) \ge g(7) > 9 - 8 > 0$, which implies that (3.2) does not hold for $b \ge 7$.

4 **Proof of Theorem 1.1: the case** b = 3, 4, 5, 6

In this section, we will restrict $\theta = -\pi/2$. We will show the following result under this restriction: for b = 3, 4, 5, 6, if e(1) = 2 then $\sigma(1) < \gamma b$. Combining this result with Theorem 3.1, we have either $e(1) < \gamma b$ or $\sigma(1) < \gamma b$ for b = 3, 4, 5, 6. Thus Theorem 1.1 holds for this case.

Using the same method as in the proof of Lemma 4.1 in [7], we have the following lemma. We omit the details.

Lemma 4.1. Assume that $0 \le k < \ell < b$ satisfying $(k, \ell) \in E(1, x^*)$. Then for any $\kappa \in (0, 1)$, one of the followings holds: either

$$\left|\sin\left(\frac{2\pi(x^*+k)}{b}\right) - \sin\left(\frac{2\pi(x^*+\ell)}{b}\right)\right| \le \frac{2\gamma\sqrt{1-\kappa^2}}{b} + \frac{2\gamma^2}{b(b-\gamma)},\tag{4.1}$$

or

$$\cos\left(\frac{2\pi(x^*+k)}{b}\right) - \cos\left(\frac{2\pi(x^*+\ell)}{b}\right) \le 2\kappa\gamma + \frac{2\gamma^2}{1-\gamma}.$$
(4.2)

Notice that $\theta = -\pi/2$. For $x \in \mathbb{R}$ and $\mathbf{i} = \{i_n\}_{n=1}^{\infty} \in \mathcal{A}^{\mathbb{Z}^+}$, we have

$$S(x, \mathbf{i}) = \sum_{n=1}^{\infty} \gamma^{n-1} \psi(x_n) = 2\pi \sum_{n=1}^{\infty} \gamma^{n-1} \cos\left(2\pi \left(\frac{x}{b^n} + \frac{i_1}{b^n} + \dots + \frac{i_n}{b}\right)\right).$$
(4.3)

Lemma 4.2. If $x \in \mathbb{R}$ and $\mathbf{i} = \{i_n\}_{n=1}^{\infty}$. Then the following equalities hold:

$$S(x, \mathbf{i}) = S(1 - x, \mathbf{i}'),$$
 (4.4a)

$$S'(x, \mathbf{i}) = -S'(1 - x, \mathbf{i}'),$$
 (4.4b)

where $\mathbf{i}' = \{i'_n\}_{n=1}^{\infty}, i'_n = b - 1 - i_n$.

Proof. Notice that

$$\cos\left(2\pi\left(\frac{1-x}{b^n} + \frac{b-1-i_1}{b^n} + \dots + \frac{b-1-i_n}{b}\right)\right)$$
$$= \cos\left(2\pi\left(-\left(\frac{x}{b^n} + \frac{i_1}{b^n} + \dots + \frac{i_n}{b}\right) + \left(\frac{1}{b^n} + \frac{b-1}{b^n} + \dots + \frac{b-1}{b}\right)\right)\right)$$
$$= \cos\left(2\pi\left(-\left(\frac{x}{b^n} + \frac{i_1}{b^n} + \dots + \frac{i_n}{b}\right) + 1\right)\right)$$
$$= \cos\left(2\pi\left(\frac{x}{b^n} + \frac{i_1}{b^n} + \dots + \frac{i_n}{b}\right)\right).$$

Thus (4.4a) holds. From

$$S'(x,\mathbf{i}) = \frac{-4\pi^2}{b} \sum_{n=1}^{\infty} \left(\frac{\gamma}{b}\right)^{n-1} \sin\left(2\pi\left(\frac{x}{b^n} + \frac{i_1}{b^n} + \dots + \frac{i_n}{b}\right)\right),$$

we can see that (4.4b) holds.

From Lemma 4.2, we know that $(k, \ell) \in E(1, x^*)$ is equivalent to $(b - 1 - k, b - 1 - \ell) \in E(1, 1 - x^*)$. Thus $e(1, x^*) = e(1, 1 - x^*)$. Hence, we may assume that $x^* \in [0, \frac{1}{2}]$.

4.1 The case b = 6

Proposition 4.1. Assume b = 6 and e(1) = 2. Then $\sigma(1) < 6\gamma$.

Proof. It is clear that $6\gamma > 6 \cdot (1/3) = e(1) \ge \sigma(1)$ if $\gamma > \frac{1}{3}$. Thus we may assume that $\gamma \le \frac{1}{3}$. From e(1) = 2, there exist $0 \le k < \ell < 6$, such that $(k, \ell) \in E(1, x^*)$.

