Hausdorff Dimension of a Class of Weierstrass Functions

Huojun Ruan* and Na Zhang
School of Mathematical Sciences, Zhejiang University, Hangzhou, Zhejiang 310027, China
Received 20 September 2020; Accepted (in revised version) 5 November 2020
Dedicated to Professor Weiyi Su on the occasion of her 80th birthday

Abstract

It was proved by Shen that the graph of the classical Weierstrass function $\sum_{n=0}^{\infty} \lambda^{n} \cos \left(2 \pi b^{n} x\right)$ has Hausdorff dimension $2+\log \lambda / \log b$, for every integer $b \geq 2$ and every $\lambda \in(1 / b, 1)$ [Hausdorff dimension of the graph of the classical Weierstrass functions, Math. Z., 289 (2018), 223-266]. In this paper, we prove that the dimension formula holds for every integer $b \geq 3$ and every $\lambda \in(1 / b, 1)$ if we replace the function cos by \sin in the definition of Weierstrass function. A class of more general functions are also discussed.

Key Words: Hausdorff dimension, Weierstrass function, SRB measure.
AMS Subject Classifications: 28A80

1 Introduction

Weierstrass functions are classical fractal functions. The non-differentiability of these functions were studied by Weierstrass and Hardy [2]. Recently, Shen [7] proved that the graph of the classical Weierstrass function $\sum_{n=0}^{\infty} \lambda^{n} \cos \left(2 \pi b^{n} x\right)$ has Hausdorff dimension $2+\log \lambda / \log b$, for every integer $b \geq 2$ and every $\lambda \in(1 / b, 1)$, which solved a longstanding conjecture. Some relevant results can be found in [1,3-5, 8]. Naturally, we want to study the Hausdorff dimension of the graph of Weierstrass functions with the following form:

$$
W_{\lambda, b, \theta}(x)=\sum_{n=0}^{\infty} \lambda^{n} \cos \left(2 \pi b^{n} x+\theta\right), \quad x \in \mathbb{R}
$$

where $b \geq 2$ is an integer, $\lambda \in(1 / b, 1)$ and $\theta \in \mathbb{R}$.
Denote $D_{\lambda, b}=2+\log \lambda / \log b$. Denote by $\operatorname{dim}_{H} \Gamma W_{\lambda, b, \theta}$ the Hausdorff dimension of the graph of $W_{\lambda, b, \theta}$. Our main result is:

[^0]Theorem 1.1. If $\theta=-\pi / 2$, then $\operatorname{dim}_{H} \Gamma W_{\lambda, b, \theta}=D_{\lambda, b}$ for every integer $b \geq 3$ and every $\lambda \in(1 / b, 1)$. If the integer $b \geq 7$, then the dimension formula holds for every $\lambda \in(1 / b, 1)$ and every $\theta \in \mathbb{R}$.

The paper is organized as follows. In next section, we present necessary notations and properties introduced by Shen [7] and Tsujii [8]. In Sections 3 and 4, we prove the main result.

2 Preliminaries

In this section, we present necessary notations and properties introduced in [7,8]. Denote $\gamma=1 /(\lambda b), \phi_{\theta}(x)=\cos (2 \pi x+\theta)$, and $\psi_{\theta}(x)=\phi_{\theta}^{\prime}(x)$. Let $\mathcal{A}=\{0,1, \cdots, b-1\}$. Given $x \in \mathbb{R}$ and $\mathbf{u}=\left\{u_{n}\right\}_{n=1}^{\infty} \in \mathcal{A}^{\mathbb{Z}^{+}}$, we define

$$
S_{\theta}(x, \mathbf{u})=\sum_{n=1}^{\infty} \gamma^{n-1} \psi_{\theta}\left(x\left(\left.\mathbf{u}\right|_{n}\right)\right),
$$

where $\left.\mathbf{u}\right|_{n}=\left(u_{1}, \cdots, u_{n}\right)$ and

$$
x\left(\left.\mathbf{u}\right|_{n}\right)=\frac{x}{b^{n}}+\frac{u_{1}}{b^{n}}+\frac{u_{2}}{b^{n-1}}+\cdots+\frac{u_{n}}{b} .
$$

For simplicity, we will use $S(x, \mathbf{u})$ to denote $S_{\theta}(x, \mathbf{u})$ if no confusion occurs.
Given $\varepsilon, \delta>0$. Two words $\mathbf{i}, \mathbf{j} \in \mathcal{A}^{\mathbb{Z}^{+}}$are called (ε, δ)-tangent at a point $x_{0} \in \mathbb{R}$ if

$$
\left|S\left(x_{0}, \mathbf{i}\right)-S\left(x_{0}, \mathbf{j}\right)\right| \leq \varepsilon \quad \text { and } \quad\left|S^{\prime}\left(x_{0}, \mathbf{i}\right)-S^{\prime}\left(x_{0}, \mathbf{j}\right)\right| \leq \delta .
$$

Let $E\left(q, x_{0} ; \varepsilon, \delta\right)$ denote the set of pairs $(\mathbf{k}, \mathbf{l}) \in \mathcal{A}^{q} \times \mathcal{A}^{q}$ for which there exist $\mathbf{u}, \mathbf{v} \in \mathcal{A}^{\mathbb{Z}^{+}}$ such that $\mathbf{k u}$ and $\mathbf{l v}$ are (ε, δ)-tangent at x_{0}. Let

$$
\begin{aligned}
& e\left(q, x_{0} ; \varepsilon, \delta\right)=\max _{\mathbf{k} \in \mathcal{A}^{+}} \#\left\{\mathbf{l} \in \mathcal{A}^{q}:(\mathbf{k}, \mathbf{1}) \in E\left(q, x_{0} ; \varepsilon, \delta\right)\right\}, \\
& E\left(q, x_{0}\right)=\bigcap_{\varepsilon>0} \bigcap_{\delta>0} E\left(q, x_{0} ; \varepsilon, \delta\right), \\
& e\left(q, x_{0}\right)=\max _{\mathbf{k} \in \mathcal{A} q} \#\left\{\mathbf{l} \in \mathcal{A}^{q}:(\mathbf{k}, \mathbf{1}) \in E\left(q, x_{0}\right)\right\} .
\end{aligned}
$$

For $J \subset \mathbb{R}$, define

$$
\begin{aligned}
& E(q, J ; \varepsilon, \delta)=\bigcup_{x_{0} \in J} E\left(q, x_{0} ; \varepsilon, \delta\right), \\
& E(q, J)=\bigcap_{\varepsilon>0} \bigcap_{\delta>0} E(q, J ; \varepsilon, \delta), \\
& e(q, J)=\max _{\mathbf{k} \in \mathcal{A} \mathcal{q}} \#\left\{\mathbf{l} \in \mathcal{A}^{q}:(\mathbf{k}, \mathbf{l}) \in E(q, J)\right\} .
\end{aligned}
$$

Tsujii's notation $e(q)$ is defined as

$$
e(q)=\lim _{p \rightarrow \infty} \max _{k=0}^{b^{p}-1} e\left(q,\left[\frac{k}{b^{p}}, \frac{k+1}{b^{p}}\right]\right) .
$$

It is well-known that $e(q)=\max _{x \in[0,1)} e(q, x)$. For details, please see [7].
Now we define another useful function $\sigma(q)$ introduced by Shen [7]. A measurable function $\omega:[0,1) \rightarrow[0, \infty)$ is called a weight function if $\|\omega\|_{\infty}<\infty$ and $\|1 / \omega\|_{\infty}<\infty$. A testing function of order q is a measurable function $V:[0,1) \times \mathcal{A}^{q} \times \mathcal{A}^{q} \rightarrow[0, \infty)$. A testing function of order q is called admissible if there exist $\varepsilon>0$ and $\delta>0$ such that the following hold: For any $x \in[0,1)$, if $(\mathbf{u}, \mathbf{v}) \in E(q, x ; \varepsilon, \delta)$, then

$$
V(x, \mathbf{u}, \mathbf{v}) V(x, \mathbf{v}, \mathbf{u}) \geq 1 .
$$

Given a weight function ω and an admissible testing function V of order q, we define a new measurable function $\Sigma_{V, \omega}^{q}:[0,1) \rightarrow \mathbb{R}$ as follows: for each $x \in[0,1)$, let

$$
\Sigma_{V, \omega}^{q}(x)=\sup \left\{\frac{\omega(x)}{\omega(x(\mathbf{u}))} \sum_{\mathbf{v} \in \mathcal{A}^{q}} V(x, \mathbf{u}, \mathbf{v}): \mathbf{u} \in \mathcal{A}^{q}\right\}
$$

Define

$$
\sigma(q)=\inf \left\|\Sigma_{V, \omega}^{q}\right\|_{\infty},
$$

where the infimum is taken over all weight functions ω and admissible testing functions V of order q.

