Gradient Estimates of Solutions to the Conductivity Problem with Flatter Insulators

YanYan Li and Zhuolun Yang*
Department of Mathematics, Rutgers University, 110 Frelinghuysen Rd, Piscataway, NJ 08854, USA

Received 7 February 2021; Accepted (in revised version) 15 February 2021
Dedicated to Prof. Paul H. Rabinowitz with admiration on the occasion of his 80th birthday

Abstract

We study the insulated conductivity problem with inclusions embedded in a bounded domain in \mathbb{R}^{n}. When the distance of inclusions, denoted by ε, goes to 0 , the gradient of solutions may blow up. When two inclusions are strictly convex, it was known that an upper bound of the blow-up rate is of order $\varepsilon^{-1 / 2}$ for $n=2$, and is of order $\varepsilon^{-1 / 2+\beta}$ for some $\beta>0$ when dimension $n \geq 3$. In this paper, we generalize the above results for insulators with flatter boundaries near touching points.

Key Words: Conductivity problem, harmonic functions, maximum principle, gradient estimates. AMS Subject Classifications: 35B44, 35J25, 35J57, 74B05, 74G70, 78A48

1 Introduction and main results

Let Ω be a bounded domain in \mathbb{R}^{n} with C^{2} boundary, and let D_{1}^{*} and D_{2}^{*} be two open sets whose closure belongs to Ω, touching only at the origin with the inner normal vector of ∂D_{1}^{*} pointing in the positive x_{n}-direction. Denote $x=\left(x^{\prime}, x_{n}\right)$. Translating D_{1}^{*} and D_{2}^{*} by $\frac{\varepsilon}{2}$ along x_{n}-axis, we obtain

$$
D_{1}^{\varepsilon}:=D_{1}^{*}+\left(0^{\prime}, \varepsilon / 2\right) \quad \text { and } \quad D_{2}^{\varepsilon}:=D_{2}^{*}-\left(0^{\prime}, \varepsilon / 2\right) .
$$

When there is no confusion, we drop the superscripts ε and denote $D_{1}:=D_{1}^{\varepsilon}$ and $D_{2}:=$ D_{2}^{ε}. Denote $\widetilde{\Omega}:=\Omega \backslash \overline{\left(D_{1} \cup D_{2}\right)}$. A simple model for electric conduction can be formulated as the following elliptic equation:

$$
\begin{cases}\operatorname{div}\left(a_{k}(x) \nabla u_{k}\right)=0 & \text { in } \Omega, \tag{1.1}\\ u_{k}=\varphi(x) & \text { on } \partial \Omega,\end{cases}
$$

[^0]where $\varphi \in C^{2}(\partial \Omega)$ is given, and
\[

a_{k}(x)= $$
\begin{cases}k \in(0, \infty) & \text { in } D_{1} \cup D_{2} \\ 1 & \text { in } \widetilde{\Omega}\end{cases}
$$
\]

refers to conductivities. The solution u_{k} and its gradient ∇u_{k} represent the voltage potential and the electric fields respectively. From an engineering point of view, It is an interesting problem to capture the behavior of ∇u_{k}. Babuška, et al. [3] numerically analyzed that the gradient of solutions to an analogous elliptic system stays bounded regardless of ε, the distance between the inclusions. Bonnetier and Vogelius [5] proved that for a fixed $k,\left|\nabla u_{k}\right|$ is bounded for touching disks D_{1} and D_{2} in dimension $n=2$. A general result was obtained by Li and Vogelius [11] for general second order elliptic equations of divergence form with piecewise Hölder coefficients and general shape of inclusions D_{1} and D_{2} in any dimension. When k is bounded away from 0 and ∞, they established a $W^{1, \infty}$ bound of u_{k} in Ω, and a $C^{1, \alpha}$ bound in each region that do not depend on ε. This result was further extended by Li and Nirenberg [10] to general second order elliptic systems of divergence form. Some higher order estimates with explicit dependence on r_{1}, r_{2}, k and ε were obtained by Dong and Li [7] for two circular inclusions of radius r_{1} and r_{2} respectively in dimension $n=2$. There are still some related open problems on general elliptic equations and systems. We refer to p. 94 of [11] and p. 894 of [10].

When the inclusions are insulators ($k=0$), it was shown in $[6,9,13]$ that the gradient of solutions generally becomes unbounded, as $\varepsilon \rightarrow 0$. It was known that (see e.g., Appendix of [4]) when $k \rightarrow 0, u_{k}$ converges to the solution of the following insulated conductivity problem:

$$
\begin{cases}-\Delta u=0 & \text { in } \widetilde{\Omega}, \tag{1.2}\\ \frac{\partial u}{\partial v}=0 & \text { on } \partial D_{i,}, \quad i=1,2 \\ u=\varphi & \text { on } \partial \Omega\end{cases}
$$

Here v denotes the inward unit normal vectors on $\partial D_{i}, i=1,2$.
The behavior of the gradient in terms of ε has been studied by Ammari et al. in [1] and [2], where they considered the insulated problem on the whole Euclidean space:

$$
\begin{cases}\Delta u=0 & \text { in } \mathbb{R}^{n} \backslash \overline{\left(D_{1} \cup D_{2}\right)}, \tag{1.3}\\ \frac{\partial u}{\partial v}=0 & \text { on } \partial D_{i}, \quad i=1,2 \\ u(x)-H(x)=\mathcal{O}\left(|x|^{n-1}\right) & \text { as }|x| \rightarrow \infty\end{cases}
$$

They established when dimension $n=2, D_{1}^{*}$ and D_{2}^{*} are disks of radius r_{1} and r_{2} respectively, and H is a harmonic function in \mathbb{R}^{2}, the solution u of (1.3) satisfies

$$
\|\nabla u\|_{L^{\infty}\left(B_{4}\right)} \leq C \varepsilon^{-1 / 2}
$$

for some positive constant C independent of ε. They also showed that the upper bounds are optimal in the sense that for appropriate H,

$$
\|\nabla u\|_{L^{\infty}\left(B_{4}\right)} \geq \varepsilon^{-1 / 2} / C .
$$

In fact, the equation

$$
\begin{cases}\operatorname{div}\left(a_{k}(x) \nabla u_{k}\right)=0 & \text { in } \mathbb{R}^{2} \backslash \overline{\left(D_{1} \cup D_{2}\right)}, \\ u(x)-H(x)=\mathcal{O}\left(|x|^{-1}\right) & \text { as }|x| \rightarrow \infty,\end{cases}
$$

was studied there, and the estimates derived have explicit dependence on r_{1}, r_{2}, k and ε.
Yun extended in [14] and [15] these results allowing D_{1}^{*} and D_{2}^{*} to be any bounded strictly convex smooth domains in \mathbb{R}^{2}.

The above upper bound of ∇u was localized and extended to higher dimensions by Bao, Li and Yin in [4], where they considered problem (1.2) and proved

$$
\begin{equation*}
\|\nabla u\|_{L^{\infty}(\widetilde{\Omega})} \leq C \varepsilon^{-1 / 2}\|\varphi\|_{C^{2}(\partial \Omega)}, \quad \text { when } n \geq 2 \tag{1.4}
\end{equation*}
$$

The upper bound is optimal for $n=2$ as mentioned earlier. For dimensions $n \geq 3$, the upper bound was recently improved by Li and Yang [12] to

$$
\begin{equation*}
\|\nabla u\|_{L^{\infty}(\tilde{\Omega})} \leq C \varepsilon^{-1 / 2+\beta}\|\varphi\|_{C^{2}(\partial \Omega)}, \quad \text { when } n \geq 3 \tag{1.5}
\end{equation*}
$$

for some $\beta>0$.
Yun [16] considered the problem (1.3) in \mathbb{R}^{3}, with unit disks

$$
D_{1}=B_{1}(0,0,1+\varepsilon / 2), \quad D_{2}=B_{1}(0,0,-1-\varepsilon / 2)
$$

and a harmonic function H. He proved that for some positive constant C independent of ε,

$$
\max _{\left|x_{3}\right| \leq \varepsilon / 2}\left|\nabla u\left(0,0, x_{3}\right)\right| \leq C \varepsilon^{\frac{\sqrt{2}-2}{2}} .
$$

He also showed that this upper bound of $|\nabla u|$ on the ε-segment connecting D_{1} and D_{2} is optimal for $H(x) \equiv x_{1}$.

