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Abstract. It was proved by Shen that the graph of the classical Weierstrass function
∑∞

n=0 λn cos(2πbnx) has Hausdorff dimension 2 + log λ/ log b, for every integer b ≥ 2
and every λ ∈ (1/b, 1) [Hausdorff dimension of the graph of the classical Weierstrass
functions, Math. Z., 289 (2018), 223–266]. In this paper, we prove that the dimension
formula holds for every integer b ≥ 3 and every λ ∈ (1/b, 1) if we replace the function
cos by sin in the definition of Weierstrass function. A class of more general functions
are also discussed.
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1 Introduction

Weierstrass functions are classical fractal functions. The non-differentiability of these
functions were studied by Weierstrass and Hardy [2]. Recently, Shen [7] proved that the
graph of the classical Weierstrass function ∑∞

n=0 λn cos(2πbnx) has Hausdorff dimension
2 + log λ/ log b, for every integer b ≥ 2 and every λ ∈ (1/b, 1), which solved a long-
standing conjecture. Some relevant results can be found in [1, 3–5, 8]. Naturally, we
want to study the Hausdorff dimension of the graph of Weierstrass functions with the
following form:

Wλ,b,θ(x) =
∞

∑
n=0

λn cos(2πbnx + θ), x ∈ R,

where b ≥ 2 is an integer, λ ∈ (1/b, 1) and θ ∈ R.
Denote Dλ,b = 2 + log λ/ log b. Denote by dimH ΓWλ,b,θ the Hausdorff dimension of

the graph of Wλ,b,θ . Our main result is:
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Theorem 1.1. If θ = −π/2, then dimH ΓWλ,b,θ = Dλ,b for every integer b ≥ 3 and every
λ ∈ (1/b, 1). If the integer b ≥ 7, then the dimension formula holds for every λ ∈ (1/b, 1) and
every θ ∈ R.

The paper is organized as follows. In next section, we present necessary notations
and properties introduced by Shen [7] and Tsujii [8]. In Sections 3 and 4, we prove the
main result.

2 Preliminaries

In this section, we present necessary notations and properties introduced in [7,8]. Denote
γ = 1/(λb), φθ(x) = cos(2πx + θ), and ψθ(x) = φ′θ(x). Let A = {0, 1, · · · , b− 1}. Given
x ∈ R and u = {un}∞

n=1 ∈ AZ+
, we define

Sθ(x, u) =
∞

∑
n=1

γn−1ψθ(x(u|n)),

where u|n = (u1, · · · , un) and

x(u|n) =
x
bn +

u1

bn +
u2

bn−1 + · · ·+ un

b
.

For simplicity, we will use S(x, u) to denote Sθ(x, u) if no confusion occurs.
Given ε, δ > 0. Two words i, j ∈ AZ+

are called (ε, δ)-tangent at a point x0 ∈ R if

|S(x0, i)− S(x0, j)| ≤ ε and |S′(x0, i)− S′(x0, j)| ≤ δ.

Let E(q, x0; ε, δ) denote the set of pairs (k, l) ∈ Aq ×Aq for which there exist u, v ∈ AZ+

such that ku and lv are (ε, δ)-tangent at x0. Let

e(q, x0; ε, δ) = max
k∈AZ+

#{l ∈ Aq : (k, l) ∈ E(q, x0; ε, δ)},

E(q, x0) =
⋂
ε>0

⋂
δ>0

E(q, x0; ε, δ),

e(q, x0) = max
k∈Aq

#{l ∈ Aq : (k, l) ∈ E(q, x0)}.

For J ⊂ R, define

E(q, J; ε, δ) =
⋃

x0∈J

E(q, x0; ε, δ),

E(q, J) =
⋂
ε>0

⋂
δ>0

E(q, J; ε, δ),

e(q, J) = max
k∈Aq

#{l ∈ Aq : (k, l) ∈ E(q, J)}.
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Tsujii’s notation e(q) is defined as

e(q) = lim
p→∞

bp−1
max
k=0

e
(

q,
[ k

bp ,
k + 1

bp

])
.

It is well-known that e(q) = maxx∈[0,1) e(q, x). For details, please see [7].
Now we define another useful function σ(q) introduced by Shen [7]. A measurable

function ω : [0, 1) → [0, ∞) is called a weight function if ‖ω‖∞ < ∞ and ‖1/ω‖∞ < ∞.
A testing function of order q is a measurable function V : [0, 1) × Aq × Aq → [0, ∞). A
testing function of order q is called admissible if there exist ε > 0 and δ > 0 such that the
following hold: For any x ∈ [0, 1), if (u, v) ∈ E(q, x; ε, δ), then

V(x, u, v)V(x, v, u) ≥ 1.

Given a weight function ω and an admissible testing function V of order q, we define a
new measurable function Σq

V,ω : [0, 1)→ R as follows: for each x ∈ [0, 1), let

Σq
V,ω(x) = sup

{
ω(x)

ω(x(u)) ∑
v∈Aq

V(x, u, v) : u ∈ Aq

}
.

Define
σ(q) = inf ‖Σq

V,ω‖∞,

where the infimum is taken over all weight functions ω and admissible testing functions
V of order q.