Let \mathbb{P} be the Bernoulli measure on $\mathcal{A}^{\mathbb{Z}^{+}}$with uniform probabilities $\{1 / b, 1 / b, \cdots, 1 / b\}$. For each $x \in \mathbb{R}$, define a Borel probability measure m_{x} on \mathbb{R} by

$$
m_{x}(A)=\mathbb{P}(\{\mathbf{v}: S(x, \mathbf{v}) \in A\}), \quad A \subset \mathbb{R}
$$

Then m_{x} 's are the conditional measures along vertical fibers of the unique SRB measure v of the skew product map $T: \mathbb{R} / \mathbb{Z} \times \mathbb{R} \rightarrow \mathbb{R} / \mathbb{Z} \times \mathbb{R}$,

$$
T(x, y)=\left(b x \bmod 1, \gamma y+\psi_{\theta}(x)\right) .
$$

That is, the SRB measure v can be defined by

$$
v(B)=\int_{0}^{1} m_{x}\left(B_{x}\right) d x
$$

for each Borel set $B \subset \mathbb{R} / \mathbb{Z} \times \mathbb{R}$, where $B_{x}=\{y \in \mathbb{R}:(x, y) \in B\}$.
We will use the following two theorems to prove our main result.
Theorem 2.1 ([7]). If there exists $q \in \mathbb{Z}^{+}$, such that $\sigma(q)<(\gamma b)^{q}$, then the SRB measure v is absolutely continuous with respect to the Lebesgue measure on $\mathbb{R} / \mathbb{Z} \times \mathbb{R}$ with square integrable density. In particular, for Lebesgue a.e. $x \in[0,1), m_{x}$ is absolutely continuous with respect to the Lebesgue measure on \mathbb{R} and with square integrable density. As a result, $\operatorname{dim}_{H} \Gamma W_{\lambda, b, \theta}=D_{\lambda, b}$.

Theorem 2.2 ([7]). $\sigma(q) \leq e(q)$.
We remark that Theorem 2.1 strengths a similar result by Tsujii [8], and the dimension formula $\operatorname{dim}_{H} \Gamma W_{\lambda, b, \theta}=D_{\lambda, b}$ follows from Ledrappier's theorem [6]. For details, please see [7].

The following result can be derived from the definitions of $E(q, x)$ and $E(q, J ; \varepsilon, \delta)$. The proof for general case is same as the special case $\theta=0$, which is presented in [7]. Thus we omit the details.

Lemma 2.1 ([7]). Let $x_{0} \in \mathbb{R}$, and $\mathbf{k}, \mathbf{1} \in \mathcal{A}^{q}$. Then
(1) $(\mathbf{k}, \mathbf{1}) \in E\left(q, x_{0}\right)$ if and only if there exist \mathbf{u} and \mathbf{v} in $\mathcal{A}^{\mathbb{Z}^{+}}$such that $F(x)=S(x, \mathbf{k u})-$ $S(x, \mathbf{l v})$ has a multiple zero at x_{0}, that is, $F\left(x_{0}\right)=F^{\prime}\left(x_{0}\right)=0$.
(2) If $(\mathbf{k}, \mathbf{1}) \notin E\left(q, x_{0}\right)$, then there is a neighborhood U of x_{0} and $\varepsilon, \delta>0$ such that $(\mathbf{k}, \mathbf{1}) \notin$ $E(q, U ; \varepsilon, \delta)$.
(3) For any compact $K \subset \mathbb{R}$, if $(\mathbf{k}, \mathbf{l}) \notin E(q, K)$, then there exist $\varepsilon, \delta>0$, such that $(\mathbf{k}, \mathbf{l}) \notin$ $E(q, K ; \varepsilon, \delta)$.
(4) For any $\varepsilon>\varepsilon^{\prime}>0, \delta>\delta^{\prime}>0$, there exists $\eta>0$, such that if $\left|x-x_{0}\right|<\eta,(\mathbf{k}, \mathbf{l}) \notin$ $E\left(q, x_{0} ; \varepsilon, \delta\right)$, then $(\mathbf{k}, \mathbf{l}) \notin E\left(q, x ; \varepsilon^{\prime}, \delta^{\prime}\right)$.

The following three lemmas are very useful in the proof of the results in [7]. They still hold in our case.

Lemma 2.2 ([7]). Assume that for all $x \in[0,1), E(q, x) \neq \mathcal{A}^{q} \times \mathcal{A}^{q}$. Then

$$
\sigma(q) \leq b^{q}-2+2 / \alpha
$$

where $\alpha=\alpha(b, q)>1$ satisfies $2-\alpha=\left(b^{q}-2\right) \alpha(\alpha-1)$.
Lemma 2.3 ([7]). Let $q \in \mathbb{Z}^{+}$. Suppose that there are constants $\varepsilon>0$ and $\delta>0$ and $K \subset[0,1)$ with the following properties:
(1) For $x \in K, e(q, x ; \varepsilon, \delta)=1$ and for $x \in[0,1) \backslash K, e(q, x ; \varepsilon, \delta) \leq 2$;
(2) If $(\mathbf{u}, \mathbf{v}) \in E(q, x ; \varepsilon, \delta)$ for some $x \in[0,1) \backslash K$ and $u \neq v$, then both $x(\mathbf{u})$ and $x(\mathbf{v})$ belong to K.
Then $\sigma(q) \leq \sqrt{2}$.
Lemma 2.4 ([7]). Let $q \in \mathbb{Z}^{+}$. Suppose that there are constants $\varepsilon>0$ and $\delta>0$ and $K \subset[0,1]$ with the following properties:
(1) For $x \in K, e(q, x ; \varepsilon, \delta)=1$ and for $x \in[0,1) \backslash K, e(q, x ; \varepsilon, \delta) \leq 2$;
(2) If $(\mathbf{u}, \mathbf{v}) \in E(q, x ; \varepsilon, \delta)$ for some $x \in[0,1) \backslash K$ and $\mathbf{u} \neq \mathbf{v}$, then either $x(\mathbf{u}) \in K$ or $x(\mathbf{v}) \in K$.
Then $\sigma(q) \leq(\sqrt{5}+1) / 2$.

3 The case when b is large

If $e(1)=1$, then form $\gamma b=1 / \lambda>1$, we have $e(1)<\gamma b$. Thus, we always assume that $e(1) \geq 2$. From $e(1)=\max _{x \in[0,1)} e(1, x)$, there exists $x^{*} \in[0,1)$, such that $e\left(1, x^{*}\right)=e(1)$. We will fix x^{*} in the sequel of the paper.