From $(k, \ell) \in E(1, x^*)$ and Lemma 3.1, we have

$$\left|\sin\left(\frac{2\pi(x^*+k)}{6}\right) - \sin\left(\frac{2\pi(x^*+\ell)}{6}\right)\right| \le \frac{2\gamma}{6-\gamma} \le \frac{2\cdot(1/3)}{6-(1/3)} = \frac{2}{17},\tag{4.5a}$$

$$4\sin^2\frac{\pi(\ell-k)}{6} \le \left(\frac{2\gamma}{1-\gamma}\right)^2 + \left(\frac{2\gamma}{6-\gamma}\right)^2 \le 1^2 + (2/17)^2 < 2.$$
(4.5b)

If $\ell - k \neq \pm 1 \mod 6$, then $4\sin^2 \frac{\pi(\ell-k)}{6} \ge 4\sin^2 \frac{2\pi}{6} = 3$, which contradicts with (4.5b). Thus $\ell - k = \pm 1 \mod 6$. Combining this with $k < \ell$, we can see that $\ell - k = 1$ or 5.

Let $\kappa = 0.98$. We will show that the inequality (4.2) does not hold. In fact, if (4.2) holds, then

$$\left|\cos\left(\frac{2\pi(x^*+k)}{6}\right) - \cos\left(\frac{2\pi(x^*+\ell)}{6}\right)\right| \le 2 \cdot 0.98 \cdot (1/3) + \frac{2 \cdot (1/3)^2}{1 - 1/3} < 0.987.$$

Combining this with (4.5a), we have

$$1 = 4\sin^2\frac{\pi}{6} = 4\sin^2\left(\frac{\pi(\ell-k)}{6}\right) < (2/17)^2 + 0.987^2 < 0.989$$

Contradiction! Thus the inequality (4.1) holds. Let $y^* = \pi (2x^* + k + \ell)/6$. Then $y^* \in [0, 5\pi/3]$ and

$$\begin{aligned} |\cos(y^*)| &= \left| 2\sin\frac{\pi}{6}\cos(y^*) \right| = \left| \sin\left(\frac{2\pi(x^*+k)}{6}\right) - \sin\left(\frac{2\pi(x^*+\ell)}{6}\right) \right| \\ &\leq \frac{2\cdot(1/3)\cdot\sqrt{1-0.98^2}}{6} + \frac{2\cdot(1/3)^2}{6\cdot(6-1/3)} < 0.029 < \cos(49\pi/100). \end{aligned}$$

Thus $y^* \in (49\pi/100, 51\pi/100) \cup (149\pi/100, 151\pi/100)$.

- **Case 1.** $y^* \in (49\pi/100, 51\pi/100)$. In this case, $2x^* + k + \ell \in (294/100, 306/100)$. If $k + 1 = \ell$, then $x^* + k \in (97/100, 103/100)$. Since $x^* \in [0, \frac{1}{2}]$, we have $(k, \ell) = (1, 2)$ and $x^* \in [0, 3/100)$. If $k + 5 = \ell$, from $x^* \ge 0$ and $k \ge 0$, we have $2x^* + 2k + 5 \ge 5 > 306/100$, a contradiction!
- **Case 2.** $y^* \in (149\pi/100, 151\pi/100)$. In this case, $2x^* + k + \ell \in (894/100, 906/100)$. If $k + 1 = \ell$, then $x^* + k \in (397/100, 403/100)$. Since $x^* \in [0, \frac{1}{2}]$, we have (k, l) = (4, 5) and $x^* \in [0, 3/100)$. If $k + 5 = \ell$, we must have k = 0 and $\ell = 5$. Thus, from $x^* \in [0, \frac{1}{2}]$, we can obtain $2x^* + 2k + 5 \le 6 < 894/100$, a contradiction!

From Case 1 and Case 2, we can see that in the case that $\gamma \leq \frac{1}{3}$, if $0 \leq k < l < 6$ satisfying $(k, l) \in E(1, x^*)$, then $0 \leq x^* < 3/100$, and (k, l) = (1, 2) or (k, l) = (4, 5).

From above arguments, e(1, x) = 1 if $x \in [3/100, 1/2]$. Using the fact that e(1, x) = e(1, 1 - x), we also have e(1, x) = 1 if $x \in [1/2, 97/100]$.

Let K = [3/100, 97/100]. Then e(1, K) = 1 and $e(1, [0, 1)) \le 2$. From Lemma 2.1(3), there exist $\varepsilon > 0, \delta > 0$, such that $e(1, x; \varepsilon, \delta) = 1$ if $x \in K$, and $e(1, x; \varepsilon, \delta) \le 2$ if $x \in [0, 1) \setminus K$.