Let P be the Bernoulli measure on AZ+
with uniform probabilities {1/b, 1/b, · · · , 1/b}.

For each x ∈ R, define a Borel probability measure mx on R by

mx(A) = P
(
{v : S(x, v) ∈ A}

)
, A ⊂ R.

Then mx’s are the conditional measures along vertical fibers of the unique SRB measure
ν of the skew product map T : R/Z×R→ R/Z×R,

T(x, y) = (bx mod 1, γy + ψθ(x)).

That is, the SRB measure ν can be defined by

ν(B) =
∫ 1

0
mx(Bx)dx

for each Borel set B ⊂ R/Z×R, where Bx = {y ∈ R : (x, y) ∈ B}.
We will use the following two theorems to prove our main result.

Theorem 2.1 ([7]). If there exists q ∈ Z+, such that σ(q) < (γb)q, then the SRB measure ν is
absolutely continuous with respect to the Lebesgue measure on R/Z×R with square integrable
density. In particular, for Lebesgue a.e. x ∈ [0, 1), mx is absolutely continuous with respect to the
Lebesgue measure on R and with square integrable density. As a result, dimH ΓWλ,b,θ = Dλ,b.
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Theorem 2.2 ([7]). σ(q) ≤ e(q).

We remark that Theorem 2.1 strengths a similar result by Tsujii [8], and the dimension
formula dimH ΓWλ,b,θ = Dλ,b follows from Ledrappier’s theorem [6]. For details, please
see [7].

The following result can be derived from the definitions of E(q, x) and E(q, J; ε, δ).
The proof for general case is same as the special case θ = 0, which is presented in [7].
Thus we omit the details.

Lemma 2.1 ([7]). Let x0 ∈ R, and k, l ∈ Aq. Then

(1) (k, l) ∈ E(q, x0) if and only if there exist u and v in AZ+
such that F(x) = S(x, ku)−

S(x, lv) has a multiple zero at x0, that is, F(x0) = F′(x0) = 0.

(2) If (k, l) 6∈ E(q, x0), then there is a neighborhood U of x0 and ε, δ > 0 such that (k, l) 6∈
E(q, U; ε, δ).

(3) For any compact K ⊂ R, if (k, l) 6∈ E(q, K), then there exist ε, δ > 0, such that (k, l) 6∈
E(q, K; ε, δ).

(4) For any ε > ε′ > 0, δ > δ′ > 0, there exists η > 0, such that if |x − x0| < η, (k, l) 6∈
E(q, x0; ε, δ), then (k, l) 6∈ E(q, x; ε′, δ′).

The following three lemmas are very useful in the proof of the results in [7]. They still
hold in our case.

Lemma 2.2 ([7]). Assume that for all x ∈ [0, 1), E(q, x) 6= Aq ×Aq. Then

σ(q) ≤ bq − 2 + 2/α,

where α = α(b, q) > 1 satisfies 2− α = (bq − 2)α(α− 1).

Lemma 2.3 ([7]). Let q ∈ Z+. Suppose that there are constants ε > 0 and δ > 0 and K ⊂ [0, 1)
with the following properties:

(1) For x ∈ K, e(q, x; ε, δ) = 1 and for x ∈ [0, 1) \ K, e(q, x; ε, δ) ≤ 2;

(2) If (u, v) ∈ E(q, x; ε, δ) for some x ∈ [0, 1) \ K and u 6= v, then both x(u) and x(v) belong
to K.

Then σ(q) ≤
√

2.

Lemma 2.4 ([7]). Let q ∈ Z+. Suppose that there are constants ε > 0 and δ > 0 and K ⊂ [0, 1]
with the following properties:

(1) For x ∈ K, e(q, x; ε, δ) = 1 and for x ∈ [0, 1) \ K, e(q, x; ε, δ) ≤ 2;

(2) If (u, v) ∈ E(q, x; ε, δ) for some x ∈ [0, 1) \ K and u 6= v, then either x(u) ∈ K or
x(v) ∈ K.

Then σ(q) ≤ (
√

5 + 1)/2.
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3 The case when b is large

If e(1) = 1, then form γb = 1/λ > 1, we have e(1) < γb. Thus, we always assume that
e(1) ≥ 2. From e(1) = maxx∈[0,1) e(1, x), there exists x∗ ∈ [0, 1), such that e(1, x∗) = e(1).
We will fix x∗ in the sequel of the paper.

From definition, there exists k ∈ A, such that #{` ∈ A : (k, `) ∈ E(1, x∗)} = e(1). Let
`1, `2, · · · , `e(1) be all elements in A such that (k, `(i)) ∈ E(1, x∗), and

sin(2πx1 + θ) ≤ sin(2πx2 + θ) ≤ · · · ≤ sin(2πxe(1) + θ),

where xi = (x∗ + `i)/b, i = 1, · · · , e(1).
Similarly as Lemma 3.2 and Lemma 3.3 in [7], we have the following two lemmas.

Since the proof are same as that of in [7], we omit the details again.