From definition, there exists $k \in \mathcal{A}$, such that $\#\left\{\ell \in \mathcal{A}:(k, \ell) \in E\left(1, x^{*}\right)\right\}=e(1)$. Let $\ell^{1}, \ell^{2}, \cdots, \ell^{e(1)}$ be all elements in \mathcal{A} such that $\left(k, \ell^{(i)}\right) \in E\left(1, x^{*}\right)$, and

$$
\sin \left(2 \pi x^{1}+\theta\right) \leq \sin \left(2 \pi x^{2}+\theta\right) \leq \cdots \leq \sin \left(2 \pi x^{e(1)}+\theta\right)
$$

where $x^{i}=\left(x^{*}+\ell^{i}\right) / b, i=1, \cdots, e(1)$.
Similarly as Lemma 3.2 and Lemma 3.3 in [7], we have the following two lemmas. Since the proof are same as that of in [7], we omit the details again.

Lemma 3.1. If $(k, \ell) \in E\left(1, x^{*}\right)$, then

$$
\begin{align*}
& \left|\sin \left(\frac{2 \pi\left(x^{*}+k\right)}{b}+\theta\right)-\sin \left(\frac{2 \pi\left(x^{*}+\ell\right)}{b}+\theta\right)\right| \leq \frac{2 \gamma}{1-\gamma^{\prime}} \tag{3.1a}\\
& \left|\cos \left(\frac{2 \pi\left(x^{*}+k\right)}{b}+\theta\right)-\cos \left(\frac{2 \pi\left(x^{*}+\ell\right)}{b}+\theta\right)\right| \leq \frac{2 \gamma}{b-\gamma^{\prime}} \tag{3.1b}\\
& 4 \sin ^{2} \frac{\pi(k-\ell)}{b} \leq\left(\frac{2 \gamma}{1-\gamma}\right)^{2}+\left(\frac{2 \gamma}{b-\gamma}\right)^{2} \tag{3.1c}
\end{align*}
$$

Lemma 3.2. Under the above circumstances, and with the assumption that $1 \leq i<j \leq e(1)$, the followings hold:

1. If $\ell^{i}=k$ or $\ell^{j}=k$, then $\sin \left(2 \pi x^{j}+\theta\right)-\sin \left(2 \pi x^{i}+\theta\right) \geq \frac{2 \beta_{0}(b, \gamma)}{b}$,
2. $\sin \left(2 \pi x^{j}+\theta\right)-\sin \left(2 \pi x^{i}+\theta\right) \geq \frac{2 \beta_{1}(b, \gamma)}{b}$,
3. If $\ell^{i}-\ell^{j} \neq \pm 1 \bmod b$, then $\sin \left(2 \pi x^{j}+\theta\right)-\sin \left(2 \pi x^{i}+\theta\right) \geq \frac{2 \beta_{2}(b, \gamma)}{b}$, where

$$
\begin{aligned}
& \beta_{0}(b, \gamma)=\sqrt{\max \left\{0,\left(b \sin \frac{\pi}{b}\right)^{2}-\frac{\gamma^{2} b^{2}}{(b-\gamma)^{2}}\right\}} \\
& \beta_{1}(b, \gamma)=\sqrt{\max \left\{0,\left(b \sin \frac{\pi}{b}\right)^{2}-\frac{4 \gamma^{2} b^{2}}{(b-\gamma)^{2}}\right\}} \\
& \beta_{2}(b, \gamma)=\sqrt{\max \left\{0,\left(b \sin \frac{2 \pi}{b}\right)^{2}-\frac{4 \gamma^{2} b^{2}}{(b-\gamma)^{2}}\right\}}
\end{aligned}
$$

Using these two lemmas and lemmas in Section 2, we can prove the following theorem, which implies that Theorem 1.1 holds if $b \geq 7$.

Theorem 3.1. 1. If $b \geq 7$, then $e(1)<\gamma b$.
2. If $b=4,5,6$, then either $e(1)=2$ or $e(1)<\gamma b$.
3. If $b=3$, then either $e(1) \leq 2$ or $\sigma(1)<\gamma b$.

Proof. Using the exactly same method as in [7], we can obtain the following result: if $b \geq 4$, then either $e(1)=2$ or $e(1)<\gamma b$; if $b=3$, then either $e(1) \leq 2$ or $\sigma(1)<\gamma b$. Thus, we only need to prove the theorem holds if $b \geq 7$ and $e(1)=2$. If $\gamma b>2$, then $\gamma b>e(1)$. Thus it suffices to show it is impossible that $e(1)=2$ and $\gamma b \leq 2$.

We will prove this by contradiction. Assume that $e(1)=2$ and $\gamma b \leq 2$, then $\left(\ell^{1}, \ell^{2}\right) \in$ $E\left(1, x^{*}\right)$. From Lemma 3.1 and $\gamma \leq 2 / b$, we have

$$
\begin{aligned}
& 4 \sin ^{2} \frac{\pi\left(\ell^{2}-\ell^{1}\right)}{b} \leq\left(\frac{2 \gamma}{1-\gamma}\right)^{2}+\left(\frac{2 \gamma}{b-\gamma}\right)^{2} \\
\leq & \left(\frac{2 \cdot(2 / b)}{1-2 / b}\right)^{2}+\left(\frac{2 \cdot(2 / b)}{b-2 / b}\right)^{2}=\frac{16}{(b-2)^{2}}+\frac{16}{\left(b^{2}-2\right)^{2}}
\end{aligned}
$$

Thus

$$
\begin{equation*}
\sin ^{2} \frac{\pi}{b} \leq \frac{4}{(b-2)^{2}}+\frac{4}{\left(b^{2}-2\right)^{2}} \tag{3.2}
\end{equation*}
$$

Consider the function $g(t)=g_{1}(t)-g_{2}(t)$, where

$$
g_{1}(t)=t^{2} \sin ^{2}(\pi / t) \quad \text { and } \quad g_{2}(t)=\frac{4 t^{2}}{(t-2)^{2}}+\frac{4 t^{2}}{\left(t^{2}-2\right)^{2}}
$$

It is easy to check that g_{1} is increasing on $(2,+\infty)$ while g_{2} is decreasing on $(2,+\infty)$. Thus, if $b \geq 7$, we have $g(b) \geq g(7)>9-8>0$, which implies that (3.2) does not hold for $b \geq 7$.

4 Proof of Theorem 1.1: the case $b=3,4,5,6$

In this section, we will restrict $\theta=-\pi / 2$. We will show the following result under this restriction: for $b=3,4,5,6$, if $e(1)=2$ then $\sigma(1)<\gamma b$. Combining this result with Theorem 3.1, we have either $e(1)<\gamma b$ or $\sigma(1)<\gamma b$ for $b=3,4,5,6$. Thus Theorem 1.1 holds for this case.

Using the same method as in the proof of Lemma 4.1 in [7], we have the following lemma. We omit the details.

Lemma 4.1. Assume that $0 \leq k<\ell<b$ satisfying $(k, \ell) \in E\left(1, x^{*}\right)$. Then for any $\kappa \in(0,1)$, one of the followings holds: either

$$
\begin{equation*}
\left|\sin \left(\frac{2 \pi\left(x^{*}+k\right)}{b}\right)-\sin \left(\frac{2 \pi\left(x^{*}+\ell\right)}{b}\right)\right| \leq \frac{2 \gamma \sqrt{1-\kappa^{2}}}{b}+\frac{2 \gamma^{2}}{b(b-\gamma)^{\prime}} \tag{4.1}
\end{equation*}
$$

or

$$
\begin{equation*}
\left|\cos \left(\frac{2 \pi\left(x^{*}+k\right)}{b}\right)-\cos \left(\frac{2 \pi\left(x^{*}+\ell\right)}{b}\right)\right| \leq 2 \kappa \gamma+\frac{2 \gamma^{2}}{1-\gamma} \tag{4.2}
\end{equation*}
$$

Notice that $\theta=-\pi / 2$. For $x \in \mathbb{R}$ and $\mathbf{i}=\left\{i_{n}\right\}_{n=1}^{\infty} \in \mathcal{A}^{\mathbb{Z}^{+}}$, we have

$$
\begin{equation*}
S(x, \mathbf{i})=\sum_{n=1}^{\infty} \gamma^{n-1} \psi\left(x_{n}\right)=2 \pi \sum_{n=1}^{\infty} \gamma^{n-1} \cos \left(2 \pi\left(\frac{x}{b^{n}}+\frac{i_{1}}{b^{n}}+\cdots+\frac{i_{n}}{b}\right)\right) \tag{4.3}
\end{equation*}
$$