In this paper, we assume that for some $m \in[2, \infty)$ and a small universal constant R_{0}, the portions of ∂D_{1}^{*} and ∂D_{2}^{*} in $\left[-R_{0}, R_{0}\right]^{n}$ are respectively the graphs of two C^{2} functions f and g in terms of x^{\prime}, and

$$
\begin{align*}
& f\left(0^{\prime}\right)=g\left(0^{\prime}\right)=0, \quad \nabla f\left(0^{\prime}\right)=\nabla g\left(0^{\prime}\right)=0, \tag{1.6a}\\
& \lambda_{1}\left|x^{\prime}\right|^{m} \leq(f-g)\left(x^{\prime}\right) \leq \lambda_{2}\left|x^{\prime}\right|^{m} \quad \text { for } 0<\left|x^{\prime}\right|<R_{0} \text {, } \tag{1.6b}\\
& \left|\nabla(f-g)\left(x^{\prime}\right)\right| \leq \lambda_{3}\left|x^{\prime}\right|^{m-1} \quad \text { for } 0<\left|x^{\prime}\right|<R_{0}, \tag{1.6c}
\end{align*}
$$

for some $\lambda_{1}, \lambda_{2}, \lambda_{3}>0$. Let $a(x) \in C^{\alpha}(\bar{\Omega})$, for some $\alpha \in(0,1)$, be a symmetric, positive definite matrix function satisfying

$$
\lambda \leq a(x) \leq \Lambda \quad \text { for } \quad x \in \widetilde{\Omega}
$$

for some positive constants λ, Λ. Let $v=\left(v_{1}, \cdots, v_{n}\right)$ denote the unit normal vector on ∂D_{1} and ∂D_{2}, pointing towards the interior of D_{1} and D_{2}. We consider the following insulated conductivity problem:

$$
\begin{cases}-\partial_{i}\left(a^{i j} \partial_{j} u\right)=0 & \text { in } \widetilde{\Omega}, \tag{1.7}\\ a^{i j} \partial_{j} u v_{i}=0 & \text { on } \partial\left(D_{1} \cup D_{2}\right), \\ u=\varphi & \text { on } \partial \Omega\end{cases}
$$

where $\varphi \in C^{2}(\partial \Omega)$ is given. For $0<r \leq R_{0}$, we denote

$$
\begin{align*}
& \Omega_{x_{0}, r}:=\left\{\left(x^{\prime}, x_{n}\right) \in \widetilde{\Omega}\left|-\frac{\varepsilon}{2}+g\left(x^{\prime}\right)<x_{n}<\frac{\varepsilon}{2}+f\left(x^{\prime}\right),\left|x^{\prime}-x_{0}^{\prime}\right|<r\right\},\right. \tag{1.8a}\\
& \Gamma_{+}:=\left\{x_{n}=\frac{\varepsilon}{2}+f\left(x^{\prime}\right),\left|x^{\prime}\right|<R_{0}\right\}, \quad \Gamma_{-}:=\left\{x_{n}=-\frac{\varepsilon}{2}+g\left(x^{\prime}\right),\left|x^{\prime}\right|<R_{0}\right\} . \tag{1.8b}
\end{align*}
$$

Since the blow-up of gradient can only occur in the narrow region between D_{1} and D_{2}, we will focus on the following problem near the origin:

$$
\begin{cases}-\partial_{i}\left(a^{i j} \partial_{j} u\right)=0 & \text { in } \Omega_{0, R_{0}}, \tag{1.9}\\ a^{i j} \partial_{j} u v_{i}=0 & \text { on } \Gamma_{+} \cup \Gamma_{-},\end{cases}
$$

where $v=\left(v_{1}, \cdots, v_{n}\right)$ denotes the unit normal vector on Γ_{+}and Γ_{-}, pointing upward and downward respectively.
Theorem 1.1. Let $m, \Gamma_{+}, \Gamma_{-}, a, \alpha$ be as above, and let $u \in H^{1}\left(\Omega_{0, R_{0}}\right)$ be a solution of (1.9). There exist positive constants r_{0}, β and C depending only on $n, m, \lambda, \Lambda, R_{0}, \alpha, \lambda_{1}, \lambda_{2}, \lambda_{3}$, $\|f\|_{C^{2}\left(\left\{\left|x^{\prime}\right| \leq R_{0}\right\}\right)},\|g\|_{C^{2}\left(\left\{\left|x^{\prime}\right| \leq R_{0}\right\}\right)}$ and $\|a\|_{C^{a}\left(\Omega_{0, R_{0}}\right)}$, such that

$$
\left|\nabla u\left(x_{0}\right)\right| \leq \begin{cases}C\|u\|_{L^{\infty}\left(\Omega_{0, R_{0}}\right)}\left(\varepsilon+\left|x_{0}^{\prime}\right|^{m}\right)^{-1 / m}, & \text { when } n=2, \tag{1.10}\\ C\|u\|_{L^{\infty}\left(\Omega_{0, R_{0}}\right)}\left(\varepsilon+\left|x_{0}^{\prime}\right|^{m}\right)^{-1 / m+\beta}, & \text { when } n \geq 3\end{cases}
$$

for all $x_{0} \in \Omega_{0, r_{0}}$ and $\varepsilon \in(0,1)$.
Remark 1.1. For $m=2$, (1.10) was proved in [4] and [12] for $n=2$ and $n \geq 3$, respectively.
Let $u \in H^{1}(\widetilde{\Omega})$ be a weak solution of (1.7). By the maximum principle and the gradient estimates of solutions of elliptic equations,

$$
\begin{align*}
& \|u\|_{L^{\infty}(\tilde{\Omega})} \leq\|\varphi\|_{L^{\infty}(\partial \Omega)} \tag{1.11a}\\
& \|\nabla u\|_{L^{\infty}\left(\widetilde{\Omega} \backslash \Omega_{0, r_{0}}\right)} \leq C\|\varphi\|_{C^{2}(\partial \Omega)} . \tag{1.11b}
\end{align*}
$$

Therefore, a corollary of Theorem 1.1 is as follows.

Corollary 1.1. Let $u \in H^{1}(\widetilde{\Omega})$ be a weak solution of (1.7). There exist positive constants β and C depending only on $n, m, \lambda, \Lambda, R_{0}, \alpha, \lambda_{1}, \lambda_{2}, \lambda_{3},\left\|\partial D_{1}\right\|_{C^{2}},\left\|\partial D_{2}\right\|_{C^{2}},\|\partial \Omega\|_{C^{2}}$, and $\|a\|_{C^{\alpha}(\bar{\Omega})^{\prime}}$ such that

$$
\|\nabla u\|_{L^{\infty}(\tilde{\Omega})} \leq \begin{cases}C\|\varphi\|_{C^{2}(\partial \Omega)^{\varepsilon^{-\frac{1}{m}}}}, & \text { when } n=2 \tag{1.12}\\ C\|\varphi\|_{C^{2}(\partial \Omega)^{\varepsilon^{-\frac{1}{m}}+\beta}}, & \text { when } n \geq 3\end{cases}
$$

2 Proof of Theorem 1.1

Our proof of Theorem 1.1 is an adaption of the arguments in our earlier paper [12] for $m=2$, and follows closely the arguments there.