Lemma 3.1. If (k, `) ∈ E(1, x∗), then∣∣∣∣sin
(

2π(x∗ + k)
b

+ θ

)
− sin

(
2π(x∗ + `)

b
+ θ

)∣∣∣∣ ≤ 2γ

1− γ
, (3.1a)∣∣∣∣cos

(
2π(x∗ + k)

b
+ θ

)
− cos

(
2π(x∗ + `)

b
+ θ

)∣∣∣∣ ≤ 2γ

b− γ
, (3.1b)

4 sin2 π(k− `)

b
≤
(

2γ

1− γ

)2

+

(
2γ

b− γ

)2

. (3.1c)

Lemma 3.2. Under the above circumstances, and with the assumption that 1 ≤ i < j ≤ e(1),
the followings hold:

1. If `i = k or `j = k, then sin(2πxj + θ)− sin(2πxi + θ) ≥ 2β0(b,γ)
b ,

2. sin(2πxj + θ)− sin(2πxi + θ) ≥ 2β1(b,γ)
b ,

3. If `i − `j 6= ±1 mod b, then sin(2πxj + θ)− sin(2πxi + θ) ≥ 2β2(b,γ)
b ,

where

β0(b, γ) =

√
max

{
0,
(

b sin
π

b

)2
− γ2b2

(b− γ)2

}
,

β1(b, γ) =

√
max

{
0,
(

b sin
π

b

)2
− 4γ2b2

(b− γ)2

}
,

β2(b, γ) =

√
max

{
0,
(

b sin
2π

b

)2
− 4γ2b2

(b− γ)2

}
.

Using these two lemmas and lemmas in Section 2, we can prove the following theo-
rem, which implies that Theorem 1.1 holds if b ≥ 7.
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Theorem 3.1. 1. If b ≥ 7, then e(1) < γb.

2. If b = 4, 5, 6, then either e(1) = 2 or e(1) < γb.

3. If b = 3, then either e(1) ≤ 2 or σ(1) < γb.

Proof. Using the exactly same method as in [7], we can obtain the following result: if
b ≥ 4, then either e(1) = 2 or e(1) < γb; if b = 3, then either e(1) ≤ 2 or σ(1) < γb. Thus,
we only need to prove the theorem holds if b ≥ 7 and e(1) = 2. If γb > 2, then γb > e(1).
Thus it suffices to show it is impossible that e(1) = 2 and γb ≤ 2.

We will prove this by contradiction. Assume that e(1) = 2 and γb ≤ 2, then (`1, `2) ∈
E(1, x∗). From Lemma 3.1 and γ ≤ 2/b, we have

4 sin2 π(`2 − `1)

b
≤
(

2γ

1− γ

)2

+

(
2γ

b− γ

)2

≤
(

2 · (2/b)
1− 2/b

)2

+

(
2 · (2/b)
b− 2/b

)2

=
16

(b− 2)2 +
16

(b2 − 2)2 .

Thus
sin2 π

b
≤ 4

(b− 2)2 +
4

(b2 − 2)2 . (3.2)

Consider the function g(t) = g1(t)− g2(t), where

g1(t) = t2 sin2(π/t) and g2(t) =
4t2

(t− 2)2 +
4t2

(t2 − 2)2 .

It is easy to check that g1 is increasing on (2,+∞) while g2 is decreasing on (2,+∞).
Thus, if b ≥ 7, we have g(b) ≥ g(7) > 9− 8 > 0, which implies that (3.2) does not hold
for b ≥ 7.

4 Proof of Theorem 1.1: the case b = 3, 4, 5, 6

In this section, we will restrict θ = −π/2. We will show the following result under this
restriction: for b = 3, 4, 5, 6, if e(1) = 2 then σ(1) < γb. Combining this result with
Theorem 3.1, we have either e(1) < γb or σ(1) < γb for b = 3, 4, 5, 6. Thus Theorem 1.1
holds for this case.

Using the same method as in the proof of Lemma 4.1 in [7], we have the following
lemma. We omit the details.

Lemma 4.1. Assume that 0 ≤ k < ` < b satisfying (k, `) ∈ E(1, x∗). Then for any κ ∈ (0, 1),
one of the followings holds: either∣∣∣∣sin

(2π(x∗ + k)
b

)
− sin

(2π(x∗ + `)

b

)∣∣∣∣ ≤ 2γ
√

1− κ2

b
+

2γ2

b(b− γ)
, (4.1)
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or ∣∣∣∣cos
(2π(x∗ + k)

b

)
− cos

(2π(x∗ + `)

b

)∣∣∣∣ ≤ 2κγ +
2γ2

1− γ
. (4.2)

Notice that θ = −π/2. For x ∈ R and i = {in}∞
n=1 ∈ AZ+

, we have

S(x, i) =
∞

∑
n=1

γn−1ψ(xn) = 2π
∞

∑
n=1

γn−1 cos
(

2π
( x

bn +
i1
bn + · · ·+ in

b

))
. (4.3)

Lemma 4.2. If x ∈ R and i = {in}∞
n=1. Then the following equalities hold:

S(x, i) = S(1− x, i′), (4.4a)
S′(x, i) = −S′(1− x, i′), (4.4b)

where i′ = {i′n}∞
n=1, i′n = b− 1− in.