Lemma 4.2. If $x \in \mathbb{R}$ and $\mathbf{i}=\left\{i_{n}\right\}_{n=1}^{\infty}$. Then the following equalities hold:

$$
\begin{align*}
& S(x, \mathbf{i})=S\left(1-x, \mathbf{i}^{\prime}\right) \tag{4.4a}\\
& S^{\prime}(x, \mathbf{i})=-S^{\prime}\left(1-x, \mathbf{i}^{\prime}\right) \tag{4.4b}
\end{align*}
$$

where $\mathbf{i}^{\prime}=\left\{i_{n}^{\prime}\right\}_{n=1}^{\infty}, i_{n}^{\prime}=b-1-i_{n}$.
Proof. Notice that

$$
\begin{aligned}
& \cos \left(2 \pi\left(\frac{1-x}{b^{n}}+\frac{b-1-i_{1}}{b^{n}}+\cdots+\frac{b-1-i_{n}}{b}\right)\right) \\
= & \cos \left(2 \pi\left(-\left(\frac{x}{b^{n}}+\frac{i_{1}}{b^{n}}+\cdots+\frac{i_{n}}{b}\right)+\left(\frac{1}{b^{n}}+\frac{b-1}{b^{n}}+\cdots+\frac{b-1}{b}\right)\right)\right) \\
= & \cos \left(2 \pi\left(-\left(\frac{x}{b^{n}}+\frac{i_{1}}{b^{n}}+\cdots+\frac{i_{n}}{b}\right)+1\right)\right) \\
= & \cos \left(2 \pi\left(\frac{x}{b^{n}}+\frac{i_{1}}{b^{n}}+\cdots+\frac{i_{n}}{b}\right)\right) .
\end{aligned}
$$

Thus (4.4a) holds. From

$$
S^{\prime}(x, \mathbf{i})=\frac{-4 \pi^{2}}{b} \sum_{n=1}^{\infty}\left(\frac{\gamma}{b}\right)^{n-1} \sin \left(2 \pi\left(\frac{x}{b^{n}}+\frac{i_{1}}{b^{n}}+\cdots+\frac{i_{n}}{b}\right)\right)
$$

we can see that (4.4b) holds.
From Lemma 4.2, we know that $(k, \ell) \in E\left(1, x^{*}\right)$ is equivalent to $(b-1-k, b-1-$ $\ell) \in E\left(1,1-x^{*}\right)$. Thus $e\left(1, x^{*}\right)=e\left(1,1-x^{*}\right)$. Hence, we may assume that $x^{*} \in\left[0, \frac{1}{2}\right]$.

4.1 The case $b=6$

Proposition 4.1. Assume $b=6$ and $e(1)=2$. Then $\sigma(1)<6 \gamma$.
Proof. It is clear that $6 \gamma>6 \cdot(1 / 3)=e(1) \geq \sigma(1)$ if $\gamma>\frac{1}{3}$. Thus we may assume that $\gamma \leq \frac{1}{3}$. From $e(1)=2$, there exist $0 \leq k<\ell<6$, such that $(k, \ell) \in E\left(1, x^{*}\right)$.

From $(k, \ell) \in E\left(1, x^{*}\right)$ and Lemma 3.1, we have

$$
\begin{align*}
& \left|\sin \left(\frac{2 \pi\left(x^{*}+k\right)}{6}\right)-\sin \left(\frac{2 \pi\left(x^{*}+\ell\right)}{6}\right)\right| \leq \frac{2 \gamma}{6-\gamma} \leq \frac{2 \cdot(1 / 3)}{6-(1 / 3)}=\frac{2}{17} \tag{4.5a}\\
& 4 \sin ^{2} \frac{\pi(\ell-k)}{6} \leq\left(\frac{2 \gamma}{1-\gamma}\right)^{2}+\left(\frac{2 \gamma}{6-\gamma}\right)^{2} \leq 1^{2}+(2 / 17)^{2}<2 \tag{4.5b}
\end{align*}
$$

If $\ell-k \neq \pm 1 \bmod 6$, then $4 \sin ^{2} \frac{\pi(\ell-k)}{6} \geq 4 \sin ^{2} \frac{2 \pi}{6}=3$, which contradicts with (4.5b). Thus $\ell-k= \pm 1 \bmod 6$. Combining this with $k<\ell$, we can see that $\ell-k=1$ or 5 .

Let $\kappa=0.98$. We will show that the inequality (4.2) does not hold. In fact, if (4.2) holds, then

$$
\left|\cos \left(\frac{2 \pi\left(x^{*}+k\right)}{6}\right)-\cos \left(\frac{2 \pi\left(x^{*}+\ell\right)}{6}\right)\right| \leq 2 \cdot 0.98 \cdot(1 / 3)+\frac{2 \cdot(1 / 3)^{2}}{1-1 / 3}<0.987 .
$$

Combining this with (4.5a), we have

$$
1=4 \sin ^{2} \frac{\pi}{6}=4 \sin ^{2}\left(\frac{\pi(\ell-k)}{6}\right)<(2 / 17)^{2}+0.987^{2}<0.989 .
$$

Contradiction! Thus the inequality (4.1) holds. Let $y^{*}=\pi\left(2 x^{*}+k+\ell\right) / 6$. Then $y^{*} \in$ $[0,5 \pi / 3]$ and

$$
\begin{aligned}
\left|\cos \left(y^{*}\right)\right| & =\left|2 \sin \frac{\pi}{6} \cos \left(y^{*}\right)\right|=\left|\sin \left(\frac{2 \pi\left(x^{*}+k\right)}{6}\right)-\sin \left(\frac{2 \pi\left(x^{*}+\ell\right)}{6}\right)\right| \\
& \leq \frac{2 \cdot(1 / 3) \cdot \sqrt{1-0.98^{2}}}{6}+\frac{2 \cdot(1 / 3)^{2}}{6 \cdot(6-1 / 3)}<0.029<\cos (49 \pi / 100) .
\end{aligned}
$$

Thus $y^{*} \in(49 \pi / 100,51 \pi / 100) \cup(149 \pi / 100,151 \pi / 100)$.
Case 1. $y^{*} \in(49 \pi / 100,51 \pi / 100)$. In this case, $2 x^{*}+k+\ell \in(294 / 100,306 / 100)$. If $k+1=\ell$, then $x^{*}+k \in(97 / 100,103 / 100)$. Since $x^{*} \in\left[0, \frac{1}{2}\right]$, we have $(k, \ell)=(1,2)$ and $x^{*} \in[0,3 / 100)$. If $k+5=\ell$, from $x^{*} \geq 0$ and $k \geq 0$, we have $2 x^{*}+2 k+5 \geq$ $5>306 / 100$, a contradiction!

Case 2. $y^{*} \in(149 \pi / 100,151 \pi / 100)$. In this case, $2 x^{*}+k+\ell \in(894 / 100,906 / 100)$. If $k+1=\ell$, then $x^{*}+k \in(397 / 100,403 / 100)$. Since $x^{*} \in\left[0, \frac{1}{2}\right]$, we have $(k, l)=$ $(4,5)$ and $x^{*} \in[0,3 / 100)$. If $k+5=\ell$, we must have $k=0$ and $\ell=5$. Thus, from $x^{*} \in\left[0, \frac{1}{2}\right]$, we can obtain $2 x^{*}+2 k+5 \leq 6<894 / 100$, a contradiction!

From Case 1 and Case 2, we can see that in the case that $\gamma \leq \frac{1}{3}$, if $0 \leq k<l<6$ satisfying $(k, l) \in E\left(1, x^{*}\right)$, then $0 \leq x^{*}<3 / 100$, and $(k, l)=(1,2)$ or $(k, l)=(4,5)$.

