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Abstract. In this paper, we give a survey on the Hill-type formula and its applications.
Moreover, we generalize the Hill-type formula for linear Hamiltonian systems and
Sturm-Liouville systems with any self-adjoint boundary conditions, which include the
standard Neumann, Dirichlet and periodic boundary conditions. The Hill-type for-
mula connects the infinite determinant of the Hessian of the action functional with
the determinant of matrices which depend on the monodromy matrix and boundary
conditions. Further, based on the Hill-type formula, we derive the Krein-type trace
formula. As applications, we give nontrivial estimations for the eigenvalue problem
and the relative Morse index.
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1 Introduction

The study of Hill-type formula begins with the original work of Hill [10] in 1877. In his
study of the motion of lunar perigee, Hill considered the following equation:

ẍ(t) + θ(t)x(t) = 0, (1.1)

where
θ(t) = ∑

j∈Z

θje2j
√
−1t with θ0 6= 0
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is a real π-periodic function. Let γ(t) be the fundamental solution of the associated first
order system of (1.1), that is,

γ̇(t) =
(

0 −θ(t)
1 0

)
γ(t), γ(0) = I2.

Suppose
ρ = ec

√
−1π, ρ−1 = e−c

√
−1π,

are the eigenvalues of the monodromy matrix γ(π). In order to compute c, Hill obtained
the following formula which connects the infinite determinant, corresponding to the dif-
ferential operator, and the characteristic polynomial:

sin2(π
2 c)

sin2(π
2 θ0)

= det
[(
− d2

dt2 − θ0

)−1(
− d2

dt2 − θ
)]

, (1.2)

where the right hand side of (1.2) is the Fredholm determinant. We should point out
that the right hand side of the original formula of Hill [10] is a determinant of an infinite
matrix. In [10], Hill did not prove the convergence of the infinite determinant, and the
convergence was proved by Poincaré [24]. The Hill-type formula for a periodic solution
of Lagrangian system on manifold was given by Bolotin [2]. In [3], Bolotin and Treschev
studied the Hill-type formula for both continuous and discrete Lagrangian systems with
Legendre convexity condition. For the periodic solution of ODE, the Hill-type formula
was given by Denk [6]. Please refer more works for Lagrangian systems at [5,7,16,21]. As
the beginning of a series of work, Hu and Wang [15] introduced the conditional Fredholm
determinant and sucessfully generalized the Hill-type formula to Hamiltonian systems
with S-periodic boundary conditions. Together with Ou, they obtained the Hill-type
formula for Hamiltonian systems with Lagrangian boundary conditions [13]. For the
Sturm-Liouville systems, they derived the Hill-type formula with S-periodic boundary
conditions in [12] and with Lagrangian boundary conditions in [17]. By Taylor expan-
sion of the parameterized Hill-type formula, they also derived the Krein-type trace for-
mula [12, 13, 17]. For the non-self-adjoint version of the Hill-type formula, we refer the
readers to [16].

The goal of this paper is to derive the Hill-type formula and the Krein-type trace for-
mula for Hamiltonian systems and Sturm-Liouville systems with any self-adjoint bound-
ary conditions, which cover S-periodic boundary conditions and Lagrangian boundary
conditions. The linear Hamiltonian system takes the form

ż(t) = Jn(B(t) + λD(t))z(t), (1.3)

where B, D ∈ C([0, T];S(2n)), and

Jn =

[
0 −In
In 0

]
.
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Here, we denote by M(2n) and S(2n) the set of 2n × 2n matrices and real symmet-
ric matrices, respectively. B and D can be considered as bounded operators on H :=
L2([0, T]; C2n), defined by (Bx)(t) = B(t)x(t) and (Dx)(t) = D(t)x(t). Let γλ(t) be the
fundamental solution of (1.3), that is,

γ̇λ(t) = Jn(B(t) + λD(t))γλ(t), γλ(0) = I2n.