Proof. Notice that

cos
(

2π
(1− x

bn +
b− 1− i1

bn + · · ·+ b− 1− in

b

))
= cos

(
2π
(
−
( x

bn +
i1
bn + · · ·+ in

b

)
+
( 1

bn +
b− 1

bn + · · ·+ b− 1
b

)))
= cos

(
2π
(
−
( x

bn +
i1
bn + · · ·+ in

b

)
+ 1
))

= cos
(

2π
( x

bn +
i1
bn + · · ·+ in

b

))
.

Thus (4.4a) holds. From

S′(x, i) =
−4π2

b

∞

∑
n=1

(γ

b

)n−1
sin
(

2π
( x

bn +
i1
bn + · · ·+ in

b

))
,

we can see that (4.4b) holds.

From Lemma 4.2, we know that (k, `) ∈ E(1, x∗) is equivalent to
(
b− 1− k, b− 1−

`
)
∈ E(1, 1− x∗). Thus e(1, x∗) = e(1, 1− x∗). Hence, we may assume that x∗ ∈ [0, 1

2 ].

4.1 The case b = 6

Proposition 4.1. Assume b = 6 and e(1) = 2. Then σ(1) < 6γ.

Proof. It is clear that 6γ > 6 · (1/3) = e(1) ≥ σ(1) if γ > 1
3 . Thus we may assume that

γ ≤ 1
3 . From e(1) = 2, there exist 0 ≤ k < ` < 6, such that (k, `) ∈ E(1, x∗).
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From (k, `) ∈ E(1, x∗) and Lemma 3.1, we have∣∣∣∣sin
(2π(x∗ + k)

6

)
− sin

(2π(x∗ + `)

6

)∣∣∣∣ ≤ 2γ

6− γ
≤ 2 · (1/3)

6− (1/3)
=

2
17

, (4.5a)

4 sin2 π(`− k)
6

≤
(

2γ

1− γ

)2

+

(
2γ

6− γ

)2

≤ 12 + (2/17)2 < 2. (4.5b)

If `− k 6= ±1 mod 6, then 4 sin2 π(`−k)
6 ≥ 4 sin2 2π

6 = 3, which contradicts with (4.5b).
Thus `− k = ±1 mod 6. Combining this with k < `, we can see that `− k = 1 or 5.

Let κ = 0.98. We will show that the inequality (4.2) does not hold. In fact, if (4.2)
holds, then∣∣∣∣cos

(2π(x∗ + k)
6

)
− cos

(2π(x∗ + `)

6

)∣∣∣∣ ≤ 2 · 0.98 · (1/3) +
2 · (1/3)2

1− 1/3
< 0.987.

Combining this with (4.5a), we have

1 = 4 sin2 π

6
= 4 sin2

(π(`− k)
6

)
< (2/17)2 + 0.9872 < 0.989.

Contradiction! Thus the inequality (4.1) holds. Let y∗ = π(2x∗ + k + `)/6. Then y∗ ∈
[0, 5π/3] and

| cos(y∗)| =
∣∣∣2 sin

π

6
cos(y∗)

∣∣∣ = ∣∣∣∣sin
(2π(x∗ + k)

6

)
− sin

(2π(x∗ + `)

6

)∣∣∣∣
≤2 · (1/3) ·

√
1− 0.982

6
+

2 · (1/3)2

6 · (6− 1/3)
< 0.029 < cos(49π/100).

Thus y∗ ∈
(
49π/100, 51π/100

)
∪
(
149π/100, 151π/100

)
.

Case 1. y∗ ∈
(
49π/100, 51π/100

)
. In this case, 2x∗ + k + ` ∈

(
294/100, 306/100

)
. If

k + 1 = `, then x∗+ k ∈
(
97/100, 103/100

)
. Since x∗ ∈ [0, 1

2 ], we have (k, `) = (1, 2)
and x∗ ∈

[
0, 3/100

)
. If k + 5 = `, from x∗ ≥ 0 and k ≥ 0, we have 2x∗ + 2k + 5 ≥

5 > 306/100, a contradiction!

Case 2. y∗ ∈
(
149π/100, 151π/100

)
. In this case, 2x∗ + k + ` ∈

(
894/100, 906/100

)
. If

k + 1 = `, then x∗ + k ∈
(
397/100, 403/100

)
. Since x∗ ∈ [0, 1

2 ], we have (k, l) =
(4, 5) and x∗ ∈ [0, 3/100). If k + 5 = `, we must have k = 0 and ` = 5. Thus, from
x∗ ∈ [0, 1

2 ], we can obtain 2x∗ + 2k + 5 ≤ 6 < 894/100, a contradiction!

From Case 1 and Case 2, we can see that in the case that γ ≤ 1
3 , if 0 ≤ k < l < 6 satisfying

(k, l) ∈ E(1, x∗), then 0 ≤ x∗ < 3/100, and (k, l) = (1, 2) or (k, l) = (4, 5).
From above arguments, e(1, x) = 1 if x ∈ [3/100, 1/2]. Using the fact that e(1, x) =

e(1, 1− x), we also have e(1, x) = 1 if x ∈ [1/2, 97/100].
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Let K = [3/100, 97/100]. Then e(1, K) = 1 and e(1, [0, 1)) ≤ 2. From Lemma 2.1(3),
there exist ε > 0, δ > 0, such that e(1, x; ε, δ) = 1 if x ∈ K, and e(1, x; ε, δ) ≤ 2 if x ∈
[0, 1)\K.