In the case that $x \in [0, 1/2] \setminus K$, if $(k, \ell) = (1, 2)$, then $x(2) = (x + 2)/6 \subseteq K$; if $(k, \ell) = (4, 5)$, then $x(4) = (x + 4)/6 \subseteq K$. Using the symmetry (Lemma 4.2), we know that the conditions of Lemma 2.4 hold for q = 1. Thus $\sigma(1) \leq (\sqrt{5} + 1)/2$.

If $\gamma > (\sqrt{5} + 1)/12$, then $6\gamma > \sigma(1)$. Thus, it suffices to show it is impossible that $\gamma \le (\sqrt{5} + 1)/12$ and e(1) = 2. In fact, if this holds, then from Lemma 3.1,

$$4\sin^{2}\left(\frac{\pi(\ell-k)}{6}\right) \leq \left(\frac{2\gamma}{6-\gamma}\right)^{2} + \left(\frac{2\gamma}{1-\gamma}\right)^{2}$$
$$\leq \left(\frac{(\sqrt{5}+1)/6}{6-(\sqrt{5}+1)/12}\right)^{2} + \left(\frac{(\sqrt{5}+1)/6}{1-(\sqrt{5}+1)/12}\right)^{2} \leq 0.56 < 4\sin^{2}\left(\frac{\pi}{6}\right),$$

which contradicts with $k \neq \ell$.

4.2 The case b = 5

Proposition 4.2. Assume b = 5 and e(1) = 2. Then $\sigma(1) < 5\gamma$.

Proof. If $\gamma > 2/5$, then $5\gamma > 2 = e(1) \ge \sigma(1)$. Thus we may assume that $\gamma \le \frac{2}{5}$. From e(1) = 2, there exist $0 \le k < \ell < 5$ such that $(k, \ell) \in E(1, x^*)$. Now we will show that $x^* \in (3/20, 7/20)$ and $(k, \ell) = (3, 4)$.

In fact, from $(k, \ell) \in E(1, x^*)$ and Lemma 3.1,

$$\left|\sin\left(2\pi\frac{x^{*}+k}{b}\right) - \sin\left(2\pi\frac{x^{*}+\ell}{b}\right)\right| \le \frac{2\gamma}{5-\gamma} \le \frac{2\times\frac{2}{5}}{5-\frac{2}{5}} = \frac{4}{23},$$
$$4\sin^{2}\left(\frac{\pi(\ell-k)}{5}\right) \le \left(\frac{2\gamma}{1-\gamma}\right)^{2} + \left(\frac{2\gamma}{5-\gamma}\right)^{2} \le \left(\frac{2\times\frac{2}{5}}{1-\frac{2}{5}}\right)^{2} + \left(\frac{2\times\frac{2}{5}}{5-\frac{2}{5}}\right)^{2} < 2$$

Assume that $\ell - k \neq \pm 1 \mod 5$. Then $\ell - k \in \{2,3\}$. Thus $4\sin^2(\pi(k-\ell)/5) \geq 4\sin^2(2\pi/5) > 3.618$, a contradiction. Thus $\ell - k = \pm 1 \mod 5$. Since $\ell > k$, we have $\ell - k = 1$ or $\ell - k = 4$.

Let $\kappa = \sqrt{2}/2$. We will show that inequality (4.2) in Lemma 4.1 does not hold. In fact, if (4.2) holds, then

$$1.38 < 4\sin^{2}\left(\frac{\pi}{5}\right) = 4\sin^{2}\left(\frac{\pi(k-\ell)}{5}\right)$$
$$= \left|\sin\left(2\pi\frac{x^{*}+k}{5}\right) - \sin\left(2\pi\frac{x^{*}+\ell}{5}\right)\right|^{2} + \left|\cos\left(2\pi\frac{x^{*}+k}{5}\right) - \cos\left(2\pi\frac{x^{*}+\ell}{5}\right)\right|^{2}$$
$$\leq \left(\frac{4}{23}\right)^{2} + \left(2 \times \frac{\sqrt{2}}{2} \times \frac{2}{5} + \frac{2 \times (2/5)^{2}}{1 - \frac{2}{5}}\right)^{2} < \left(\frac{4}{23}\right)^{2} + (1.1)^{2} < 1.3,$$

a contradiction. Thus the inequality (4.1) in Lemma 4.1 holds. Let $y^* = \pi (2x^* + k + \ell)/5$. We have

$$\begin{aligned} \left| 2\cos(y^*)\sin\left(\frac{\pi}{5}\right) \right| &= \left| 2\cos(y^*)\sin\left(\frac{\pi(\ell-k)}{5}\right) \right| \\ &= \left| \sin\left(2\pi\frac{x^*+k}{5}\right) - \sin\left(2\pi\frac{x^*+\ell}{5}\right) \right| \\ &\leq \frac{2\times\frac{2}{5}\times\sqrt{1-(\frac{\sqrt{2}}{2})^2}}{5} + \frac{2\times(\frac{2}{5})^2}{5\times(5-\frac{2}{5})} < 0.128 \end{aligned}$$