It is well known that

γλ(t) ∈ Sp(2n) := {M ∈ GL(R2n)|MT Jn M = Jn}

for any t ∈ [0, T].
The self-adjoint boundary condition can be described by Lagrangian subspaces. More

precisely, the standard symplectic structure ωn(x, y) on C2n is defined by

ωn(x, y) = 〈Jnx, y〉,

where 〈·, ·〉 is the standard Hermitian inner product. A Lagrangian subspace V of
(C2n, ωn) is an isotropic subspace of dimension n, that is, for any x, y ∈ V, ωn(x, y) = 0.
Denote by Lag(C2n, ωn) the set of Lagrangian subspaces of C2n. It is well known that
Lag(C2n, ωn) is homeomorphic to the unitary group U(n). Let

(V , Ω) := (C2n ⊕C2n,−ωn ⊕ωn),

which is 4n-dimensional symplectic space. As above, we denote the set of 2n-
dimensional Lagrangian subspaces by Lag(V , Ω). Then any self-adjoint boundary con-
dition can be written as [

z(0)
z(T)

]
∈ Λ, (1.4)

where Λ ∈ Lag(V , Ω).
A frame for Λ is a linear map Z : C2n → C4n, whose image is Λ. Assume the frame of

Λ is of the form
[

X
Y

]
, where X and Y are 2n× 2n matrices and satisfy

X∗ JnX = Y∗ JnY. (1.5)

We will explain some important boundary conditions. Let

SpC(2n) := {M ∈ GL(C2n)|M∗ Jn M = Jn}

be the space of complex symplectic matrices. The M-periodic orbit is a solution of (1.3),
which satisfies z(0) = Mz(T) for some M ∈ SpC(2n). In this case, a frame of the

boundary condition Λ0 is
[

M
I2n

]
. Obviously, let M = I2n, we get the standard peri-

odic boundary conditions. An important case is M ∈ Sp(2n) ∩O(2n), which appears
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for symmetry periodic orbits. Another important case is the separated boundary condi-
tions, which include the Dirichlet and Neumann boundary conditions. More precisely,
let z(0) ∈ V0, z(T) ∈ V1, then Λ0 = V0 ⊕V1, where V0, V1 ∈ Lag(C2n, ωn). Both the above
boundary conditions naturally appear in the n-body problem.

We define the operator

A|EΛ = −Jn
d
dt

on H

with domain

EΛ =

{
z ∈W1,2([0, T]; C2n)

∣∣∣∣∣
[

z(0)
z(T)

]
∈ Λ

}
. (1.6)

It is standard that A|EΛ is a self-adjoint operator and has compact resolvent. Obviously,
the property of A|EΛ depends on its domain EΛ heavily and the choice of EΛ is based
on the boundary conditions Λ. In what follows, we will write A = A|EΛ if there is no
confusion.

It is well known that for λ ∈ ρ(A), the resolvent (A−λ)−1 is not a trace class operator,
but a Hilbert-Schmidt operator. Assume that A − B is non-degenerate throughout this
paper, then we set

F (B, D; EΛ) = D(A− B)−1, (1.7)

which will be written as F (B, D) for short without confusion. Throughout this paper, we
use I to denote the identity on a Hilbert space. Since F (B, D) is not necessarily a trace
class operator, the Fredholm determinant det(I − F (B, D)) is not well-defined. Instead
we will use the definition of conditional Fredholm determinant, which was introduced
in [15], see Section 2 for details. Another definition of the infinite dimensional determi-
nant based on zeta function is referred to [9, 26].

Recall that (XT, YT)T is a frame of Λ in (1.4). Then we have the following Hill-type
formula for Hamiltonian system (1.3)–(1.4).

Theorem 1.1. Assume that A− B is non-degenerate, then

det(I −F (B, D)) = det(γ1(T)X−Y) · det(γ0(T)X−Y)−1, (1.8)

where the left hand side is the conditional Fredholm determinant, and the right hand side is inde-
pendent of the choice of the frame (XT, YT)T.