In the case that x ∈
[
0, 1/2] \ K, if (k, `) = (1, 2), then x(2) = (x + 2)/6 ⊆ K; if

(k, `) = (4, 5), then x(4) = (x + 4)/6 ⊆ K. Using the symmetry (Lemma 4.2), we know
that the conditions of Lemma 2.4 hold for q = 1. Thus σ(1) ≤ (

√
5 + 1)/2.

If γ > (
√

5 + 1)/12, then 6γ > σ(1). Thus, it suffices to show it is impossible that
γ ≤ (

√
5 + 1)/12 and e(1) = 2. In fact, if this holds, then from Lemma 3.1,

4 sin2
(π(`− k)

6

)
≤
( 2γ

6− γ

)2
+
( 2γ

1− γ

)2

≤
( (

√
5 + 1)/6

6− (
√

5 + 1)/12

)2
+
( (

√
5 + 1)/6

1− (
√

5 + 1)/12

)2
≤ 0.56 < 4 sin2

(π

6

)
,

which contradicts with k 6= `.

4.2 The case b = 5

Proposition 4.2. Assume b = 5 and e(1) = 2. Then σ(1) < 5γ.

Proof. If γ > 2/5, then 5γ > 2 = e(1) ≥ σ(1). Thus we may assume that γ ≤ 2
5 . From

e(1) = 2, there exist 0 ≤ k < ` < 5 such that (k, `) ∈ E(1, x∗). Now we will show that
x∗ ∈ (3/20, 7/20) and (k, `) = (3, 4).

In fact, from (k, `) ∈ E(1, x∗) and Lemma 3.1,∣∣∣ sin
(

2π
x∗ + k

b

)
− sin

(
2π

x∗ + `

b

)∣∣∣ ≤ 2γ

5− γ
≤

2× 2
5

5− 2
5

=
4
23

,

4 sin2
(π(`− k)

5

)
≤
( 2γ

1− γ

)2
+
( 2γ

5− γ

)2
≤
(2× 2

5

1− 2
5

)2
+
(2× 2

5

5− 2
5

)2
< 2.

Assume that ` − k 6= ±1 mod 5. Then ` − k ∈ {2, 3}. Thus 4 sin2 (π(k − `)/5
)
≥

4 sin2 (2π/5
)
> 3.618, a contradiction. Thus `− k = ±1 mod 5. Since ` > k, we have

`− k = 1 or `− k = 4.
Let κ =

√
2/2. We will show that inequality (4.2) in Lemma 4.1 does not hold. In fact,

if (4.2) holds, then

1.38 < 4 sin2
(π

5

)
= 4 sin2

(π(k− `)

5

)
=
∣∣∣ sin

(
2π

x∗ + k
5

)
− sin

(
2π

x∗ + `

5

)∣∣∣2 + ∣∣∣ cos
(

2π
x∗ + k

5

)
− cos

(
2π

x∗ + `

5

)∣∣∣2
≤
( 4

23

)2
+
(

2×
√

2
2
× 2

5
+

2× (2/5)2

1− 2
5

)2
<
( 4

23

)2
+ (1.1)2 < 1.3,
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a contradiction. Thus the inequality (4.1) in Lemma 4.1 holds. Let y∗ = π(2x∗+ k + `)/5.
We have ∣∣∣2 cos(y∗) sin

(π

5

)∣∣∣ =∣∣∣2 cos(y∗) sin
(π(`− k)

5

)∣∣∣
=
∣∣∣ sin

(
2π

x∗ + k
5

)
− sin

(
2π

x∗ + `

5

)∣∣∣
≤

2× 2
5 ×

√
1− (

√
2

2 )2

5
+

2× ( 2
5 )

2

5× (5− 2
5 )

< 0.128.

Thus
| cos(y∗)| ≤ 0.128

2 sin(π/5)
< 0.11 < cos

(23π

50

)
.

Since y∗ ∈
[
0, 8π/5

]
, we have y∗ ∈

(
23π/50, 27π/50

)
∪
(
73π/50, 77π/50

)
.

Case 1. y∗ ∈ (23π/50, 27π/50). In this case, 2x∗ + k + ` ∈ (23/10, 27/10). If `− k = 1,
then x∗ + k ∈ (13/20, 17/20), which contradicts the fact that x∗ ∈ [0, 1/2) and k
is a nonnegative integer. If `− k = 4, then 2x∗ + 2k + 4 ≥ 4 > 27/10, which also
contradicts the fact that x∗ ∈ [0, 1/2) and k is a nonnegative integer.

Case 2. y∗ ∈ (73π/50, 77π/50). In this case, 2x∗ + k + ` ∈ (73/10, 77/10). If `− k = 1,
then x∗ + k ∈ (63/20, 67/20). Thus (k, `) = (3, 4) and x∗ ∈ (3/20, 7/20). If `− k =
4, then x∗ + k ∈ (33/20, 37/20), which also contradicts the fact that x∗ ∈ [0, 1/2)
and k is a nonnegative integer.

Thus, in the case that γ ∈ (0, 2/5], if 0 ≤ k < ` < 5 satisfying (k, `) ∈ E(1, x∗), then
x∗ ∈ (3/20, 7/20) and (k, `) = (3, 4).