We fix a $\gamma \in(0,1)$, and let $r_{0}>0$ denote a constant depending only on $n, m, \gamma, R_{0}, \lambda_{1}$, $\lambda_{2},\|f\|_{C^{2}}$ and $\|g\|_{C^{2}}$, whose value will be fixed in the proof. For any $x_{0} \in \Omega_{0, r_{0}}$, we define

$$
\begin{equation*}
\delta:=\left(\varepsilon+\left|x_{0}^{\prime}\right|^{\mid}\right)^{\frac{1}{m}} . \tag{2.1}
\end{equation*}
$$

We will always consider $0<\varepsilon \leq r_{0}^{m}$. First, we require r_{0} small so that for $\left|x_{0}^{\prime}\right|<r_{0}$,

$$
10 \delta<\delta^{1-\gamma}<\frac{R_{0}}{4}
$$

Lemma 2.1. For $n \geq 3$, there exists a small r_{0}, depending only on n, m, γ, and R_{0}, such that for any $x_{0} \in \Omega_{0, r_{0}}, 5\left|x_{0}^{\prime}\right|<r<\delta^{1-\gamma}$, if $u \in H^{1}\left(\Omega_{x_{0}, 2 r} \backslash \Omega_{x_{0}, r / 4}\right)$ is a positive solution to the equation

$$
\begin{cases}-\partial_{i}\left(a^{i j}(x) \partial_{j} u(x)\right)=0 & \text { in } \quad \Omega_{x_{0}, 2 r} \backslash \Omega_{x_{0}, r / 4} \\ a^{i j}(x) \partial_{j} u(x) v_{i}(x)=0 & \text { on } \quad\left(\Gamma_{+} \cup \Gamma_{-}\right) \cap \overline{\Omega_{x_{0}, 2 r} \backslash \Omega_{x_{0}, r / 4}},\end{cases}
$$

then

$$
\begin{equation*}
\sup _{\Omega_{x_{0}, r}, \Omega_{x_{0}, r / 2}} u \leq C \inf _{\Omega_{x_{0}, r}} \inf _{x_{0}, r / 2} u, \tag{2.2}
\end{equation*}
$$

for some constant $C>0$ depending only on $n, m, \lambda, \Lambda, R_{0}, \lambda_{1}, \lambda_{2},\|f\|_{C^{2}}$ and $\|g\|_{C^{2}}$ but independent of r and u.

Proof. We only need to prove (2.2) for $\left|x_{0}^{\prime}\right|>0$, since the $\left|x_{0}^{\prime}\right|=0$ case follows from the result for $\left|x_{0}^{\prime}\right|>0$ and then sending $\left|x_{0}^{\prime}\right|$ to 0 . We denote

$$
h_{r}:=\varepsilon+f\left(x_{0}^{\prime}-\frac{r}{4} \frac{x_{0}^{\prime}}{\left|x_{0}^{\prime}\right|}\right)-g\left(x_{0}^{\prime}-\frac{r}{4} \frac{x_{0}^{\prime}}{\left|x_{0}^{\prime}\right|}\right),
$$

and perform a change of variables by setting

$$
\left\{\begin{array}{l}
y^{\prime}=x^{\prime}-x_{0}^{\prime}, \tag{2.3}\\
y_{n}=2 h_{r}\left(\frac{x_{n}-g\left(x^{\prime}\right)+\varepsilon / 2}{\varepsilon+f\left(x^{\prime}\right)-g\left(x^{\prime}\right)}-\frac{1}{2}\right),
\end{array} \quad\left(x^{\prime}, x_{n}\right) \in \Omega_{x_{0}, 2 r} \backslash \Omega_{x_{0}, r / 4} .\right.
$$

This change of variables maps the domain $\Omega_{x_{0}, 2 r} \backslash \Omega_{x_{0}, r / 4}$ to an annular cylinder of height h_{r}, denoted by $Q_{2 r, h_{r}} \backslash Q_{r / 4, h_{r}}$, where

$$
\begin{equation*}
Q_{s, t}:=\left\{y=\left(y^{\prime}, y_{n}\right) \in \mathbb{R}^{n}| | y^{\prime}\left|<s,\left|y_{n}\right|<t\right\},\right. \tag{2.4}
\end{equation*}
$$

for $s, t>0$. We will show that the Jacobian matrix of the change of variables (2.3), denoted by $\partial_{x} y$, and its inverse matrix $\partial_{y} x$ satisfy

$$
\begin{equation*}
\left|\left(\partial_{x} y\right)^{i j}\right| \leq C, \quad\left|\left(\partial_{y} x\right)^{i j}\right| \leq C \quad \text { for } \quad y \in Q_{2 r, h_{r}} \backslash Q_{r / 4, h_{r}} \tag{2.5}
\end{equation*}
$$

where $C>0$ depends only on $n, m, R_{0}, \lambda_{1}, \lambda_{2},\|f\|_{C^{2}}$ and $\|g\|_{C^{2}}$.
Let $v(y)=u(x)$, then v satisfies

$$
\begin{cases}-\partial_{i}\left(b^{i j}(y) \partial_{j} v(y)\right)=0 & \text { in } Q_{2 r, h_{r}} \backslash Q_{r / 4, h_{r},} \tag{2.6}\\ b^{n j}(y) \partial_{j} v(y)=0 & \text { on }\left\{y_{n}=-h_{r}\right\} \cup\left\{y_{n}=h_{r}\right\},\end{cases}
$$

where the matrix $\left(b^{i j}(y)\right)$ is given by

$$
\begin{equation*}
\left(b^{i j}(y)\right)=\frac{\left(\partial_{x} y\right)\left(a^{i j}\right)\left(\partial_{x} y\right)^{t}}{\operatorname{det}\left(\partial_{x} y\right)}, \tag{2.7}
\end{equation*}
$$

$\left(\partial_{x} y\right)^{t}$ is the transpose of $\partial_{x} y$.
It is easy to see that (2.5) implies, using $\lambda \leq\left(a^{i j}\right) \leq \Lambda$,

$$
\begin{equation*}
\frac{\lambda}{C} \leq\left(b^{i j}(y)\right) \leq C \Lambda \quad \text { for } \quad y \in Q_{2 r, h_{r}} \backslash Q_{r / 4, h_{r}} \tag{2.8}
\end{equation*}
$$

for some constant $C>0$ depending only on $n, m, R_{0}, \lambda_{1}, \lambda_{2},\|f\|_{C^{2}}$ and $\|g\|_{C^{2}}$.
In the following and throughout this section, we will denote $A \sim B$, if there exists a positive universal constant C, which might depend on $n, m, \lambda, \Lambda, R_{0}, \lambda_{1}, \lambda_{2},\|f\|_{C^{2}}$ and $\|g\|_{C^{2}}$, but not depend on ε, such that $C^{-1} B \leq A \leq C B$.