Remark 1.1. The conditional Fredholm determinant det(I − F (B, D)) depends on the
projections {PN}. Here, the choice of the projections {PN} is different from those in (1.9)–
(1.10). In fact, {PN} are chosen as a sequence of eigen-projections of the operator −Jn

d
dt

associated with original S-periodic boundary condition in (1.9) and Lagrangian boundary
condition in (1.10). We choose {PN} as {2, 4}-components of {P̂N}, which is a sequence
of eigen-projections of the operator −J2n

d
dt associated with the constructed Lagrangian

boundary condition (3.3).
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Remark 1.2. Assume that A− B is non-degenerate. Let S ∈ Sp(2n) ∩O(2n). Then the
following Hill-type formula for S-periodic boundary conditions was obtained in [15]:

det(I −F (B, D; ES)) = det(Sγ1(T)− I) · det(Sγ0(T)− I)−1. (1.9)

Let Z0, Z1 be frames of Λ0, Λ1. It is evident that γλ(T)Z0 is a frame of γλ(T)Λ0 and
(γλ(T)Z0, Z1) is a 2n× 2n matrix. Then the following Hill-type formula for the real La-
grangian boundary conditions was obtained in [13]:

det(I −F (B, D; EΛ0,Λ1)) = det(γ1(T)Z0, Z1) · det(γ0(T)Z0, Z1)
−1. (1.10)

Here, the left hand side of (1.9)–(1.10) is the conditional Fredholm determinant, and the
right hand side of (1.10) is independent of the choice of the frames Z0, Z1.

It is worthy to point out that the Hill-type formula (1.10) is also true for the complex
Lagrangian boundary conditions, and the proof is similar as Theorem 1.1 in [13].

The trace formula can be derived from the Hill-type formula. Set

P = γ−1
0 (T)Y− X, (1.11a)

D̂(t) = γT
0 (t)D(t)γ0(t), (1.11b)

Mj =
∫ T

0
JD̂(t1)

∫ t1

0
JD̂(t2) · · ·

∫ tj−1

0
JD̂(tj)dtj · · · dt2dt1. (1.11c)

Let Gj = P−1MjX and F = F (B, D) for simplicity. Then we get the following Krein-type
trace formula.

Theorem 1.2. Under the above notations, we have for m ∈N,

Tr(Fm) = m
m

∑
k=1

1
k

(
∑

j1+···+jk=m
Tr(Gj1 · · ·Gjk)

)
.

In particular,

Tr(F ) = Tr(G1), Tr(F 2) = Tr(G2
1) + 2Tr(G2). (1.12)

Since Fm is a trace class operator for m ≥ 2, we have

Tr(Fm) = ∑
j

1
λm

j
= m

m

∑
k=1

1
k

(
∑

j1+···+jk=m
Tr(Gj1 · · ·Gjk)

)
,

where the algebraic multiplicity of λj is counted.
The original work of the trace formula is due to Krein [19, 20] in 1950’s. In fact, Krein

considered the following system

ż(t) = λJD(t)z(t), z(0) = −z(T), (1.13)
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where D ≥ 0 and
∫ T

0 D(t)dt > 0. System (1.13) is a special case of Hamiltonian system
(1.3)–(1.4). For the system (1.13), Krein proved that

lim
r→∞ ∑

|λj|<r

1
λj

= 0, (1.14a)

∑
1

λ2
j
=

T2

2
Tr(A11A22 − A2

12), (1.14b)

where {λj} are the eigenvalues for the system (1.13), and(
A11 A12
A21 A22

)
=

1
T

∫ T

0
D(t)dt.

Moreover, Krein gave an interesting stability criterion:

T2

2
Tr(A11A22 − A2

12) < 1. (1.15)

Remark 1.3. Krein considered the simplest Hamiltonian system with some special con-
ditions such as D ≥ 0 and

∫ T
0 D(t)dt > 0. For the system coming from n-body problem,

these conditions are not satisfied. Motivated by Krein’s idea, Hu, Ou and Wang applied
the trace formula for general boundary conditions to give nontrivial estimation of the
stability region of elliptic Lagrangian orbits in planar three-body problem. The readers
are referred to [12, 13] for details.

Next, we consider the Sturm-Liouville system

− (P(t)ẏ(t) + Q(t)y(t))· + Q(t)T ẏ(t) + (R(t) + λR1(t))y(t) = 0, (1.16)

where P, Q ∈ W1,2([0, T];M(n)), R, R1 ∈ C([0, T];M(n)), P(t) is invertible and P(t),
R(t), R1(t) ∈ S(n) for t ∈ [0, T]. Let

x(t) = P(t)ẏ(t) + Q(t)y(t) and z(t) =
[

x(t)
y(t)

]
.