Thus

$$|\cos(y^*)| \le \frac{0.128}{2\sin(\pi/5)} < 0.11 < \cos\left(\frac{23\pi}{50}\right)$$

Since $y^* \in [0, 8\pi/5]$, we have $y^* \in (23\pi/50, 27\pi/50) \cup (73\pi/50, 77\pi/50)$.

- **Case 1.** $y^* \in (23\pi/50, 27\pi/50)$. In this case, $2x^* + k + \ell \in (23/10, 27/10)$. If $\ell k = 1$, then $x^* + k \in (13/20, 17/20)$, which contradicts the fact that $x^* \in [0, 1/2)$ and k is a nonnegative integer. If $\ell k = 4$, then $2x^* + 2k + 4 \ge 4 > 27/10$, which also contradicts the fact that $x^* \in [0, 1/2)$ and k is a nonnegative integer.
- **Case 2.** $y^* \in (73\pi/50, 77\pi/50)$. In this case, $2x^* + k + \ell \in (73/10, 77/10)$. If $\ell k = 1$, then $x^* + k \in (63/20, 67/20)$. Thus $(k, \ell) = (3, 4)$ and $x^* \in (3/20, 7/20)$. If $\ell k = 4$, then $x^* + k \in (33/20, 37/20)$, which also contradicts the fact that $x^* \in [0, 1/2)$ and k is a nonnegative integer.

Thus, in the case that $\gamma \in (0, 2/5]$, if $0 \le k < \ell < 5$ satisfying $(k, \ell) \in E(1, x^*)$, then $x^* \in (3/20, 7/20)$ and $(k, \ell) = (3, 4)$.

From above arguments, e(1, x) = 1 if $x \in [0, 3/20] \cup [7/20, 1/2]$. Using the fact that e(1, x) = e(1, 1 - x), we have e(1, x) = 1 if $x \in [1/2, 13/20] \cup [17/20, 1]$.

Let $K = [0, 3/20] \cup [7/20, 13/20] \cup [17/20, 1]$. Then e(1, K) = 1 and $e(1, [0, 1)) \le 2$. From Lemma 2.1, there exist $\varepsilon, \delta > 0$, such that $e(1, x; \varepsilon, \delta) = 1$ if $x \in K$, and $e(1, x; \varepsilon, \delta) \le 2$ if $x \in [0, 1) \setminus K$.

If $x \in (3/20, 1/4)$, we have $x(3) = (x+3)/5 \in (7/20, 13/20) \subseteq K$. If $x \in [1/4, 7/20)$, we have $x(4) = (x+4)/5 \in [17/20, 1) \subseteq K$. From Lemma 2.4, we have $\sigma(1) \leq (\sqrt{5} + 1)/2$.

If $\gamma > (\sqrt{5} + 1)/10$, then $5\gamma > \sigma(1)$. Thus, it suffices to show it is impossible that $\gamma \le (\sqrt{5} + 1)/10$ and e(1) = 2. In fact, if this holds, then from Lemma 3.1,

$$4\sin^{2}\left(\frac{\pi(\ell-k)}{5}\right) \leq \left(\frac{2\gamma}{5-\gamma}\right)^{2} + \left(\frac{2\gamma}{1-\gamma}\right)^{2}$$
$$\leq \left(\frac{(\sqrt{5}+1)/5}{5-(\sqrt{5}+1)/10}\right)^{2} + \left(\frac{(\sqrt{5}+1)/5}{1-(\sqrt{5}+1)/10}\right)^{2} < 0.9348 < 4\sin^{2}\left(\frac{\pi}{5}\right),$$

which contradicts with $k \neq \ell$.

-		

4.3 The case *b* = 4

Proposition 4.3. Assume that b = 4 and e(1) = 2. Then $\sigma(1) < 4\gamma$.

Proof. If $\gamma > \frac{1}{2}$, then $4\gamma > 2 = e(1) \ge \sigma(1)$. Thus we may assume that $\gamma \le \frac{1}{2}$. From e(1) = 2, there exist $0 \le k < \ell < 4$ such that $(k, \ell) \in E(1, x^*)$. Now we will show that $x^* \in (9/25, 1/2]$ and $(k, \ell) = (2, 3)$.