From (2.3), one can compute that

$$
\begin{aligned}
& \left(\partial_{x} y\right)^{i i}=1 \text { for } 1 \leq i \leq n-1, \\
& \left(\partial_{x} y\right)^{n n}=\frac{2 h_{r}}{\varepsilon+f\left(x_{0}^{\prime}+y^{\prime}\right)-g\left(x_{0}^{\prime}+y^{\prime}\right)}, \\
& \left(\partial_{x} y\right)^{n i}=-\frac{2 h_{r} \partial_{i} g\left(x_{0}^{\prime}+y^{\prime}\right)+2 y_{n}\left[\partial_{i} f\left(x_{0}^{\prime}+y^{\prime}\right)-\partial_{i} g\left(x_{0}^{\prime}+y^{\prime}\right)\right]}{\varepsilon+f\left(x_{0}^{\prime}+y^{\prime}\right)-g\left(x_{0}^{\prime}+y^{\prime}\right)} \text { for } 1 \leq i \leq n-1, \\
& \left(\partial_{x} y\right)^{i j}=0 \quad \text { for } 1 \leq i \leq n-1, \quad j \neq i .
\end{aligned}
$$

By (1.6b), one can see that

$$
h_{r} \sim \varepsilon+\left|x_{0}^{\prime}-\frac{r}{4} \frac{x_{0}^{\prime}}{\left|x_{0}^{\prime}\right|}\right|^{m} .
$$

Since $\left|y_{n}\right| \leq h_{r}$, by using (1.6a) and (1.6b), we have that, for $1 \leq i \leq n-1$,

$$
\begin{aligned}
\left|\left(\partial_{x} y\right)^{n i}\right| & \leq C \frac{h_{r}\left|\partial_{i} g\left(x_{0}^{\prime}+y^{\prime}\right)\right|+h_{r}\left[\left|\partial_{i} f\left(x_{0}^{\prime}+y^{\prime}\right)\right|+\left|\partial_{i} g\left(x_{0}^{\prime}+y^{\prime}\right)\right|\right]}{\varepsilon+f\left(x_{0}^{\prime}+y^{\prime}\right)-g\left(x_{0}^{\prime}+y^{\prime}\right)} \\
& \leq C \frac{h_{r}}{\varepsilon+f\left(x_{0}^{\prime}+y^{\prime}\right)-g\left(x_{0}^{\prime}+y^{\prime}\right)}\left[\left|\partial_{i} f\left(x_{0}^{\prime}+y^{\prime}\right)\right|+\left|\partial_{i} g\left(x_{0}^{\prime}+y^{\prime}\right)\right|\right] \\
& \leq C \frac{\varepsilon+\left|x_{0}^{\prime}-\frac{r}{4} \frac{x_{0}^{\prime}}{\left|x^{\prime}\right|}\right|}{\varepsilon+\left|x_{0}^{\prime}+y^{\prime}\right|^{m}}\left|x_{0}^{\prime}+y^{\prime}\right| .
\end{aligned}
$$

Since $r / 4<\left|y^{\prime}\right|<2 r<2 \delta^{1-\gamma}$ and $\left|x_{0}^{\prime}\right|<\delta$, we can estimate

$$
\left|\left(\partial_{x} y\right)^{n i}\right| \leq C\left|x_{0}^{\prime}+y^{\prime}\right| \leq C\left(\left|x_{0}^{\prime}\right|+\left|y^{\prime}\right|\right) \leq C \delta^{1-\gamma} .
$$

Next, we will show that

$$
\begin{equation*}
\left(\partial_{x} y\right)^{n n} \sim 1 \text { for } y \in Q_{2 r, h_{r}} \backslash Q_{r / 4, h_{r}} . \tag{2.9}
\end{equation*}
$$

Indeed, by (1.6b), we have

$$
\left(\partial_{x} y\right)^{n n}=\frac{2 h_{r}}{\varepsilon+f\left(x_{0}^{\prime}+y^{\prime}\right)-g\left(x_{0}^{\prime}+y^{\prime}\right)} \sim \frac{\varepsilon+\left|x_{0}^{\prime}-\frac{r}{4} \frac{x_{0}^{\prime}}{\mid x_{0}^{\prime}}\right|^{m}}{\varepsilon+\left|x_{0}^{\prime}+y^{\prime}\right|^{m}}
$$

Since $\left|y^{\prime}\right|>r / 4$, it is easy to see

$$
\left(\partial_{x} y\right)^{n n} \leq C \frac{\varepsilon+\left|x_{0}^{\prime}-\frac{r}{4} \frac{x_{0}^{\prime}}{\left|x_{0}^{\prime}\right|}\right|^{m}}{\varepsilon+\left|x_{0}^{\prime}+y^{\prime}\right|^{m}} \leq C
$$

On the other hand, since $\left|y^{\prime}\right|<2 r$ and $\left|x_{0}^{\prime}\right|<r / 5$, we have

$$
\begin{aligned}
& \varepsilon+\left|x_{0}^{\prime}-\frac{r}{4} \frac{x_{0}^{\prime}}{\left|x_{0}^{\prime}\right|}\right|^{m} \geq \varepsilon+\left(\left|\frac{r}{4} \frac{x_{0}^{\prime}}{\left|x_{0}^{\prime}\right|}\right|-\left|x_{0}^{\prime}\right|\right)^{m} \geq \varepsilon+\left(\frac{r}{4}-\frac{r}{5}\right)^{m} \geq \frac{1}{C}\left(\varepsilon+r^{m}\right), \\
& \varepsilon+\left|x_{0}^{\prime}+y^{\prime}\right|^{m} \leq \varepsilon+m\left|x_{0}^{\prime}\right|^{m}+m\left|y^{\prime}\right|^{m} \leq C\left(\varepsilon+r^{m}\right) .
\end{aligned}
$$

Therefore,

$$
\left(\partial_{x} y\right)^{n n} \geq \frac{1}{C} \frac{\varepsilon+\left|x_{0}^{\prime}-\frac{r}{4} \frac{x_{0}^{\prime}}{x_{0}^{\prime}}\right|^{m}}{\varepsilon+\left|x_{0}^{\prime}+y^{\prime}\right|^{m}} \geq \frac{1}{C}
$$

and (2.9) is verified.
We have shown $\left(\partial_{x} y\right)^{i i} \sim 1$ for all $i=1, \cdots, n$, and $\left|\left(\partial_{x} y\right)^{i j}\right| \leq C \delta^{(1-\gamma)}$ for $i \neq j$. We further require r_{0} to be small enough so that off-diagonal entries of $\partial_{x} y$ are small. Therefore (2.5) follows. As mentioned earlier, (2.8) follows from (2.5).

Now we define, for any integer l,

$$
A_{l}:=\left\{y \in \mathbb{R}^{n}\left|\frac{r}{4}<\left|y^{\prime}\right|<2 r,(l-1) h_{r}<z_{n}<(l+1) h_{r}\right\} .\right.
$$

Note that $A_{0}=Q_{2 r, h_{r}} \backslash Q_{r / 4, h_{r}}$. For any $l \in \mathbb{Z}$, we define a new function \tilde{v} by

$$
\tilde{v}(y):=v\left(y^{\prime},(-1)^{l}\left(y_{n}-2 l h_{r}\right)\right), \quad \forall y \in A_{l} .
$$

We also define the corresponding coefficients, for $k=1,2, \cdots, n-1$,

$$
\tilde{b}^{n k}(y)=\tilde{b}^{k n}(y):=(-1)^{l} b^{n k}\left(y^{\prime},(-1)^{l}\left(y_{n}-2 l h_{r}\right)\right), \quad \forall y \in A_{l},
$$

and for other indices,

$$
\tilde{b}^{i j}(y):=b^{i j}\left(y^{\prime},(-1)^{l}\left(y_{n}-2 l h_{r}\right)\right), \quad \forall y \in A_{l} .
$$