Then as in (1.4), any self-adjoint boundary condition can be written as[
z(0)
z(T)

]
∈ Λ, (1.17)

where

Λ =

[
X
Y

]
∈ Lag(V , Ω).
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By the Legendre transformation, (1.16) corresponds to the linear Hamiltonian system

ż(t) = Jn(B(t) + λD(t))z(t), (1.18)

where

B(t) =
[

P(t)−1 −P(t)−1Q(t)
−Q(t)TP(t)−1 Q(t)TP(t)−1Q(t)− R(t)

]
, D(t) =

[
0 0
0 −R1(t)

]
. (1.19)

We define the operator

A = − d
dt

(
P

d
dt

+ Q
)
+ QT d

dt
+ R

on L2([0, T]; Cn) with domain

EΛ =

{
y ∈W2,2([0, T]; Cn)

∣∣∣∣ [z(0)
z(T)

]
∈ Λ

}
.

It is well-known that A is a self-adjoint operator. We assume that A is non-degenerate.
Then R1A−1 is a trace class operator and the classical Fredholm determinant det(I +
λR1A−1) can be defined. We still use γλ(t) to denote the fundamental solutions of (1.18)
with the initial data γλ(0) = I2n. Now, we give the Hill-type formula for Sturm-Liouville
system (1.16)–(1.17).

Theorem 1.3. Assume that A is non-degenerate, then

∏
j
(1− λ−1

j ) = det(γ1(T)X−Y) · det(γ0(T)X−Y)−1, (1.20)

where {−λ−1
j } are all the eigenvalues of R1A−1 counting algebraic multiplicity, and (XT, YT)T

is a frame of Λ in (1.17).

Similarily, we have the trace formula.

Theorem 1.4. Assume that A is non-degenerate, then for m ∈N,

∑
j

λ−m
j = m

m

∑
k=1

1
k

(
∑

j1+···+jk=m
Tr(Gj1 · · ·Gjk)

)
,

where {−λ−1
j } are all the eigenvalues of R1A−1 counting algebraic multiplicity, and Gj is the

same as Theorem 1.2.

Finally, we give some applications of the trace formula. As an application, we will
give some estimations on the non-degeneracy of the linear system. It is well-known that
the system preserves the non-degeneracy under small perturbations. A natural question
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will arise: can we give an upper bound for the perturbation such that, under the smaller
perturbation, the systems preserve the non-degeneracy? By the trace formula, we can
answer this question partly. Details can be found in Section 5. As another application,
the trace formula could be used to estimate the relative Morse index for Hamiltonian
systems and the Morse index for Lagrangian systems. It is well-known that the relative
Morse index (or Morse index) is equal to the Maslov-type index for the path of symplectic
matrices and the Maslov-type index is a successful tool in judging the linear stability [14,
22]. We will not discuss the stability in the present paper, and interested readers could
find the details in [12, 13].

We would like to point out that there are some other interesting applications of the
Hill-type formula given by Portaluri and Wu [25], which relates to the spectral flow and
degree theory.

The paper is organized as follows. Section 2 is devoted to preliminaries on condi-
tional Fredholm determinant and conditional trace. In Section 3, the Hill-type formula
and the Krein-type trace formula are proved for Hamiltonian systems with any self-
adjoint boundary conditions. These two type’s formula are proved for Sturm-Liouville
systems with any self-adjoint boundary conditions in Section 4. Some estimations of rel-
ative Morse index and stability criteria are given in Section 5.

2 Conditional Fredholm determinant and conditional trace

In this section, we introduce some preliminary results, which include properties of the
conditional Fredholm determinant and conditional trace developed in [13, 15].

The original idea of the conditional Fredholm determinant comes from [15]. For the
classical theory of Fredholm determinant, if C is a trace class operator on a Hilbert space
H, then the Fredholm determinant det(I + αC) is well-defined and it is an entire function
on α. In the study of Hamiltonian system, however, A−1 is not necessarily a trace class
operator but a Hilbert-Schmidt operator, where A is assumed to be invertible. This makes
the traditional Fredholm determinant not well-defined here. To break this barrier, the
conditional Fredholm determinant was introduced in [15] for a class of Hilbert-Schmidt
operator satisfying the following condition.