From above arguments, $e(1, x)=1$ if $x \in[3 / 100,1 / 2]$. Using the fact that $e(1, x)=$ $e(1,1-x)$, we also have $e(1, x)=1$ if $x \in[1 / 2,97 / 100]$.

Let $K=[3 / 100,97 / 100]$. Then $e(1, K)=1$ and $e(1,[0,1)) \leq 2$. From Lemma 2.1(3), there exist $\varepsilon>0, \delta>0$, such that $e(1, x ; \varepsilon, \delta)=1$ if $x \in K$, and $e(1, x ; \varepsilon, \delta) \leq 2$ if $x \in$ $[0,1) \backslash K$.

In the case that $x \in[0,1 / 2] \backslash K$, if $(k, \ell)=(1,2)$, then $x(2)=(x+2) / 6 \subseteq K$; if $(k, \ell)=(4,5)$, then $x(4)=(x+4) / 6 \subseteq K$. Using the symmetry (Lemma 4.2), we know that the conditions of Lemma 2.4 hold for $q=1$. Thus $\sigma(1) \leq(\sqrt{5}+1) / 2$.

If $\gamma>(\sqrt{5}+1) / 12$, then $6 \gamma>\sigma(1)$. Thus, it suffices to show it is impossible that $\gamma \leq(\sqrt{5}+1) / 12$ and $e(1)=2$. In fact, if this holds, then from Lemma 3.1,

$$
\begin{aligned}
& 4 \sin ^{2}\left(\frac{\pi(\ell-k)}{6}\right) \leq\left(\frac{2 \gamma}{6-\gamma}\right)^{2}+\left(\frac{2 \gamma}{1-\gamma}\right)^{2} \\
\leq & \left(\frac{(\sqrt{5}+1) / 6}{6-(\sqrt{5}+1) / 12}\right)^{2}+\left(\frac{(\sqrt{5}+1) / 6}{1-(\sqrt{5}+1) / 12}\right)^{2} \leq 0.56<4 \sin ^{2}\left(\frac{\pi}{6}\right)
\end{aligned}
$$

which contradicts with $k \neq \ell$.

4.2 The case $b=5$

Proposition 4.2. Assume $b=5$ and $e(1)=2$. Then $\sigma(1)<5 \gamma$.
Proof. If $\gamma>2 / 5$, then $5 \gamma>2=e(1) \geq \sigma(1)$. Thus we may assume that $\gamma \leq \frac{2}{5}$. From $e(1)=2$, there exist $0 \leq k<\ell<5$ such that $(k, \ell) \in E\left(1, x^{*}\right)$. Now we will show that $x^{*} \in(3 / 20,7 / 20)$ and $(k, \ell)=(3,4)$.

In fact, from $(k, \ell) \in E\left(1, x^{*}\right)$ and Lemma 3.1,

$$
\begin{aligned}
& \left|\sin \left(2 \pi \frac{x^{*}+k}{b}\right)-\sin \left(2 \pi \frac{x^{*}+\ell}{b}\right)\right| \leq \frac{2 \gamma}{5-\gamma} \leq \frac{2 \times \frac{2}{5}}{5-\frac{2}{5}}=\frac{4}{23} \\
& 4 \sin ^{2}\left(\frac{\pi(\ell-k)}{5}\right) \leq\left(\frac{2 \gamma}{1-\gamma}\right)^{2}+\left(\frac{2 \gamma}{5-\gamma}\right)^{2} \leq\left(\frac{2 \times \frac{2}{5}}{1-\frac{2}{5}}\right)^{2}+\left(\frac{2 \times \frac{2}{5}}{5-\frac{2}{5}}\right)^{2}<2
\end{aligned}
$$

Assume that $\ell-k \neq \pm 1 \bmod 5$. Then $\ell-k \in\{2,3\}$. Thus $4 \sin ^{2}(\pi(k-\ell) / 5) \geq$ $4 \sin ^{2}(2 \pi / 5)>3.618$, a contradiction. Thus $\ell-k= \pm 1 \bmod 5$. Since $\ell>k$, we have $\ell-k=1$ or $\ell-k=4$.

Let $\kappa=\sqrt{2} / 2$. We will show that inequality (4.2) in Lemma 4.1 does not hold. In fact, if (4.2) holds, then

$$
\begin{aligned}
& 1.38<4 \sin ^{2}\left(\frac{\pi}{5}\right)=4 \sin ^{2}\left(\frac{\pi(k-\ell)}{5}\right) \\
= & \left|\sin \left(2 \pi \frac{x^{*}+k}{5}\right)-\sin \left(2 \pi \frac{x^{*}+\ell}{5}\right)\right|^{2}+\left|\cos \left(2 \pi \frac{x^{*}+k}{5}\right)-\cos \left(2 \pi \frac{x^{*}+\ell}{5}\right)\right|^{2} \\
\leq & \left(\frac{4}{23}\right)^{2}+\left(2 \times \frac{\sqrt{2}}{2} \times \frac{2}{5}+\frac{2 \times(2 / 5)^{2}}{1-\frac{2}{5}}\right)^{2}<\left(\frac{4}{23}\right)^{2}+(1.1)^{2}<1.3
\end{aligned}
$$

a contradiction. Thus the inequality (4.1) in Lemma 4.1 holds. Let $y^{*}=\pi\left(2 x^{*}+k+\ell\right) / 5$. We have

$$
\begin{aligned}
\left|2 \cos \left(y^{*}\right) \sin \left(\frac{\pi}{5}\right)\right| & =\left|2 \cos \left(y^{*}\right) \sin \left(\frac{\pi(\ell-k)}{5}\right)\right| \\
& =\left|\sin \left(2 \pi \frac{x^{*}+k}{5}\right)-\sin \left(2 \pi \frac{x^{*}+\ell}{5}\right)\right| \\
& \leq \frac{2 \times \frac{2}{5} \times \sqrt{1-\left(\frac{\sqrt{2}}{2}\right)^{2}}}{5}+\frac{2 \times\left(\frac{2}{5}\right)^{2}}{5 \times\left(5-\frac{2}{5}\right)}<0.128
\end{aligned}
$$

Thus

$$
\left|\cos \left(y^{*}\right)\right| \leq \frac{0.128}{2 \sin (\pi / 5)}<0.11<\cos \left(\frac{23 \pi}{50}\right)
$$

Since $y^{*} \in[0,8 \pi / 5]$, we have $y^{*} \in(23 \pi / 50,27 \pi / 50) \cup(73 \pi / 50,77 \pi / 50)$.
Case 1. $y^{*} \in(23 \pi / 50,27 \pi / 50)$. In this case, $2 x^{*}+k+\ell \in(23 / 10,27 / 10)$. If $\ell-k=1$, then $x^{*}+k \in(13 / 20,17 / 20)$, which contradicts the fact that $x^{*} \in[0,1 / 2)$ and k is a nonnegative integer. If $\ell-k=4$, then $2 x^{*}+2 k+4 \geq 4>27 / 10$, which also contradicts the fact that $x^{*} \in[0,1 / 2)$ and k is a nonnegative integer.
Case 2. $y^{*} \in(73 \pi / 50,77 \pi / 50)$. In this case, $2 x^{*}+k+\ell \in(73 / 10,77 / 10)$. If $\ell-k=1$, then $x^{*}+k \in(63 / 20,67 / 20)$. Thus $(k, \ell)=(3,4)$ and $x^{*} \in(3 / 20,7 / 20)$. If $\ell-k=$ 4 , then $x^{*}+k \in(33 / 20,37 / 20)$, which also contradicts the fact that $x^{*} \in[0,1 / 2)$ and k is a nonnegative integer.

Thus, in the case that $\gamma \in(0,2 / 5]$, if $0 \leq k<\ell<5$ satisfying $(k, \ell) \in E\left(1, x^{*}\right)$, then $x^{*} \in(3 / 20,7 / 20)$ and $(k, \ell)=(3,4)$.