In fact, from $(k, \ell) \in E(1, x^*)$ and Lemma 3.1,

$$\left|\sin\left(2\pi\frac{x^{*}+k}{4}\right) - \sin\left(2\pi\frac{x^{*}+\ell}{4}\right)\right| \le \frac{2\gamma}{4-\gamma} \le \frac{2\times\frac{1}{2}}{4-\frac{1}{2}} = \frac{2}{7}.$$
(4.6)

Let $\kappa = \frac{1}{3}$. We will show that the inequality (4.2) in Lemma 4.1 does not hold. In fact, if (4.2) holds, then

$$2 = 4\sin^{2}\left(\frac{\pi}{4}\right) \le 4\sin^{2}\left(\frac{\pi(k-\ell)}{4}\right)$$

= $\left|\sin\left(2\pi\frac{x^{*}+k}{4}\right) - \sin\left(2\pi\frac{x^{*}+\ell}{4}\right)\right|^{2} + \left|\cos\left(2\pi\frac{x^{*}+k}{4}\right) - \cos\left(2\pi\frac{x^{*}+\ell}{4}\right)\right|^{2}$
 $\le \left(\frac{2}{7}\right)^{2} + \left(2 \times \frac{1}{3} \times \frac{1}{2} + \frac{2 \times (1/2)^{2}}{1 - \frac{1}{2}}\right)^{2} < \left(\frac{2}{7}\right)^{2} + \left(\frac{4}{3}\right)^{2} < 2.$

A contradiction. Thus (4.1) in Lemma 4.1 holds. Let $y^* = \pi (2x^* + k + \ell)/4$. We have

$$\begin{aligned} \left| 2\cos(y^*)\sin\left(\frac{\pi}{4}\right) \right| &\leq \left| 2\cos(y^*)\sin\left(\frac{\pi(\ell-k)}{4}\right) \right| \\ &= \left| \sin\left(2\pi\frac{x^*+k}{4}\right) - \sin\left(2\pi\frac{x^*+\ell}{4}\right) \right| \\ &\leq \frac{2 \times \frac{1}{2} \times \sqrt{1 - (\frac{1}{3})^2}}{4} + \frac{2 \times (\frac{1}{2})^2}{4 \times (4 - \frac{1}{2})} = \frac{\sqrt{2}}{6} + \frac{1}{28} < 0.28 \end{aligned}$$

Thus $|\cos(y^*)| \le 0.28/\sqrt{2} < 0.2 < \cos(43\pi/100)$. Since $y^* \in [0, 3\pi/2]$, we have $y^* \in (43\pi/100, 57\pi/100) \cup (143\pi/100, 3\pi/2)$.

If $y^* \in (43\pi/100, 57\pi/100)$, then $2x^* + k + \ell \in (43/25, 57/25)$. In this case, we have $k + \ell = 2$ so that $(k, \ell) = (0, 2)$ and $x^* \in [0, 7/50)$. If $y^* \in (143\pi/100, 3\pi/2]$, then $2x^* + k + \ell \in (143/25, 6]$. In this case, we have $k + \ell = 5$ so that $(k, \ell) = (2, 3)$ and $x^* \in (9/25, 1/2]$.

In the case that $\gamma \leq \frac{1}{2}$, we have $(0,2) \notin E(1,x)$ for all $x \in [0,\frac{1}{2}]$. In fact, assume that $(0,2) \in E(1,x)$. Then there exist $\mathbf{k} = \{k_n\}_{n=1}^{\infty}$ and $\mathbf{l} = \{\ell_n\}_{n=1}^{\infty}$, such that $S(x,\mathbf{k}) - S(x,\mathbf{l}) = 0$, where $k_1 = 0, \ell_1 = 2$.

Let
$$x_n = (x + 4k_2 + \dots + 4^{n-1}k_n)/4^n$$
, $y_n = (x + 2 + 4\ell_2 + \dots + 4^{n-1}\ell_n)/4^n$. Then
 $|\cos(2\pi x_1) - \cos(2\pi y_1) + \gamma(\cos(2\pi x_2) - \cos(2\pi y_2))|$
 $= \left| -\sum_{n=3}^{\infty} \gamma^{n-1} (\cos(2\pi x_n) - \cos(2\pi y_n)) \right|$
 $\leq 2\sum_{n=2}^{\infty} \gamma^n \leq \frac{2\gamma^2}{1-\gamma} \leq \frac{2 \times (\frac{1}{2})^2}{1-\frac{1}{2}} = 1.$