Therefore, $\tilde{v}(y)$ and $\tilde{b}^{i j}(y)$ are defined in the infinite cylinder shell $Q_{2 r, \infty} \backslash Q_{r / 4, \infty}$. By (2.6), $\tilde{v} \in H^{1}\left(Q_{2 r, \infty} \backslash Q_{r / 4, \infty}\right)$ satisfies

$$
-\partial_{i}\left(\tilde{b}^{i j}(y) \partial_{j} \tilde{v}(y)\right)=0 \quad \text { in } \quad Q_{2 r, \infty} \backslash Q_{r / 4, \infty} .
$$

Note that for any $l \in \mathbb{Z}$ and $y \in A_{l}, \tilde{b}(y)=\left(\tilde{b}^{i j}(y)\right)$ is orthogonally conjugated to $b\left(y^{\prime},(-1)^{l}\left(y_{n}-2 l h_{r}\right)\right)$. Hence, by (2.8), we have

$$
\frac{\lambda}{C} \leq \tilde{b}(y) \leq C \Lambda \quad \text { for } \quad y \in Q_{2 r, \infty} \backslash Q_{r / 4, \infty}
$$

We restrict the domain to be $Q_{2 r, r} \backslash Q_{r / 4, r}$, and make the change of variables $z=y / r$. Set $\bar{v}(z)=\tilde{v}(y), \bar{b}^{i j}(z)=\tilde{b}^{i j}(y)$, we have

$$
\begin{array}{ll}
-\partial_{i}\left(\bar{b}^{i j}(z) \partial_{j} \bar{v}(z)\right)=0 & \text { in } Q_{2,1} \backslash Q_{1 / 4,1} \\
\frac{\lambda}{C} \leq \bar{b}(z) \leq C \Lambda & \text { for } z \in Q_{2,1} \backslash Q_{1 / 4,1} .
\end{array}
$$

Then by the Harnack inequality for uniformly elliptic equations of divergence form, see e.g., [8, Theorem 8.20], there exists a constant C depending only on $n, m, \lambda, \Lambda, R_{0}, \lambda_{1}, \lambda_{2}$, $\|f\|_{C^{2}}$ and $\|g\|_{C^{2}}$, such that

$$
\sup _{Q_{1,1 / 2} \backslash Q_{1 / 2,1 / 2}} \bar{v} \leq C \inf _{Q_{1,1 / 2} \backslash Q_{1 / 2,1 / 2}} \bar{v} .
$$

In particular, we have

$$
\sup _{Q_{1, h r} / r \backslash Q_{1 / 2, h_{r} / r}} \bar{v} \leq C \inf _{Q_{1, h_{r} / r} \backslash Q_{1 / 2, h_{r} / r}} \bar{v},
$$

which is (2.2) after reversing the change of variables.

Remark 2.1. Lemma 2.1 does not hold for dimension $n=2$, since $Q_{2,1} \backslash Q_{1 / 4,1} \subset \mathbb{R}^{2}$ is the union of two disjoint rectangular domains, and the Harnack inequality cannot be applied on it. Therefore, we will separate the cases $n=2$ and $n \geq 3$ in our proof of Theorem 1.1.

For any domain $A \subset \widetilde{\Omega}$, we denote the oscillation of u in A by $\operatorname{osc}_{A} u:=\sup _{A} u-$ $\inf _{A} u$. Using Lemma 2.1, we obtain a decay of $\operatorname{osc}_{\Omega_{x_{0}, \delta}} u$ in δ as follows.
Lemma 2.2. For $n \geq 3$, let u be a solution of (1.9). For any $x_{0} \in \Omega_{0, r_{0}}$, where r_{0} is as in Lemma 2.1, there exist positive constants σ and C, depending only on $n, m, \lambda, \Lambda, R_{0}, \lambda_{1}, \lambda_{2},\|f\|_{C^{2}}$ and $\|g\|_{C^{2}}$ such that

$$
\begin{equation*}
\operatorname{osc}_{\Omega_{x_{0}, \delta}} u \leq C\|u\|_{L^{\infty}\left(\Omega_{\left.x_{0}, \delta^{1}-\gamma\right)}\right.} \delta^{\gamma \sigma} . \tag{2.10}
\end{equation*}
$$

Proof. For simplicity, we drop the x_{0} subscript and denote $\Omega_{r}=\Omega_{x_{0}, r}$ in this proof. Let $5\left|x_{0}^{\prime}\right|<r<\delta^{1-\gamma}$ and $u_{1}=\sup _{\Omega_{2 r}} u-u, u_{2}=u-\inf _{\Omega_{2 r}} u$. By Lemma 2.1, we have

$$
\sup _{\Omega_{r} \backslash \Omega_{r / 2}} u_{1} \leq C_{1} \inf _{\Omega_{r} \Omega_{r / 2}} u_{1}, \quad \sup _{\Omega_{r} \backslash \Omega_{r / 2}} u_{2} \leq C_{1} \inf _{\Omega_{r} \backslash \Omega_{r / 2}} u_{2}
$$

where $C_{1}>1$ is a constant independent of r. Since both u_{1} and u_{2} satisfy Eq. (1.9), by the maximum principle,

$$
\sup _{\Omega_{r} \backslash \Omega_{r / 2}} u_{i}=\sup _{\Omega_{r}} u_{i}, \quad \inf _{\Omega_{r} \backslash \Omega_{r / 2}} u_{i}=\inf _{\Omega_{r}} u_{i}
$$

for $i=1,2$. Therefore,

$$
\sup _{\Omega_{r}} u_{1} \leq C_{1} \inf _{\Omega_{r}} u_{1}, \quad \sup _{\Omega_{r}} u_{2} \leq C_{1} \inf _{\Omega_{r}} u_{2} .
$$

Adding up the above two inequalities, we have

$$
\operatorname{osc}_{\Omega_{r}} u \leq\left(\frac{C_{1}-1}{C_{1}+1}\right) \operatorname{osc}_{\Omega_{2 r}} u .
$$

Now we take $\sigma>0$ such that $2^{-\sigma}=\frac{C_{1}-1}{C_{1}+1}$, then

$$
\begin{equation*}
\operatorname{osc}_{\Omega_{r}} u \leq 2^{-\sigma} \operatorname{osc}_{\Omega_{2 r}} u \tag{2.11}
\end{equation*}
$$

We start with $r=r_{0}=\delta^{1-\gamma} / 2$, and set $r_{i+1}=r_{i} / 2$. Keep iterating (2.11) $k+1$ times, where k satisfies $5 \delta \leq r_{k}<10 \delta$, we will have

$$
\operatorname{osc}_{\Omega_{\delta}} u \leq \operatorname{osc}_{\Omega_{r_{k}}} u \leq 2^{-(k+1) \sigma} \operatorname{osc}_{\Omega_{2 r_{0}}} u \leq 2^{1-(k+1) \sigma}\|u\|_{L^{\infty}\left(\Omega_{\delta^{1}-\gamma}\right)} .
$$

Since

$$
10 \delta>r^{k}=2^{-k} r_{0}=2^{-(k+1)} \delta^{1-\gamma}
$$

we have

$$
2^{-(k+1)}<10 \delta^{\gamma}
$$

and hence (2.10) follows immediately.