Definition 2.1. Let P = {Pk} be a sequence of orthogonal projections on the Hilbert space H
such that

1) Range(Pk) ⊂ Range(Pm) for k ≤ m,

2) Pk converges to I in strong operator topology.

A Hilbert-Schmidt operator F is called to have the ”trace finite condition” associated to P if the
limit limk→∞ Tr(PkFPk) exists and is finite. In this case, we still use the notation Tr(F) :=
limk→∞ Tr(PkFPk), which is called the ”conditional trace” of F associated to P .
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Denote by J (P) the set of Hilbert-Schmidt operators with trace finite condition asso-
ciated to P . It is easy to see that J (P) is a linear space and

J1 ⊂ J (P) ⊂ J2,

where J1 and J2 are the ideals of trace class operators and Hilbert-Schmidt operators,
respectively. In general, J (P) is not an ideal of the algebra of bounded linear operators.

For F ∈ J2, the regularized Fredholm determinant can be defined (see, for exam-
ple, [27]):

det2(I + F) = det((I + F)e−F).

Denote by ‖F‖2 the Hilbert-Schmidt norm for F ∈ J2. Then for any sequence of finite
rank operators {Fk} such that ‖Fk − F‖2 → 0 as k→ ∞, we have

det2(I + F) = lim
k→∞

det2(I + Fk).

Therefore, if F ∈ J2 has the trace finite condition associated to {Pk}, then setting Fk =
PkFPk, we have

det2(I + F) = lim
k→∞

det2(I + Fk) = lim
k→∞

det
(
(I + Fk)e−Fk

)
= lim

k→∞
det (I + Fk) e−Tr(Fk) = lim

k→∞
det (I + Fk) e

− lim
k→∞

Tr(Fk),

which means
lim
k→∞

det (I + Fk) = det2(I + F)e
lim
k→∞

Tr(Fk)

is convergent. To simplify the notation, we have the following definition.

Definition 2.2. If F ∈ J2 has the trace finite condition associated to {Pk}, then we define the
conditional Fredholm determinant

det(I + F) = lim
k→∞

det (I + Fk) ,

where Fk = PkFPk.

The conditional Fredholm determinant shares many properties with the classical
Fredholm determinant. For example, in [12, 15], by using Montel’s Theorem, we have

Lemma 2.1. If F ∈ J2 has the trace finite condition, then the function det(I + αF) is an entire
function on the variable α.

The next lemma collects some basic properties of the determinant.

Lemma 2.2 (Theorem 3.5 in [15]). If D, F ∈ J2 have the trace finite condition, then
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1) det(I + D) = det(I + D∗),

2) det(I + D)det(I + F) = det(I + D + F + DF),

3) det(I + D) 6= 0 if and only if I + D is invertible,

4) for any λ0 6= 0, set z0 = −λ−1
0 , then λ0 is an eigenvalue of D of algebraic multiplicity k if

and only if λ0 is a zero point of det(I + αD) of order k.

Suppose V0, V1 ∈ Lag(C2n, ωn). When we consider the Lagrangian boundary condi-
tions, the domain of A|EV0,V1

is defined as

EV0,V1 = {z(t) ∈W1,2([0, T]; C2n) | z(0) ∈ V0, z(T) ∈ V1}.

Following [13], we may change a symplectic basis and assume that the Lagrangian frames
of V0, V1 are

Z0 = (In, 0n)
T, Z1 = (C(θ), S(θ))T, (2.1)

respectively, where for −π/2 < θj ≤ π/2,

C(θ) = diag(cos(θ1), · · · , cos(θn)), S(θ) = diag(sin(θ1), · · · , sin(θn)).

Then
σp
(

A|EV0,V1
) = {λj,k | λj,k = θj/T + kπ/T, j = 1, 2, · · · , n, k ∈ Z}, (2.2)

with the corresponding eigenfunctions

ej,k = eλj,k Jtej = cos(λj,kt)ej + sin(λj,kt)en+j,

where ej is the standard j-th basis of C2n. In the following lemma. Let PN be the projec-
tions fromH to span{ej,k : 1 ≤ j ≤ n, |k| ≤ N}.