From above arguments, $e(1, x)=1$ if $x \in[0,3 / 20] \cup[7 / 20,1 / 2]$. Using the fact that $e(1, x)=e(1,1-x)$, we have $e(1, x)=1$ if $x \in[1 / 2,13 / 20] \cup[17 / 20,1]$.

Let $K=[0,3 / 20] \cup[7 / 20,13 / 20] \cup[17 / 20,1]$. Then $e(1, K)=1$ and $e(1,[0,1)) \leq 2$. From Lemma 2.1, there exist $\varepsilon, \delta>0$, such that $e(1, x ; \varepsilon, \delta)=1$ if $x \in K$, and $e(1, x ; \varepsilon, \delta) \leq 2$ if $x \in[0,1) \backslash K$.

If $x \in(3 / 20,1 / 4)$, we have $x(3)=(x+3) / 5 \in(7 / 20,13 / 20) \subseteq K$. If $x \in[1 / 4,7 / 20)$, we have $x(4)=(x+4) / 5 \in[17 / 20,1) \subseteq K$. From Lemma 2.4, we have $\sigma(1) \leq(\sqrt{5}+$ 1)/2.

If $\gamma>(\sqrt{5}+1) / 10$, then $5 \gamma>\sigma(1)$. Thus, it suffices to show it is impossible that $\gamma \leq(\sqrt{5}+1) / 10$ and $e(1)=2$. In fact, if this holds, then from Lemma 3.1,

$$
\begin{aligned}
& 4 \sin ^{2}\left(\frac{\pi(\ell-k)}{5}\right) \leq\left(\frac{2 \gamma}{5-\gamma}\right)^{2}+\left(\frac{2 \gamma}{1-\gamma}\right)^{2} \\
\leq & \left(\frac{(\sqrt{5}+1) / 5}{5-(\sqrt{5}+1) / 10}\right)^{2}+\left(\frac{(\sqrt{5}+1) / 5}{1-(\sqrt{5}+1) / 10}\right)^{2}<0.9348<4 \sin ^{2}\left(\frac{\pi}{5}\right)
\end{aligned}
$$

which contradicts with $k \neq \ell$.

4.3 The case $b=4$

Proposition 4.3. Assume that $b=4$ and $e(1)=2$. Then $\sigma(1)<4 \gamma$.
Proof. If $\gamma>\frac{1}{2}$, then $4 \gamma>2=e(1) \geq \sigma(1)$. Thus we may assume that $\gamma \leq \frac{1}{2}$. From $e(1)=2$, there exist $0 \leq k<\ell<4$ such that $(k, \ell) \in E\left(1, x^{*}\right)$. Now we will show that $x^{*} \in(9 / 25,1 / 2]$ and $(k, \ell)=(2,3)$.

In fact, from $(k, \ell) \in E\left(1, x^{*}\right)$ and Lemma 3.1,

$$
\begin{equation*}
\left|\sin \left(2 \pi \frac{x^{*}+k}{4}\right)-\sin \left(2 \pi \frac{x^{*}+\ell}{4}\right)\right| \leq \frac{2 \gamma}{4-\gamma} \leq \frac{2 \times \frac{1}{2}}{4-\frac{1}{2}}=\frac{2}{7} \tag{4.6}
\end{equation*}
$$

Let $\kappa=\frac{1}{3}$. We will show that the inequality (4.2) in Lemma 4.1 does not hold. In fact, if (4.2) holds, then

$$
\begin{aligned}
2 & =4 \sin ^{2}\left(\frac{\pi}{4}\right) \leq 4 \sin ^{2}\left(\frac{\pi(k-\ell)}{4}\right) \\
& =\left|\sin \left(2 \pi \frac{x^{*}+k}{4}\right)-\sin \left(2 \pi \frac{x^{*}+\ell}{4}\right)\right|^{2}+\left|\cos \left(2 \pi \frac{x^{*}+k}{4}\right)-\cos \left(2 \pi \frac{x^{*}+\ell}{4}\right)\right|^{2} \\
& \leq\left(\frac{2}{7}\right)^{2}+\left(2 \times \frac{1}{3} \times \frac{1}{2}+\frac{2 \times(1 / 2)^{2}}{1-\frac{1}{2}}\right)^{2}<\left(\frac{2}{7}\right)^{2}+\left(\frac{4}{3}\right)^{2}<2 .
\end{aligned}
$$

A contradiction. Thus (4.1) in Lemma 4.1 holds. Let $y^{*}=\pi\left(2 x^{*}+k+\ell\right) / 4$. We have

$$
\begin{aligned}
\left|2 \cos \left(y^{*}\right) \sin \left(\frac{\pi}{4}\right)\right| & \leq\left|2 \cos \left(y^{*}\right) \sin \left(\frac{\pi(\ell-k)}{4}\right)\right| \\
& =\left|\sin \left(2 \pi \frac{x^{*}+k}{4}\right)-\sin \left(2 \pi \frac{x^{*}+\ell}{4}\right)\right| \\
& \leq \frac{2 \times \frac{1}{2} \times \sqrt{1-\left(\frac{1}{3}\right)^{2}}}{4}+\frac{2 \times\left(\frac{1}{2}\right)^{2}}{4 \times\left(4-\frac{1}{2}\right)}=\frac{\sqrt{2}}{6}+\frac{1}{28}<0.28
\end{aligned}
$$

Thus $\left|\cos \left(y^{*}\right)\right| \leq 0.28 / \sqrt{2}<0.2<\cos (43 \pi / 100)$. Since $y^{*} \in[0,3 \pi / 2]$, we have $y^{*} \in$ $(43 \pi / 100,57 \pi / 100) \cup(143 \pi / 100,3 \pi / 2)$.

If $y^{*} \in(43 \pi / 100,57 \pi / 100)$, then $2 x^{*}+k+\ell \in(43 / 25,57 / 25)$. In this case, we have $k+\ell=2$ so that $(k, \ell)=(0,2)$ and $x^{*} \in[0,7 / 50)$. If $y^{*} \in(143 \pi / 100,3 \pi / 2]$, then $2 x^{*}+k+\ell \in(143 / 25,6]$. In this case, we have $k+\ell=5$ so that $(k, \ell)=(2,3)$ and $x^{*} \in(9 / 25,1 / 2]$.

In the case that $\gamma \leq \frac{1}{2}$, we have $(0,2) \notin E(1, x)$ for all $x \in\left[0, \frac{1}{2}\right]$. In fact, assume that $(0,2) \in E(1, x)$. Then there exist $\mathbf{k}=\left\{k_{n}\right\}_{n=1}^{\infty}$ and $\mathbf{l}=\left\{\ell_{n}\right\}_{n=1}^{\infty}$, such that $S(x, \mathbf{k})-$ $S(x, \mathbf{l})=0$, where $k_{1}=0, \ell_{1}=2$.