Proof of Theorem 1.1. First we consider the case when $n \geq 3$. Let $u \in H^{1}\left(\Omega_{0, R_{0}}\right)$ be a solution of (1.9). For $x_{0} \in \Omega_{0, r_{0}}$, we have, using Lemma 2.2,

$$
\begin{equation*}
\left\|u-u_{0}\right\|_{L^{\infty}\left(\Omega_{x_{0}, \delta}\right.} \leq C\|u\|_{L^{\infty}\left(\Omega_{x_{0}, \delta^{1-\gamma}}\right.} \delta^{\gamma \sigma} \tag{2.12}
\end{equation*}
$$

for some constant u_{0}. We denote $v:=u-u_{0}$, and v satisfies the same equation (1.9). We work on the domain $\Omega_{x_{0}, \delta / 4}$, and perform a change of variables by setting

$$
\left\{\begin{array}{l}
y^{\prime}=\delta^{-1}\left(x^{\prime}-x_{0}^{\prime}\right) \tag{2.13}\\
y_{n}=\delta^{-1} x_{n}
\end{array}\right.
$$

The domain $\Omega_{x_{0}, \delta / 4}$ becomes

$$
\left\{y \in \mathbb{R}^{n}| | y^{\prime} \left\lvert\, \leq \frac{1}{4}\right., \delta^{-1}\left(-\frac{1}{2} \varepsilon+g\left(x_{0}^{\prime}+\delta y^{\prime}\right)\right)<y_{n}<\delta^{-1}\left(\frac{1}{2} \varepsilon+f\left(x_{0}^{\prime}+\delta y^{\prime}\right)\right)\right\} .
$$

We make a change of variables again by

$$
\left\{\begin{array}{l}
z^{\prime}=4 y^{\prime}, \tag{2.14}\\
z_{n}=2 \delta^{m-1}\left(\frac{\delta y_{n}-g\left(x_{0}^{\prime}+\delta y^{\prime}\right)+\varepsilon / 2}{\varepsilon+f\left(x_{0}^{\prime}+\delta y^{\prime}\right)-g\left(x_{0}^{\prime}+\delta y^{\prime}\right)}-\frac{1}{2}\right) .
\end{array}\right.
$$

Now the domain in z-variables becomes a thin plate $Q_{1, \delta^{m-1}}$, where $Q_{s, t}$ is defined as in (2.4). Let $w(z)=v(x)$, then w satisfies

$$
\begin{cases}-\partial_{i}\left(b^{i j}(z) \partial_{j} w(z)\right)=0 & \text { in } Q_{1, \delta^{m-1}} \tag{2.15}\\ b^{n j}(z) \partial_{j} w(z)=0 & \text { on }\left\{z_{n}=-\delta\right\} \cup\left\{z_{n}=\delta\right\},\end{cases}
$$

where the matrix $b(z)=\left(b^{i j}(z)\right)$ is given by

$$
\begin{equation*}
\left(b^{i j}(z)\right)=\frac{\left(\partial_{y} z\right)\left(a^{i j}\right)\left(\partial_{y} z\right)^{t}}{\operatorname{det}\left(\partial_{y} z\right)} \tag{2.16}
\end{equation*}
$$

Similar to the proof of Lemma 2.1, we will show that the Jacobian matrix of the change of variables (2.14), denoted by $\partial_{y} z$, and its inverse matrix $\partial_{z} y$ satisfy

$$
\begin{equation*}
\left|\left(\partial_{y} z\right)^{i j}\right| \leq C, \quad\left|\left(\partial_{z} y\right)^{i j}\right| \leq C \quad \text { for } z \in Q_{1, \delta^{m-1}}, \tag{2.17}
\end{equation*}
$$

where $C>0$ depends only on $n, \kappa, R_{0}, \lambda_{1}, \lambda_{2},\|f\|_{C^{2}}$ and $\|g\|_{C^{2}}$. This leads to

$$
\begin{equation*}
\frac{\lambda}{C} \leq b(z) \leq C \Lambda \quad \text { for } z \in Q_{1, \delta^{m-1}} . \tag{2.18}
\end{equation*}
$$

From (2.14), one can compute that

$$
\begin{aligned}
& \left(\partial_{y} z\right)^{i i}=4 \quad \text { for } \quad 1 \leq i \leq n-1, \\
& \left(\partial_{y} z\right)^{n n}=\frac{2 \delta^{m}}{\varepsilon+f\left(x_{0}^{\prime}+\delta z^{\prime} / 4\right)-g\left(x_{0}^{\prime}+\delta z^{\prime} / 4\right)^{\prime}} \\
& \left(\partial_{y} z\right)^{n i}=-\frac{2 \delta^{m} \partial_{i} g\left(x_{0}^{\prime}+\delta z^{\prime} / 4\right)+\left(z_{n}+\delta^{m-1}\right) \delta\left[\partial_{i} f\left(x_{0}^{\prime}+\delta z^{\prime} / 4\right)-\partial_{i} g\left(x_{0}^{\prime}+\delta z^{\prime} / 4\right)\right]}{\varepsilon+f\left(x_{0}^{\prime}+\delta z^{\prime} / 4\right)-g\left(x_{0}^{\prime}+\delta z^{\prime} / 4\right)} \\
& \quad \text { for } 1 \leq i \leq n-1, \\
& \left(\partial_{y} z\right)^{i j}=0 \quad \text { for } 1 \leq i \leq n-1, \quad j \neq i .
\end{aligned}
$$

First we will show that

$$
\begin{equation*}
\left(\partial_{y} z\right)^{n n} \sim 1 \quad \text { for } \quad z \in Q_{1, \delta m-1} . \tag{2.19}
\end{equation*}
$$

Since $\left|z^{\prime}\right|<1$ and $\left|x_{0}^{\prime}\right|<\delta$, it is easy to see that

$$
\left(\partial_{y} z\right)^{n n} \geq \frac{1}{C} \frac{\delta^{m}}{\varepsilon+\left|x_{0}^{\prime}+\delta z^{\prime} / 4\right|^{m}} \geq \frac{1}{C} \frac{\delta^{m}}{\varepsilon+C \delta^{m}} \geq \frac{1}{C} \quad \text { for } \quad z \in Q_{1, \delta^{m-1}} .
$$

On the other hand, when $\left|x_{0}^{\prime}\right| \leq \varepsilon^{\frac{1}{m}}$, we have $\delta \leq(2 \varepsilon)^{\frac{1}{m}}$, and hence

$$
\left(\partial_{y} z\right)^{n n} \leq \frac{C \delta^{m}}{\varepsilon+\left|x_{0}^{\prime}+\delta z^{\prime} / 4\right|^{m}} \leq \frac{C \varepsilon}{\varepsilon+\left|x_{0}^{\prime}+\delta z^{\prime} / 4\right|^{m}} \leq C \quad \text { for } \quad z \in Q_{1, \delta m-1}
$$

When $\left|x_{0}^{\prime}\right| \geq \varepsilon^{\frac{1}{m}}$, we have $\left|\delta z^{\prime} / 4\right| \leq\left|x_{0}^{\prime}\right| / 2$, and hence

$$
\begin{aligned}
\left(\partial_{y} z\right)^{n n} & \leq \frac{C \delta^{m}}{\varepsilon+\left|x_{0}^{\prime}+\delta z^{\prime} / 4\right|^{m}} \leq \frac{C \delta^{m}}{\varepsilon+\left(\left|x_{0}^{\prime}\right|-\left|\delta z^{\prime} / 4\right|\right)^{m}} \\
& \leq \frac{2 \delta^{m}}{\varepsilon+\left(\left|x_{0}^{\prime}\right| / 2\right)^{m}} \leq C \quad \text { for } z \in Q_{1, \delta^{m-1}}
\end{aligned}
$$