Notice that

$$\cos(2\pi x_2) - \cos(2\pi y_2) = \cos\left(\frac{\pi x}{8} + \frac{k_2\pi}{2}\right) - \cos\left(\frac{\pi(x+2)}{8} + \frac{\ell_2\pi}{2}\right)$$
$$= -2\sin\left(\frac{\pi(x+1)}{8} + \frac{(k_2+\ell_2)\pi}{4}\right)\sin\left(-\frac{\pi}{8} + \frac{(k_2-\ell_2)\pi}{4}\right) \ge -2\sin\frac{3\pi}{8}.$$

Thus

$$\cos(2\pi x_1) - \cos(2\pi y_1) \le 1 - \gamma \big(\cos(2\pi x_2) - \cos(2\pi y_2)\big) \le 1 + \sin\frac{3\pi}{8} < 1.93$$

From the inequality (4.6), we have

$$4 = 4\sin^{2}\left(\frac{2\pi}{4}\right) = 4\sin^{2}\left(\frac{\pi(\ell-k)}{4}\right)$$
$$= \left|\sin(2\pi x_{1}) - \sin(2\pi y_{1})\right|^{2} + \left|\cos(2\pi x_{1}) - \cos(2\pi y_{1})\right|^{2}$$
$$< \left(\frac{2}{7}\right)^{2} + 1.93^{2} < 3.81.$$

A contradiction. Thus, in the case that $\gamma \leq 1/2$, if $0 \leq k < \ell < 4$ satisfying $(k, \ell) \in E(1, x^*)$, then $x^* \in (9/25, 1/2]$ and $(k, \ell) = (2, 3)$.

From the above arguments, e(1, x) = 1 if $x \in [0, 9/25]$. Using the fact that e(1, x) = e(1, 1 - x), we have e(1, x) = 1 if $x \in [16/25, 1]$.

Let $K = [0, 9/25] \cup [16/25, 1]$. Then e(1, K) = 1 and $e(1, [0, 1)) \le 2$. From Lemma 2.1, there exist $\varepsilon, \delta > 0$, such that $e(1, x; \varepsilon, \delta) = 1$ if $x \in K$, and $e(1, x; \varepsilon, \delta) \le 2$ if $x \in [0, 1) \setminus K$.

In the case that $x \in (9/25, 1/2]$, we have $x(3) = (x+3)/4 \in [16/25, 1] \subseteq K$. From Lemma 2.4, we have $\sigma(1) \leq (\sqrt{5}+1)/2$.

If $\gamma > (\sqrt{5} + 1)/8$, then $4\gamma > \sigma(1)$. Thus, it suffices to show it is impossible that $\gamma \le (\sqrt{5} + 1)/8$ and e(1) = 2. In fact, if this holds, then from Lemma 3.1,

$$4\sin^{2}\left(\frac{\pi(\ell-k)}{4}\right) \leq \left(\frac{2\gamma}{4-\gamma}\right)^{2} + \left(\frac{2\gamma}{1-\gamma}\right)^{2}$$
$$\leq \left(\frac{(\sqrt{5}+1)/4}{4-(\sqrt{5}+1)/8}\right)^{2} + \left(\frac{(\sqrt{5}+1)/4}{1-(\sqrt{5}+1)/8}\right)^{2} < 1.897 < 4\sin^{2}\left(\frac{\pi}{4}\right),$$

which contradicts with $k \neq \ell$.

4.4 The case b = 3

Proposition 4.4. Assume b = 3 and e(1) = 2. Then $\sigma(1) < 3\gamma$.

Proof. If $\gamma > 2/3$, then $3\gamma > 2 = e(1) \ge \sigma(1)$. Thus we may assume that $\gamma \le 2/3$. From e(1) = 2, there exist $0 \le k < \ell < 3$ such that $(k, \ell) \in E(1, x^*)$.

Let $y^* = \pi (2x^* + k + \ell)/3$. From $(k, \ell) \in E(1, x^*)$ and Lemma 3.1,

$$2|\cos(y^*)| \left| \sin\left(\frac{\pi(\ell-k)}{3}\right) \right|$$

= $\left| \sin\left(2\pi\frac{x^*+k}{3}\right) - \sin\left(2\pi\frac{x^*+\ell}{3}\right) \right|$
 $\leq \frac{2\gamma}{3-\gamma} \leq \frac{4/3}{3-2/3} = \frac{4}{7}.$

Thus $|\cos(y^*)| \le 4/(7\sqrt{3}) < \cos(39\pi/100)$. Hence $y^* \in (39\pi/100, 61\pi/100)$. Since $y^* \in [0, 4\pi/3]$, we have $2x^* + k + \ell \in (117/100, 183/100)$. Thus $(k, \ell) = (0, 1)$ and $x^* \in (17/200, 83/200)$.