Let $x_{n}=\left(x+4 k_{2}+\cdots+4^{n-1} k_{n}\right) / 4^{n}, y_{n}=\left(x+2+4 \ell_{2}+\cdots+4^{n-1} \ell_{n}\right) / 4^{n}$. Then

$$
\begin{aligned}
& \left|\cos \left(2 \pi x_{1}\right)-\cos \left(2 \pi y_{1}\right)+\gamma\left(\cos \left(2 \pi x_{2}\right)-\cos \left(2 \pi y_{2}\right)\right)\right| \\
= & \left|-\sum_{n=3}^{\infty} \gamma^{n-1}\left(\cos \left(2 \pi x_{n}\right)-\cos \left(2 \pi y_{n}\right)\right)\right| \\
\leq & 2 \sum_{n=2}^{\infty} \gamma^{n} \leq \frac{2 \gamma^{2}}{1-\gamma} \leq \frac{2 \times\left(\frac{1}{2}\right)^{2}}{1-\frac{1}{2}}=1 .
\end{aligned}
$$

Notice that

$$
\begin{aligned}
& \cos \left(2 \pi x_{2}\right)-\cos \left(2 \pi y_{2}\right)=\cos \left(\frac{\pi x}{8}+\frac{k_{2} \pi}{2}\right)-\cos \left(\frac{\pi(x+2)}{8}+\frac{\ell_{2} \pi}{2}\right) \\
= & -2 \sin \left(\frac{\pi(x+1)}{8}+\frac{\left(k_{2}+\ell_{2}\right) \pi}{4}\right) \sin \left(-\frac{\pi}{8}+\frac{\left(k_{2}-\ell_{2}\right) \pi}{4}\right) \geq-2 \sin \frac{3 \pi}{8} .
\end{aligned}
$$

Thus

$$
\cos \left(2 \pi x_{1}\right)-\cos \left(2 \pi y_{1}\right) \leq 1-\gamma\left(\cos \left(2 \pi x_{2}\right)-\cos \left(2 \pi y_{2}\right)\right) \leq 1+\sin \frac{3 \pi}{8}<1.93
$$

From the inequality (4.6), we have

$$
\begin{aligned}
& 4=4 \sin ^{2}\left(\frac{2 \pi}{4}\right)=4 \sin ^{2}\left(\frac{\pi(\ell-k)}{4}\right) \\
= & \left|\sin \left(2 \pi x_{1}\right)-\sin \left(2 \pi y_{1}\right)\right|^{2}+\left|\cos \left(2 \pi x_{1}\right)-\cos \left(2 \pi y_{1}\right)\right|^{2} \\
< & \left(\frac{2}{7}\right)^{2}+1.93^{2}<3.81 .
\end{aligned}
$$

A contradiction. Thus, in the case that $\gamma \leq 1 / 2$, if $0 \leq k<\ell<4$ satisfying $(k, \ell) \in$ $E\left(1, x^{*}\right)$, then $x^{*} \in(9 / 25,1 / 2]$ and $(k, \ell)=(2,3)$.

From the above arguments, $e(1, x)=1$ if $x \in[0,9 / 25]$. Using the fact that $e(1, x)=$ $e(1,1-x)$, we have $e(1, x)=1$ if $x \in[16 / 25,1]$.

Let $K=[0,9 / 25] \cup[16 / 25,1]$. Then $e(1, K)=1$ and $e(1,[0,1)) \leq 2$. From Lemma 2.1, there exist $\varepsilon, \delta>0$, such that $e(1, x ; \varepsilon, \delta)=1$ if $x \in K$, and $e(1, x ; \varepsilon, \delta) \leq 2$ if $x \in[0,1) \backslash K$.

In the case that $x \in(9 / 25,1 / 2]$, we have $x(3)=(x+3) / 4 \in[16 / 25,1] \subseteq K$. From Lemma 2.4, we have $\sigma(1) \leq(\sqrt{5}+1) / 2$.

If $\gamma>(\sqrt{5}+1) / 8$, then $4 \gamma>\sigma(1)$. Thus, it suffices to show it is impossible that $\gamma \leq(\sqrt{5}+1) / 8$ and $e(1)=2$. In fact, if this holds, then from Lemma 3.1,

$$
\begin{aligned}
& 4 \sin ^{2}\left(\frac{\pi(\ell-k)}{4}\right) \leq\left(\frac{2 \gamma}{4-\gamma}\right)^{2}+\left(\frac{2 \gamma}{1-\gamma}\right)^{2} \\
\leq & \left(\frac{(\sqrt{5}+1) / 4}{4-(\sqrt{5}+1) / 8}\right)^{2}+\left(\frac{(\sqrt{5}+1) / 4}{1-(\sqrt{5}+1) / 8}\right)^{2}<1.897<4 \sin ^{2}\left(\frac{\pi}{4}\right)
\end{aligned}
$$

which contradicts with $k \neq \ell$.

4.4 The case $b=3$

Proposition 4.4. Assume $b=3$ and $e(1)=2$. Then $\sigma(1)<3 \gamma$.
Proof. If $\gamma>2 / 3$, then $3 \gamma>2=e(1) \geq \sigma(1)$. Thus we may assume that $\gamma \leq 2 / 3$. From $e(1)=2$, there exist $0 \leq k<\ell<3$ such that $(k, \ell) \in E\left(1, x^{*}\right)$.

Let $y^{*}=\pi\left(2 x^{*}+k+\ell\right) / 3$. From $(k, \ell) \in E\left(1, x^{*}\right)$ and Lemma 3.1,

$$
\begin{aligned}
& 2\left|\cos \left(y^{*}\right)\right|\left|\sin \left(\frac{\pi(\ell-k)}{3}\right)\right| \\
= & \left|\sin \left(2 \pi \frac{x^{*}+k}{3}\right)-\sin \left(2 \pi \frac{x^{*}+\ell}{3}\right)\right| \\
\leq & \frac{2 \gamma}{3-\gamma} \leq \frac{4 / 3}{3-2 / 3}=\frac{4}{7} .
\end{aligned}
$$

Thus $\left|\cos \left(y^{*}\right)\right| \leq 4 /(7 \sqrt{3})<\cos (39 \pi / 100)$. Hence $y^{*} \in(39 \pi / 100,61 \pi / 100)$. Since $y^{*} \in[0,4 \pi / 3]$, we have $2 x^{*}+k+\ell \in(117 / 100,183 / 100)$. Thus $(k, \ell)=(0,1)$ and $x^{*} \in(17 / 200,83 / 200)$.

From above arguments, $e(1, x)=1$ if $x \in[0,17 / 200] \cup[83 / 200,1 / 2]$. Using the fact that $e(1, x)=e(1,1-x), e(1, x)=1$ if $x \in[1 / 2,117 / 200] \cup[183 / 200,1]$.

Let $K_{1}=[0,17 / 200] \cup[83 / 200,117 / 200] \cup[183 / 200,1]$. From Lemma 2.1, there exist $\varepsilon>0, \delta>0$, such that $e(1, x ; \varepsilon, \delta)=1$ if $x \in K_{1}$, and $e(1, x ; \varepsilon, \delta) \leq 2$ if $x \in[0,1) \backslash K_{1}$.

If $x \in(17 / 200,51 / 200)$, we have $x(0)=x / 3 \in(17 / 600,17 / 200) \subseteq K_{1}$.
If $x \in[51 / 200,83 / 200)$, we have $x(1)=(x+1) / 3 \in(251 / 600,283 / 600) \subseteq K_{1}$.
From Lemma 2.4, we have $\sigma(1) \leq(\sqrt{5}+1) / 2$. Thus, if $\gamma>(\sqrt{5}+1) / 6$, then $3 \gamma>$ $\sigma(1)$.

Now we will show: if $\gamma \leq(\sqrt{5}+1) / 6$ and $(k, \ell)=(0,1)$, then $x^{*} \in(23 / 200,77 / 200)$. In fact, from $(k, \ell) \in E\left(1, x^{*}\right)$ and Lemma 3.1,

$$
\begin{aligned}
& 2\left|\sin \left(\frac{\pi(k-\ell)}{3}\right) \cos \left(y^{*}\right)\right| \\
= & \left|\sin \left(2 \pi \frac{x^{*}+k}{3}\right)-\sin \left(2 \pi \frac{x^{*}+\ell}{3}\right)\right| \\
\leq & \frac{2 \gamma}{3-\gamma} \leq \frac{(\sqrt{5}+1) / 3}{3-(\sqrt{5}+1) / 6} \leq 0.4384
\end{aligned}
$$

Thus $\left|\cos \left(y^{*}\right)\right| \leq 0.4384 / \sqrt{3}<\cos (0.41 \pi)$. Hence $y^{*} \in(0.41 \pi, 0.59 \pi)$. By the definition of y^{*}, we have $2 x^{*}+k+\ell \in(1.23,1.77)$. Combining this with $(k, \ell)=(0,1)$, we have $x^{*} \in(23 / 200,77 / 200)$.