From above arguments, e(1, x) = 1 if x ∈ [0, 3/20] ∪ [7/20, 1/2]. Using the fact that
e(1, x) = e(1, 1− x), we have e(1, x) = 1 if x ∈ [1/2, 13/20] ∪ [17/20, 1].

Let K = [0, 3/20] ∪ [7/20, 13/20] ∪ [17/20, 1]. Then e(1, K) = 1 and e(1, [0, 1)) ≤ 2.
From Lemma 2.1, there exist ε, δ > 0, such that e(1, x; ε, δ) = 1 if x ∈ K, and e(1, x; ε, δ) ≤ 2
if x ∈ [0, 1)\K.

If x ∈ (3/20, 1/4), we have x(3) = (x + 3)/5 ∈ (7/20, 13/20) ⊆ K. If x ∈ [1/4, 7/20),
we have x(4) = (x + 4)/5 ∈ [17/20, 1) ⊆ K. From Lemma 2.4, we have σ(1) ≤ (

√
5 +

1)/2.
If γ > (

√
5 + 1)/10, then 5γ > σ(1). Thus, it suffices to show it is impossible that

γ ≤ (
√

5 + 1)/10 and e(1) = 2. In fact, if this holds, then from Lemma 3.1,

4 sin2
(π(`− k)

5

)
≤
( 2γ

5− γ

)2
+
( 2γ

1− γ

)2

≤
( (

√
5 + 1)/5

5− (
√

5 + 1)/10

)2
+
( (

√
5 + 1)/5

1− (
√

5 + 1)/10

)2
< 0.9348 < 4 sin2

(π

5

)
,

which contradicts with k 6= `.
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4.3 The case b = 4

Proposition 4.3. Assume that b = 4 and e(1) = 2. Then σ(1) < 4γ.

Proof. If γ > 1
2 , then 4γ > 2 = e(1) ≥ σ(1). Thus we may assume that γ ≤ 1

2 . From
e(1) = 2, there exist 0 ≤ k < ` < 4 such that (k, `) ∈ E(1, x∗). Now we will show that
x∗ ∈ (9/25, 1/2] and (k, `) = (2, 3).

In fact, from (k, `) ∈ E(1, x∗) and Lemma 3.1,

∣∣∣ sin
(

2π
x∗ + k

4

)
− sin

(
2π

x∗ + `

4

)∣∣∣ ≤ 2γ

4− γ
≤

2× 1
2

4− 1
2

=
2
7

. (4.6)

Let κ = 1
3 . We will show that the inequality (4.2) in Lemma 4.1 does not hold. In fact,

if (4.2) holds, then

2 =4 sin2
(π

4

)
≤ 4 sin2

(π(k− `)

4

)
=
∣∣∣ sin

(
2π

x∗ + k
4

)
− sin

(
2π

x∗ + `

4

)∣∣∣2 + ∣∣∣ cos
(

2π
x∗ + k

4

)
− cos

(
2π

x∗ + `

4

)∣∣∣2
≤
(2

7

)2
+
(

2× 1
3
× 1

2
+

2× (1/2)2

1− 1
2

)2
<
(2

7

)2
+
(4

3

)2
< 2.

A contradiction. Thus (4.1) in Lemma 4.1 holds. Let y∗ = π(2x∗ + k + `)/4. We have

∣∣∣2 cos(y∗) sin
(π

4

)∣∣∣ ≤∣∣∣2 cos(y∗) sin
(π(`− k)

4

)∣∣∣
=
∣∣∣ sin

(
2π

x∗ + k
4

)
− sin

(
2π

x∗ + `

4

)∣∣∣
≤

2× 1
2 ×

√
1− ( 1

3 )
2

4
+

2× ( 1
2 )

2

4× (4− 1
2 )

=

√
2

6
+

1
28

< 0.28.

Thus | cos(y∗)| ≤ 0.28/
√

2 < 0.2 < cos(43π/100). Since y∗ ∈ [0, 3π/2], we have y∗ ∈(
43π/100, 57π/100

)
∪
(
143π/100, 3π/2

)
.

If y∗ ∈ (43π/100, 57π/100), then 2x∗ + k + ` ∈ (43/25, 57/25). In this case, we have
k + ` = 2 so that (k, `) = (0, 2) and x∗ ∈ [0, 7/50). If y∗ ∈ (143π/100, 3π/2], then
2x∗ + k + ` ∈ (143/25, 6]. In this case, we have k + ` = 5 so that (k, `) = (2, 3) and
x∗ ∈ (9/25, 1/2].

In the case that γ ≤ 1
2 , we have (0, 2) /∈ E(1, x) for all x ∈ [0, 1

2 ]. In fact, assume
that (0, 2) ∈ E(1, x). Then there exist k = {kn}∞

n=1 and l = {`n}∞
n=1, such that S(x, k)−

S(x, l) = 0, where k1 = 0, `1 = 2.
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Let xn = (x + 4k2 + · · ·+ 4n−1kn)/4n, yn = (x + 2 + 4`2 + · · ·+ 4n−1`n)/4n. Then∣∣ cos(2πx1)− cos(2πy1) + γ(cos(2πx2)− cos(2πy2))
∣∣

=
∣∣∣− ∞

∑
n=3

γn−1( cos(2πxn)− cos(2πyn)
)∣∣∣

≤2
∞

∑
n=2

γn ≤ 2γ2

1− γ
≤

2× ( 1
2 )

2

1− 1
2

= 1.