Therefore, (2.19) is verified. Since $\left|z_{n}\right|<\delta^{m-1},\left|z^{\prime}\right|<1$ and $\left|x_{0}^{\prime}\right|<\delta$, by (1.6a) and (1.6b), for $1 \leq i \leq n-1$,

$$
\begin{aligned}
\left|\left(\partial_{y} z\right)^{n i}\right| & \leq \frac{2 \delta^{m}\left|\partial_{i} g\left(x_{0}^{\prime}+\delta z^{\prime} / 4\right)\right|+2 \delta^{m}\left[\left|\partial_{i} f\left(x_{0}^{\prime}+\delta z^{\prime} / 4\right)\right|+\left|\partial_{i} g\left(x_{0}^{\prime}+\delta z^{\prime} / 4\right)\right|\right]}{\varepsilon+f\left(x_{0}^{\prime}+\delta z^{\prime} / 4\right)-g\left(x_{0}^{\prime}+\delta z^{\prime} / 4\right)} \\
& \leq \frac{C \delta^{m}}{\varepsilon+f\left(x_{0}^{\prime}+\delta z^{\prime} / 4\right)-g\left(x_{0}^{\prime}+\delta z^{\prime} / 4\right)}\left[\left|\partial_{i} f\left(x_{0}^{\prime}+\delta z^{\prime} / 4\right)\right|+\left|\partial_{i} g\left(x_{0}^{\prime}+\delta z^{\prime} / 4\right)\right|\right] \\
& \leq C \frac{\delta^{m}}{\varepsilon+\left|x_{0}^{\prime}+\delta z^{\prime} / 4\right|^{m}}\left|x_{0}^{\prime}+\delta z^{\prime} / 4\right| \\
& \leq C\left(\left|x_{0}^{\prime}\right|+\delta\left|z^{\prime}\right|\right) \leq C \delta,
\end{aligned}
$$

where in the last line, we have used the same arguments in showing $\left(\partial_{y} z\right)^{n n} \leq C$ earlier.

We have shown $\left(\partial_{y} z\right)^{i i} \sim 1$ for all $i=1, \cdots, n$, and $\left|\left(\partial_{y} z\right)^{i j}\right| \leq C \delta$ for $i \neq j$. We further require r_{0} to be small enough so that off-diagonal entries are small. Therefore (2.17) follows. As mentioned earlier, (2.18) follows from (2.17).

Next, we will show

$$
\begin{equation*}
\|b\|_{C^{\alpha}\left(\bar{Q}_{1, s^{m-1}}\right)} \leq C \tag{2.20}
\end{equation*}
$$

for some $C>0$ depending only on $n, m, R_{0}, \lambda_{1}, \lambda_{2}, \lambda_{3},\|f\|_{C^{2}},\|g\|_{C^{2}}$ and $\|a\|_{C^{\alpha}}$, by showing

$$
\begin{equation*}
\left|\nabla_{z}\left(\partial_{y} z\right)^{i j}(z)\right| \leq C, \quad\left|\nabla_{z} \frac{1}{\operatorname{det}\left(\partial_{y} z\right)}\right| \leq C \quad \text { for } z \in Q_{1, \delta^{m-1}} . \tag{2.21}
\end{equation*}
$$

Then (2.20) follows from (2.21), (2.16), and $\|a\|_{C^{\alpha}} \leq C$.
By a straightforward computation, we have, for any $i=1, \cdots, n-1$,

$$
\begin{aligned}
\left|\partial_{z_{i}} \frac{1}{\operatorname{det}\left(\partial_{y} z\right)}\right| & =\left|\partial_{z_{i}}\left(\frac{\varepsilon+f\left(x_{0}^{\prime}+\delta z^{\prime} / 4\right)-g\left(x_{0}^{\prime}+\delta z^{\prime} / 4\right)}{2 \cdot 4^{n-1} \delta^{m}}\right)\right| \\
& =\left|\frac{\delta\left[\partial_{i} f\left(x_{0}^{\prime}+\delta z^{\prime} / 4\right)-\partial_{i} g\left(x_{0}^{\prime}+\delta z^{\prime} / 4\right)\right]}{2 \cdot 4^{n-1} \delta^{m}}\right| \\
& \leq \frac{C}{\delta^{m-1}}\left|x_{0}^{\prime}+\delta z^{\prime} / 4\right|^{m-1} \leq C \quad \text { for } \quad z \in Q_{1, \delta}
\end{aligned}
$$

where in the last line, (1.6b) and (1.6c) have been used. For any $i=1, \cdots, n-1$, by (1.6b) and (1.6c),

$$
\begin{aligned}
\left|\partial_{z_{i}}\left(\partial_{y} z\right)^{n n}\right| & =\left|\frac{2 \delta^{m+1}\left[\partial_{i} f\left(x_{0}^{\prime}+\delta z^{\prime} / 4\right)-\partial_{i} g\left(x_{0}^{\prime}+\delta z^{\prime} / 4\right)\right]}{\left(\varepsilon+f\left(x_{0}^{\prime}+\delta z^{\prime} / 4\right)-g\left(x_{0}^{\prime}+\delta z^{\prime} / 4\right)\right)^{2}}\right| \\
& \leq \frac{C \delta^{m+1}}{\left(\varepsilon+\left|x_{0}^{\prime}+\delta z^{\prime} / 4\right|^{m}\right)^{2}}\left|x_{0}^{\prime}+\delta z^{\prime} / 4\right|^{m-1} \\
& \leq \frac{C \delta^{m+1}\left|x_{0}^{\prime}+\delta z^{\prime} / 4\right|^{m-1}}{\delta^{2 m}} \leq C \quad \text { for } \quad z \in Q_{1, \delta}
\end{aligned}
$$

where in the last line, we have used the same arguments in showing $\left(\partial_{y} z\right)^{n n} \leq C$ earlier. Similar computations apply to $\partial_{z_{i}}\left(\partial_{y} z\right)^{n i}$ for $i=1, \cdots, n-1$, and we have

$$
\left|\partial_{z_{i}}\left(\partial_{y} z\right)^{n i}\right| \leq C \quad \text { for } \quad z \in Q_{1, \delta^{m-1}} .
$$

Finally, we compute, for $i=1, \cdots, n-1$,

$$
\begin{aligned}
\left|\partial_{z_{n}}\left(\partial_{y} z\right)^{n i}\right| & =\left|\frac{2 \delta\left[\partial_{i} f\left(x_{0}^{\prime}+\delta z^{\prime} / 4\right)-\partial_{i} g\left(x_{0}^{\prime}+\delta z^{\prime} / 4\right)\right]}{\varepsilon+f\left(x_{0}^{\prime}+\delta z^{\prime} / 4\right)-g\left(x_{0}^{\prime}+\delta z^{\prime} / 4\right)}\right| \\
& \leq \frac{C \delta\left|x_{0}^{\prime}+\delta z^{\prime} / 4\right|^{m-1}}{\varepsilon+\left|x_{0}^{\prime}+\delta z^{\prime} / 4\right|^{m}} \leq C \quad \text { for } \quad z \in Q_{1, \delta} .
\end{aligned}
$$

Therefore, (2.21) is verified, and hence (2.20) follows as mentioned above.