Now we will show: if $\gamma \leq(\sqrt{5}+1) / 6$ and $x \in(23 / 200,1 / 8]$, then $(0,1) \notin E(1, x)$.

In fact, assume that $(0,1) \in E(1, x)$. Then from Lemma 3.1,

$$
\begin{aligned}
& 3=4 \sin ^{2}\left(\frac{\pi}{3}\right) \\
= & \left|\cos \left(2 \pi \frac{x+0}{3}\right)-\cos \left(2 \pi \frac{x+1}{3}\right)\right|^{2}+\left|\sin \left(2 \pi \frac{x+0}{3}\right)-\sin \left(2 \pi \frac{x+1}{3}\right)\right|^{2} \\
\leq & \left(\sqrt{3} \sin \left(\pi \frac{2 x+1}{3}\right)\right)^{2}+\left(\frac{2 \gamma}{3-\gamma}\right)^{2} \\
\leq & \left(\sqrt{3} \sin \frac{5 \pi}{12}\right)^{2}+\left(\frac{(\sqrt{5}+1) / 3}{3-(\sqrt{5}+1) / 6}\right)^{2} \leq 2.9913 .
\end{aligned}
$$

A contradiction. If $x \in[3 / 8,77 / 200)$, then $0 \leq \sin ((2 x+1) \pi / 3) \leq \sin (7 \pi / 12)=$ $\sin (5 \pi / 12)$. Thus, using the same argument, we can see that: if $\gamma \leq(\sqrt{5}+1) / 6$ and $x \in[3 / 8,77 / 200)$, then $(0,1) \notin E(1, x)$.

From the above arguments, in the case that $\gamma \leq(\sqrt{5}+1) / 6$, if $0 \leq k<\ell<3$ satisfying $(k, \ell) \in E\left(1, x^{*}\right)$, then $x^{*} \in(1 / 8,3 / 8)$ and $(k, \ell)=(0,1)$.

Let $K_{2}=[0,1 / 8] \cup[3 / 8,5 / 8] \cup[7 / 8,1]$. From Lemma 2.1, there exist $\varepsilon, \delta>0$, such that $e(1, x ; \varepsilon, \delta)=1$ if $x \in K_{2}$, and $e(1, x ; \varepsilon, \delta) \leq 2$ if $x \in[0,1) \backslash K_{2}$.

In the case that $x \in(1 / 8,3 / 8)$, we have $x(0)=x / 3 \in(1 / 24,1 / 8) \subseteq K_{2}$, and $x(1)=$ $(x+1) / 3 \in(3 / 8,11 / 24) \subseteq K_{2}$. From Lemma 2.3, $\sigma(1) \leq \sqrt{2}$.

If $\gamma>\sqrt{2} / 3$, then $3 \gamma>\sqrt{2} \geq \sigma(1)$. Thus, it suffices to show that if $\gamma \leq \sqrt{2} / 3$, then it is impossible that $e(1)=2$. In fact, assume that there exists $x \in\left(\frac{1}{8}, \frac{3}{8}\right)$ satisfying $(0,1) \in E(1, x)$. From Lemma 2.1, we know that there exist $\mathbf{k}=\left\{k_{n}\right\}_{n=1}^{\infty}$ and $\mathbf{l}=\left\{\ell_{n}\right\}_{n=1}^{\infty}$ such that $S(x, \mathbf{k})-S(x, \mathbf{l})=0$, where $k_{1}=0, \ell_{1}=1$.

Let $x_{n}=\left(x+3 k_{2}+\cdots+3^{n-1} k_{n}\right) / 3^{n}, y_{n}=\left(x+1+3 \ell_{2}+\cdots+3^{n-1} \ell_{n}\right) / 3^{n}$. We have

$$
\begin{aligned}
& \left|\cos \left(2 \pi x_{1}\right)-\cos \left(2 \pi y_{1}\right)+\gamma\left(\cos \left(2 \pi x_{2}\right)-\cos \left(2 \pi y_{2}\right)\right)\right| \\
= & \left|-\sum_{n=3}^{\infty} \gamma^{n-1}\left(\cos \left(2 \pi x_{n}\right)-\cos \left(2 \pi y_{n}\right)\right)\right| \leq 2 \sum_{n=2}^{\infty} \gamma^{n} \leq \frac{2 \gamma^{2}}{1-\gamma} .
\end{aligned}
$$

Notice that

$$
\begin{aligned}
& \cos \left(2 \pi x_{2}\right)-\cos \left(2 \pi y_{2}\right) \\
= & \cos \frac{2 \pi\left(x+3 k_{2}\right)}{9}-\cos \frac{2 \pi\left(x+1+3 \ell_{2}\right)}{9} \\
\geq & \cos \left(\frac{2 \pi x}{9}+\frac{2 \pi}{3}\right)-\cos \left(\frac{2 \pi x}{9}+\frac{2 \pi}{9}\right) \\
= & -2 \sin \left(\frac{2 \pi x}{9}+\frac{4 \pi}{9}\right) \sin \left(\frac{2 \pi}{9}\right) \geq-2 \sin \left(\frac{2 \pi}{9}\right)>-1.3 .
\end{aligned}
$$

Thus $\cos \left(2 \pi x_{1}\right)-\cos \left(2 \pi y_{1}\right) \leq 2 \gamma^{2} /(1-\gamma)+1.3 \gamma$. Hence

$$
\begin{aligned}
3 & =4 \sin ^{2}\left(\frac{\pi}{3}\right)=\left|\cos \left(2 \pi x_{1}\right)-\cos \left(2 \pi y_{1}\right)\right|^{2}+\left|\sin \left(2 \pi x_{1}\right)-\sin \left(2 \pi y_{1}\right)\right|^{2} \\
& \leq\left(\frac{2 \gamma^{2}}{1-\gamma}+1.3 \gamma\right)^{2}+\left(2\left|\cos \left(\frac{\pi(2 x+1)}{3}\right)\right| \sin \left(\frac{\pi}{3}\right)\right)^{2} \\
& \leq\left(\frac{2 \times(\sqrt{2} / 3)^{2}}{1-\sqrt{2} / 3}+1.3 \times \frac{\sqrt{2}}{3}\right)^{2}+\left(\sqrt{3} \cos \left(\frac{5 \pi}{12}\right)\right)^{2}<2.3140 .
\end{aligned}
$$

A contradiction.

Acknowledgements

The authors would like to thank Professor Weixiao Shen for helpful suggestions.

References

[1] K. Baránski, B. Bárány and J. Romanowska, On the dimension of the graph of the classical Weierstrass function, Adv. Math., 265 (2014), 32-59.
[2] G. H. Hardy, Weierstrass's non-differentiable function, Trans. Am. Math. Soc., 17 (1916), 301-325.
[3] T. Y. Hu and K. S. Lau, Fractal dimensions and singularities of the Weierstrass type functions, Trans. Amer. Math. Soc., 335 (1993), 649-655.
[4] J. L. Kaplan, J. Mallet-Paret and J. A. Yorke, The Lyapunov dimension of a nowhere differentiable attracting torus, Ergod. Theory Dyn. Syst., 4 (1984), 261-281.
[5] G. Keller, An elementary proof for the dimension of the graph of the classical Weierstrass function, Ann. Inst. Henri Poincaré Probab. Stat., 53 (2017), 169-181.
[6] F. Ledrappier, On the dimension of some graphs, Contemp. Math., 135 (1992), 285-293.
[7] W. Shen, Hausdorff dimension of the graphs of the classical Weierstrass functions, Math. Z., 289 (2018), 223-266.
[8] M. Tsujii, Fat Solenoidal attractors, Nonlinearity, 14 (2001), 1011-1027.

[^0]: *Corresponding author. Email addresses: ruanhj@zju.edu.cn (H. J. Ruan), 21535049@zju.edu.cn (N. Zhang)