Notice that

cos(2πx2)− cos(2πy2) = cos
(πx

8
+

k2π

2

)
− cos

(π(x + 2)
8

+
`2π

2

)
=− 2 sin

(π(x + 1)
8

+
(k2 + `2)π

4

)
sin
(
− π

8
+

(k2 − `2)π

4

)
≥ −2 sin

3π

8
.

Thus

cos(2πx1)− cos(2πy1) ≤ 1− γ
(

cos(2πx2)− cos(2πy2)
)
≤ 1 + sin

3π

8
< 1.93.

From the inequality (4.6), we have

4 = 4 sin2
(2π

4

)
= 4 sin2

(π(`− k)
4

)
=
∣∣ sin(2πx1)− sin(2πy1)

∣∣2 + ∣∣ cos(2πx1)− cos(2πy1)
∣∣2

<
(2

7

)2
+ 1.932 < 3.81.

A contradiction. Thus, in the case that γ ≤ 1/2, if 0 ≤ k < ` < 4 satisfying (k, `) ∈
E(1, x∗), then x∗ ∈

(
9/25, 1/2

]
and (k, `) = (2, 3).

From the above arguments, e(1, x) = 1 if x ∈
[
0, 9/25

]
. Using the fact that e(1, x) =

e(1, 1− x), we have e(1, x) = 1 if x ∈
[
16/25, 1

]
.

Let K =
[
0, 9/25

]
∪
[
16/25, 1

]
. Then e(1, K) = 1 and e(1, [0, 1)) ≤ 2. From Lemma 2.1,

there exist ε, δ > 0, such that e(1, x; ε, δ) = 1 if x ∈ K, and e(1, x; ε, δ) ≤ 2 if x ∈ [0, 1)\K.
In the case that x ∈

(
9/25, 1/2], we have x(3) = (x + 3)/4 ∈

[
16/25, 1

]
⊆ K. From

Lemma 2.4, we have σ(1) ≤ (
√

5 + 1)/2.
If γ > (

√
5 + 1)/8, then 4γ > σ(1). Thus, it suffices to show it is impossible that

γ ≤ (
√

5 + 1)/8 and e(1) = 2. In fact, if this holds, then from Lemma 3.1,

4 sin2
(π(`− k)

4

)
≤
( 2γ

4− γ

)2
+
( 2γ

1− γ

)2

≤
( (
√

5 + 1)/4
4− (

√
5 + 1)/8

)2
+
( (
√

5 + 1)/4
1− (

√
5 + 1)/8

)2
< 1.897 < 4 sin2

(π

4

)
,

which contradicts with k 6= `.
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4.4 The case b = 3

Proposition 4.4. Assume b = 3 and e(1) = 2. Then σ(1) < 3γ.

Proof. If γ > 2/3, then 3γ > 2 = e(1) ≥ σ(1). Thus we may assume that γ ≤ 2/3. From
e(1) = 2, there exist 0 ≤ k < ` < 3 such that (k, `) ∈ E(1, x∗).

Let y∗ = π(2x∗ + k + `)/3. From (k, `) ∈ E(1, x∗) and Lemma 3.1,

2
∣∣ cos(y∗)

∣∣∣∣∣ sin
(π(`− k)

3

)∣∣∣
=
∣∣∣ sin

(
2π

x∗ + k
3

)
− sin

(
2π

x∗ + `

3

)∣∣∣
≤ 2γ

3− γ
≤ 4/3

3− 2/3
=

4
7

.

Thus | cos(y∗)| ≤ 4/(7
√

3) < cos(39π/100). Hence y∗ ∈ (39π/100, 61π/100). Since
y∗ ∈ [0, 4π/3], we have 2x∗ + k + ` ∈ (117/100, 183/100). Thus (k, `) = (0, 1) and
x∗ ∈ (17/200, 83/200).

From above arguments, e(1, x) = 1 if x ∈
[
0, 17/200

]
∪
[
83/200, 1/2

]
. Using the fact

that e(1, x) = e(1, 1− x), e(1, x) = 1 if x ∈
[
1/2, 117/200

]
∪
[
183/200, 1].

Let K1 =
[
0, 17/200

]
∪
[
83/200, 117/200

]
∪
[
183/200, 1

]
. From Lemma 2.1, there exist

ε > 0, δ > 0, such that e(1, x; ε, δ) = 1 if x ∈ K1, and e(1, x; ε, δ) ≤ 2 if x ∈ [0, 1)\K1.
If x ∈

(
17/200, 51/200

)
, we have x(0) = x/3 ∈ (17/600, 17/200) ⊆ K1.

If x ∈
[
51/200, 83/200

)
, we have x(1) = (x + 1)/3 ∈ (251/600, 283/600) ⊆ K1.

From Lemma 2.4, we have σ(1) ≤ (
√

5 + 1)/2. Thus, if γ > (
√

5 + 1)/6, then 3γ >
σ(1).