From above arguments, e(1, x) = 1 if $x \in [0, 17/200] \cup [83/200, 1/2]$. Using the fact that e(1, x) = e(1, 1 - x), e(1, x) = 1 if $x \in [1/2, 117/200] \cup [183/200, 1]$.

Let $K_1 = [0, 17/200] \cup [83/200, 117/200] \cup [183/200, 1]$. From Lemma 2.1, there exist $\varepsilon > 0, \delta > 0$, such that $e(1, x; \varepsilon, \delta) = 1$ if $x \in K_1$, and $e(1, x; \varepsilon, \delta) \le 2$ if $x \in [0, 1) \setminus K_1$.

If $x \in (17/200, 51/200)$, we have $x(0) = x/3 \in (17/600, 17/200) \subseteq K_1$.

If $x \in [51/200, 83/200)$, we have $x(1) = (x+1)/3 \in (251/600, 283/600) \subseteq K_1$.

From Lemma 2.4, we have $\sigma(1) \leq (\sqrt{5}+1)/2$. Thus, if $\gamma > (\sqrt{5}+1)/6$, then $3\gamma > \sigma(1)$.

Now we will show: if $\gamma \le (\sqrt{5}+1)/6$ and $(k, \ell) = (0, 1)$, then $x^* \in (23/200, 77/200)$. In fact, from $(k, \ell) \in E(1, x^*)$ and Lemma 3.1,

$$2 \left| \sin\left(\frac{\pi(k-\ell)}{3}\right) \cos(y^*) \right| \\ = \left| \sin\left(2\pi \frac{x^*+k}{3}\right) - \sin\left(2\pi \frac{x^*+\ell}{3}\right) \right| \\ \le \frac{2\gamma}{3-\gamma} \le \frac{(\sqrt{5}+1)/3}{3-(\sqrt{5}+1)/6} \le 0.4384.$$

Thus $|\cos(y^*)| \le 0.4384/\sqrt{3} < \cos(0.41\pi)$. Hence $y^* \in (0.41\pi, 0.59\pi)$. By the definition of y^* , we have $2x^* + k + \ell \in (1.23, 1.77)$. Combining this with $(k, \ell) = (0, 1)$, we have $x^* \in (23/200, 77/200)$.

Now we will show: if $\gamma \le (\sqrt{5}+1)/6$ and $x \in (23/200, 1/8]$, then $(0,1) \notin E(1,x)$.

In fact, assume that $(0, 1) \in E(1, x)$. Then from Lemma 3.1,

$$3 = 4\sin^{2}\left(\frac{\pi}{3}\right)$$

= $\left|\cos\left(2\pi\frac{x+0}{3}\right) - \cos\left(2\pi\frac{x+1}{3}\right)\right|^{2} + \left|\sin\left(2\pi\frac{x+0}{3}\right) - \sin\left(2\pi\frac{x+1}{3}\right)\right|^{2}$
 $\leq \left(\sqrt{3}\sin\left(\pi\frac{2x+1}{3}\right)\right)^{2} + \left(\frac{2\gamma}{3-\gamma}\right)^{2}$
 $\leq \left(\sqrt{3}\sin\frac{5\pi}{12}\right)^{2} + \left(\frac{(\sqrt{5}+1)/3}{3-(\sqrt{5}+1)/6}\right)^{2} \leq 2.9913.$

A contradiction. If $x \in [3/8,77/200)$, then $0 \le \sin((2x+1)\pi/3) \le \sin(7\pi/12) = \sin(5\pi/12)$. Thus, using the same argument, we can see that: if $\gamma \le (\sqrt{5}+1)/6$ and $x \in [3/8,77/200)$, then $(0,1) \notin E(1,x)$.

From the above arguments, in the case that $\gamma \leq (\sqrt{5}+1)/6$, if $0 \leq k < \ell < 3$ satisfying $(k, \ell) \in E(1, x^*)$, then $x^* \in (1/8, 3/8)$ and $(k, \ell) = (0, 1)$.

Let $K_2 = [0, 1/8] \cup [3/8, 5/8] \cup [7/8, 1]$. From Lemma 2.1, there exist $\varepsilon, \delta > 0$, such that $e(1, x; \varepsilon, \delta) = 1$ if $x \in K_2$, and $e(1, x; \varepsilon, \delta) \le 2$ if $x \in [0, 1) \setminus K_2$.