Now we define

$$
S_{l}:=\left\{z \in \mathbb{R}^{n}| | z^{\prime} \mid<1,(l-1) \delta^{m-1}<z_{n}<(l+1) \delta^{m-1}\right\}
$$

for any integer l, and

$$
S:=\left\{z \in \mathbb{R}^{n}| | z^{\prime}\left|<1,\left|z_{n}\right|<1\right\} .\right.
$$

Note that $Q_{1, \delta^{m-1}}=S_{0}$. As in the proof of Lemma 2.1, we define, for any $l \in \mathbb{Z}$, a new function \tilde{w} by setting

$$
\tilde{w}(z):=w\left(z^{\prime},(-1)^{l}\left(z_{n}-2 l \delta^{m-1}\right)\right), \quad \forall z \in S_{l} .
$$

We also define the corresponding coefficients, for $k=1,2, \cdots, n-1$,

$$
\tilde{b}^{n k}(z)=\tilde{b}^{k n}(z):=(-1)^{l} b^{n k}\left(z^{\prime},(-1)^{l}\left(z_{n}-2 l \delta^{m-1}\right)\right), \quad \forall z \in S_{l}
$$

and for other indices,

$$
\tilde{b}^{i j}(z):=b^{i j}\left(z^{\prime},(-1)^{l}\left(z_{n}-2 l \delta^{m-1}\right)\right), \quad \forall y \in S_{l} .
$$

Then \tilde{w} and $\tilde{b}^{i j}$ are defined in the infinite cylinder $Q_{1, \infty}$. By (2.15), \tilde{w} satisfies the equation

$$
-\partial_{i}\left(\tilde{b}^{i j} \partial_{j} \tilde{w}\right)=0 \quad \text { in } \quad Q_{1, \infty} .
$$

Note that for any $l \in \mathbb{Z}, \tilde{b}(z)$ is orthogonally conjugated to $b\left(z^{\prime},(-1)^{l}\left(z_{n}-2 l \delta^{m-1}\right)\right)$, for $z \in S_{l}$. Hence, by (2.18), we have

$$
\frac{\lambda}{C} \leq \tilde{b}(z) \leq C \Lambda \quad \text { for } \quad z \in Q_{1, \infty}
$$

and, by (2.20),

$$
\|\tilde{b}\|_{C^{\alpha}\left(\bar{S}_{l}\right)} \leq C, \quad \forall l \in \mathbb{Z}
$$

Apply Lemma 2.1 in [12] on S with $N=1$, we have

$$
\|\nabla \tilde{w}\|_{L^{\infty}\left(\frac{1}{2} S\right)} \leq C\|\tilde{w}\|_{L^{2}(S)} .
$$

It follows that

$$
\|\nabla w\|_{L^{\infty}\left(Q_{1 / 2, s^{m-1}}\right)} \leq \frac{C}{\delta^{(m-1) / 2}}\|w\|_{L^{2}\left(Q_{1, s^{m-1}}\right)} \leq C\|w\|_{L^{\infty}\left(Q_{1, s^{m-1}}\right)}
$$

for some positive constant C, depending only on $n, \alpha, R_{0}, m, \lambda, \Lambda, \lambda_{1}, \lambda_{2}, \lambda_{3},\|f\|_{C^{2}},\|g\|_{C^{2}}$ and $\|a\|_{c^{a}}$.

By (2.17), we have $\left\|\left(\partial_{z} y\right)\right\|_{L^{\infty}\left(Q_{1, s^{m-1}}\right)} \leq C$, where C is independent of ε and δ. Reversing the change of variables (2.14) and (2.13), we have, by (2.12)

$$
\begin{equation*}
\delta\|\nabla v\|_{L^{\infty}\left(\Omega_{x_{0}, \delta / 8}\right)} \leq C\|v\|_{L^{\infty}\left(\Omega_{\left.x_{0}, \delta / 4\right)}\right.} \leq C\|u\|_{L^{\infty}\left(\Omega_{\left.x_{0}, \delta^{1-\gamma}\right)}\right.} \delta^{\gamma \sigma} . \tag{2.22}
\end{equation*}
$$

In particular, this implies

$$
\left|\nabla u\left(x_{0}\right)\right| \leq C\|u\|_{L^{\infty}\left(\Omega_{\left.x_{0}, \delta^{1-\gamma}\right)}\right.} \delta^{-1+\gamma \sigma},
$$

and it concludes the proof of Theorem 1.1 for the case $n \geq 3$ after taking $\beta=\gamma \sigma / 2$.
For the case $n=2$, we work with u instead of v, and repeat the argument in deriving the first inequality in (2.22), we have

$$
\delta\|\nabla u\|_{L^{\infty}\left(\Omega_{x_{0}, \delta / 8}\right)} \leq C\|u\|_{L^{\infty}\left(\Omega_{\left.x_{0}, \delta / 4\right)}\right.} .
$$

In particular,

$$
\left|\nabla u\left(x_{0}\right)\right| \leq C\|u\|_{L^{\infty}\left(\Omega_{\left.x_{0}, \delta / 4\right)}\right.} \delta^{-1} .
$$

This concludes the proof of Theorem 1.1 for the case $n=2$.

Acknowledgements

The first author is partially supported by NSF Grants DMS-1501004, DMS-2000261, and Simons Fellows Award 677077. The second author is partially supported by NSF Grants DMS-1501004 and DMS-2000261.

References

[1] H. Ammari, H. Kang, H. Lee, J. Lee, and M. Lim, Optimal estimates for the electric field in two dimensions, J. Math. Pures Appl., 88(4) (2007), 307-324.
[2] H. Ammari, H. Kang, and M. Lim, Gradient estimates for solutions to the conductivity problem, Math. Ann., 332(2) (2005), 277-286.
[3] I. Babuška, B. Andersson, P. J. Smith, and K. Levin, Damage analysis of fiber composites. I. Statistical analysis on fiber scale, Comput. Methods Appl. Mech. Eng., 172(1-4) (1999), 27-77.
[4] E. Bao, Y. Y. Li, and B. Yin, Gradient estimates for the perfect and insulated conductivity problems with multiple inclusions, Commun. Partial Differential Equations, 35(11) (2010), 1982-2006.
[5] E. Bonnetier and M. Vogelius, An elliptic regularity result for a composite medium with "touching" fibers of circular cross-section, SIAM J. Math. Anal., 31(3) (2000), 651-677.
[6] B. Budiansky and G. F. Carrier, High Shear Stresses in Stiff-Fiber Composites, J. Appl. Mech., 51(4) (1984), 733-735.
[7] H. Dong and H. G. Li, Optimal estimates for the conductivity problem by Green's function method, Arch. Ration. Mech. Anal., 231(3) (2019), 1427-1453.
[8] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, Springer-Verlag, Berlin, 2001.
[9] J. B. Keller, Stresses in narrow regions, J. Appl. Mech., 60(4) (1993), 1054-1056.
[10] Y.Y. Li and L. Nirenberg, Estimates for elliptic systems from composite material, Commun. Pure Appl. Math., 56(7) (2003), 892-925.
[11] Y. Y. Li and M. Vogelius, Gradient estimates for solutions to divergence form elliptic equations with discontinuous coefficients, Arch. Ration. Mech. Anal., 153(2) (2000), 91-151.
[12] Y. Y. Li and Z. Yang, Gradient estimates of solutions to the insulated conductivity problem in dimension greater than two, arXiv:2012.14056.
[13] X. Markenscoff, Stress amplification in vanishingly small geometries, Comput. Mech., 19(1) (1996), 77-83.
[14] K. Yun, Estimates for electric fields blown up between closely adjacent conductors with arbitrary shape, SIAM J. Appl. Math., 67(3) (2007), 714-730.
[15] K. Yun, Optimal bound on high stresses occurring between stiff fibers with arbitrary shaped cross-sections, J. Math. Anal. Appl., 350(1) (2009), 306-312.
[16] K. Yun, An optimal estimate for electric fields on the shortest line segment between two spherical insulators in three dimensions, J. Differential Equations, 261(1) (2016), 148-188.

[^0]: *Corresponding author. Email addresses: yyli@math.rutgers.edu (Y. Y. Li), zy110@math.rutgers.edu (Z. Yang)