Now we will show: if γ ≤ (
√

5+ 1)/6 and (k, `) = (0, 1), then x∗ ∈
(
23/200, 77/200

)
.

In fact, from (k, `) ∈ E(1, x∗) and Lemma 3.1,

2
∣∣∣ sin

(π(k− `)

3

)
cos(y∗)

∣∣∣
=
∣∣∣ sin

(
2π

x∗ + k
3

)
− sin

(
2π

x∗ + `

3

)∣∣∣
≤ 2γ

3− γ
≤ (

√
5 + 1)/3

3− (
√

5 + 1)/6
≤ 0.4384.

Thus | cos(y∗)| ≤ 0.4384/
√

3 < cos(0.41π). Hence y∗ ∈ (0.41π, 0.59π). By the definition
of y∗, we have 2x∗ + k + ` ∈ (1.23, 1.77). Combining this with (k, `) = (0, 1), we have
x∗ ∈

(
23/200, 77/200

)
.

Now we will show: if γ ≤ (
√

5 + 1)/6 and x ∈
(
23/200, 1/8

]
, then (0, 1) /∈ E(1, x).
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In fact, assume that (0, 1) ∈ E(1, x). Then from Lemma 3.1,

3 = 4 sin2
(π

3

)
=
∣∣∣ cos

(
2π

x + 0
3

)
− cos

(
2π

x + 1
3

)∣∣∣2 + ∣∣∣ sin
(

2π
x + 0

3

)
− sin

(
2π

x + 1
3

)∣∣∣2
≤
(√

3 sin
(

π
2x + 1

3

))2
+
( 2γ

3− γ

)2

≤
(√

3 sin
5π

12

)2
+
( (
√

5 + 1)/3
3− (

√
5 + 1)/6

)2
≤ 2.9913.

A contradiction. If x ∈
[
3/8, 77/200

)
, then 0 ≤ sin((2x + 1)π/3) ≤ sin(7π/12) =

sin(5π/12). Thus, using the same argument, we can see that: if γ ≤ (
√

5 + 1)/6 and
x ∈

[
3/8, 77/200

)
, then (0, 1) /∈ E(1, x).

From the above arguments, in the case that γ ≤ (
√

5 + 1)/6, if 0 ≤ k < ` < 3
satisfying (k, `) ∈ E(1, x∗), then x∗ ∈ (1/8, 3/8) and (k, `) = (0, 1).

Let K2 =
[
0, 1/8

]
∪
[
3/8, 5/8

]
∪
[
7/8, 1

]
. From Lemma 2.1, there exist ε, δ > 0, such

that e(1, x; ε, δ) = 1 if x ∈ K2, and e(1, x; ε, δ) ≤ 2 if x ∈ [0, 1)\K2.
In the case that x ∈

(
1/8, 3/8

)
, we have x(0) = x/3 ∈

(
1/24, 1/8

)
⊆ K2, and x(1) =

(x + 1)/3 ∈
(
3/8, 11/24

)
⊆ K2. From Lemma 2.3, σ(1) ≤

√
2.

If γ >
√

2/3, then 3γ >
√

2 ≥ σ(1). Thus, it suffices to show that if γ ≤
√

2/3,
then it is impossible that e(1) = 2. In fact, assume that there exists x ∈ ( 1

8 , 3
8 ) satisfying

(0, 1) ∈ E(1, x). From Lemma 2.1, we know that there exist k = {kn}∞
n=1 and l = {`n}∞

n=1
such that S(x, k)− S(x, l) = 0, where k1 = 0, `1 = 1.

Let xn = (x + 3k2 + · · ·+ 3n−1kn)/3n, yn = (x + 1 + 3`2 + · · ·+ 3n−1`n)/3n. We have

∣∣ cos(2πx1)− cos(2πy1) + γ(cos(2πx2)− cos(2πy2))
∣∣

=
∣∣∣− ∞

∑
n=3

γn−1( cos(2πxn)− cos(2πyn)
)∣∣∣ ≤ 2

∞

∑
n=2

γn ≤ 2γ2

1− γ
.

Notice that

cos(2πx2)− cos(2πy2)

= cos
2π(x + 3k2)

9
− cos

2π(x + 1 + 3`2)

9

≥ cos
(2πx

9
+

2π

3

)
− cos

(2πx
9

+
2π

9

)
=− 2 sin

(2πx
9

+
4π

9

)
sin
(2π

9

)
≥ −2 sin

(2π

9

)
> −1.3.
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Thus cos(2πx1)− cos(2πy1) ≤ 2γ2/(1− γ) + 1.3γ. Hence

3 =4 sin2
(π

3

)
=
∣∣ cos(2πx1)− cos(2πy1)

∣∣2 + ∣∣ sin(2πx1)− sin(2πy1)
∣∣2

≤
( 2γ2

1− γ
+ 1.3γ

)2
+
(

2
∣∣∣ cos

(π(2x + 1)
3

)∣∣∣ sin
(π

3

))2

≤
(2× (

√
2/3)2

1−
√

2/3
+ 1.3×

√
2

3

)2
+
(√

3 cos(
5π

12
)
)2

< 2.3140.

A contradiction.
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