In the case that $x \in (1/8, 3/8)$, we have $x(0) = x/3 \in (1/24, 1/8) \subseteq K_2$, and $x(1) = (x+1)/3 \in (3/8, 11/24) \subseteq K_2$. From Lemma 2.3, $\sigma(1) \le \sqrt{2}$.

If $\gamma > \sqrt{2}/3$, then $3\gamma > \sqrt{2} \ge \sigma(1)$. Thus, it suffices to show that if $\gamma \le \sqrt{2}/3$, then it is impossible that e(1) = 2. In fact, assume that there exists $x \in (\frac{1}{8}, \frac{3}{8})$ satisfying $(0,1) \in E(1,x)$. From Lemma 2.1, we know that there exist $\mathbf{k} = \{k_n\}_{n=1}^{\infty}$ and $\mathbf{l} = \{\ell_n\}_{n=1}^{\infty}$ such that $S(x, \mathbf{k}) - S(x, \mathbf{l}) = 0$, where $k_1 = 0$, $\ell_1 = 1$.

Let $x_n = (x + 3k_2 + \dots + 3^{n-1}k_n)/3^n$, $y_n = (x + 1 + 3\ell_2 + \dots + 3^{n-1}\ell_n)/3^n$. We have

$$\left| \cos(2\pi x_1) - \cos(2\pi y_1) + \gamma(\cos(2\pi x_2) - \cos(2\pi y_2)) \right| \\= \left| -\sum_{n=3}^{\infty} \gamma^{n-1} \left(\cos(2\pi x_n) - \cos(2\pi y_n) \right) \right| \le 2\sum_{n=2}^{\infty} \gamma^n \le \frac{2\gamma^2}{1-\gamma}.$$

Notice that

$$\cos(2\pi x_2) - \cos(2\pi y_2) = \cos\frac{2\pi(x+3k_2)}{9} - \cos\frac{2\pi(x+1+3\ell_2)}{9}$$
$$\geq \cos\left(\frac{2\pi x}{9} + \frac{2\pi}{3}\right) - \cos\left(\frac{2\pi x}{9} + \frac{2\pi}{9}\right)$$
$$= -2\sin\left(\frac{2\pi x}{9} + \frac{4\pi}{9}\right)\sin\left(\frac{2\pi}{9}\right) \ge -2\sin\left(\frac{2\pi}{9}\right) > -1.3.$$

Thus $\cos(2\pi x_1) - \cos(2\pi y_1) \le 2\gamma^2/(1-\gamma) + 1.3\gamma$. Hence

$$3 = 4\sin^{2}\left(\frac{\pi}{3}\right) = \left|\cos(2\pi x_{1}) - \cos(2\pi y_{1})\right|^{2} + \left|\sin(2\pi x_{1}) - \sin(2\pi y_{1})\right|^{2}$$
$$\leq \left(\frac{2\gamma^{2}}{1-\gamma} + 1.3\gamma\right)^{2} + \left(2\left|\cos\left(\frac{\pi(2x+1)}{3}\right)\right|\sin\left(\frac{\pi}{3}\right)\right)^{2}$$
$$\leq \left(\frac{2\times(\sqrt{2}/3)^{2}}{1-\sqrt{2}/3} + 1.3\times\frac{\sqrt{2}}{3}\right)^{2} + \left(\sqrt{3}\cos(\frac{5\pi}{12})\right)^{2} < 2.3140.$$

A contradiction.

Acknowledgements

The authors would like to thank Professor Weixiao Shen for helpful suggestions.

References

- [1] K. Baránski, B. Bárány and J. Romanowska, On the dimension of the graph of the classical Weierstrass function, Adv. Math., 265 (2014), 32–59.
- [2] G. H. Hardy, Weierstrass's non-differentiable function, Trans. Am. Math. Soc., 17 (1916), 301–325.
- [3] T. Y. Hu and K. S. Lau, Fractal dimensions and singularities of the Weierstrass type functions, Trans. Amer. Math. Soc., 335 (1993), 649–655.
- [4] J. L. Kaplan, J. Mallet-Paret and J. A. Yorke, The Lyapunov dimension of a nowhere differentiable attracting torus, Ergod. Theory Dyn. Syst., 4 (1984), 261–281.
- [5] G. Keller, An elementary proof for the dimension of the graph of the classical Weierstrass function, Ann. Inst. Henri Poincaré Probab. Stat., 53 (2017), 169–181.
- [6] F. Ledrappier, On the dimension of some graphs, Contemp. Math., 135 (1992), 285–293.
- [7] W. Shen, Hausdorff dimension of the graphs of the classical Weierstrass functions, Math. Z., 289 (2018), 223–266.
- [8] M. Tsujii, Fat Solenoidal attractors, Nonlinearity, 14 (2001), 1011–1027.