Lemma 2.3 (Proposition 2.2 in [13]).
i) For any ν ∈ C such that A|EV0,V1

− ν is invertible, F (ν, D; EV0,V1) ∈ J ({PN }) and

TrF (ν, D; EV0,V1) =
n

∑
j=1

cos(θj − Tν)

sin(θj − Tν)

∫ T

0
(e−νJtDeνJtej, ej)dt

+
n

∑
j=1

∫ T

0
(e−νJtDeνJten+j, ej)dt. (2.3)

ii) F (B, D; EV0,V1) ∈ J ({PN }) and hence the conditional Fredholm determinant det(I −
F (B, D; EV0,V1)) is well defined.
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3 Hill-type formula and Krein-type trace formula for
Hamiltonian systems

In this section, we prove the Hill-type formula for Hamiltonian systems with any self-
adjoint boundary condition. By Taylor expansion of the parameterized Hill-type formula,
we derive the Krein-type trace formula.

3.1 Hill-type formula for Hamiltonian systems with any self-adjoint
boundary condition

Recall that the Hamiltonian system with any self-adjoint boundary condition takes the

form (1.3)–(1.4), and the frame
[

X
Y

]
of the boundary condition Λ in (1.4) satisfies (1.5).

Let

X =

[
X11 X12
X21 X22

]
and Y =

[
Y11 Y12
Y21 Y22

]
,

where Xij, Yij ∈ M(n). Then by (1.5) we have[
X∗21X11 − X∗11X21 X∗21X12 − X∗11X22
X∗22X11 − X∗12X21 X∗22X12 − X∗12X22

]
=

[
Y∗21Y11 −Y∗11Y21 Y∗21Y12 −Y∗11Y22
Y∗22Y11 −Y∗12Y21 Y∗22Y12 −Y∗12Y22

]
. (3.1)

Let

z(t) =
[

z1(t)
z2(t)

]
, z̃(t) =

[
z̃1(t)
z̃2(t)

]
,

B(t) =
[

b11(t) b12(t)
b12(t)T b22(t)

]
, D(t) =

[
d11(t) d12(t)

d12(t)T d22(t)

]
,

where z1(t), z2(t), z̃1(t), z̃2(t) ∈ Cn, bii(t), dii(t) ∈ S(n), and bij(t), dij(t) ∈ M(n) for i 6=
j. Now, we construct a 4n-dimensional Hamiltonian system, which satisfies a complex
Lagrangian boundary condition and thus allows us to apply (1.10) in Remark 1.2 later.
Consider a 4n-dimensional Hamiltonian system

˙̃z2(t)
ż1(t)
˙̃z1(t)
ż2(t)

 = J2n




0 0 0 0
0 b11(t) 0 b12(t)
0 0 0 0
0 b12(t)T 0 b22(t)

+ λ


0 0 0 0
0 d11(t) 0 d12(t)
0 0 0 0
0 d12(t)T 0 d22(t)





z̃2(t)
z1(t)
z̃1(t)
z2(t)

 (3.2)

with the boundary condition
z̃2(0)
z1(0)
z̃1(0)
z2(0)

 ∈


0 In
In 0
In 0
0 In

 =: Λ0 and


z̃2(T)
z1(T)
z̃1(T)
z2(T)

 ∈


X21 X22
Y11 Y12
X11 X12
Y21 Y22

 =: ΛT, (3.3)
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where we identify the subspaces Λ0 and ΛT with their frames. To confirm that (3.3) is
a complex Lagrangian boundary condition, we need to check that Λ0 and ΛT are La-
grangian subspaces in (C4n, ω2n). Note that the basis here is ω2n, and thus we will verify
that

X∗i Yi = Y∗i Xi for Λi =

[
Xi
Yi

]
, i = 0, T.

It is evident that Λ0 is Lagrangian. Direct computation implies[
X∗21 Y∗11
X∗22 Y∗12

] [
X11 X12
Y21 Y22

]
=

[
X∗21X11 + Y∗11Y21 X∗21X12 + Y∗11Y22
X∗22X11 + Y∗12Y21 X∗22X12 + Y∗12Y22

]
,[

X∗11 Y∗21
X∗12 Y∗22

] [
X21 X22
Y11 Y12

]
=

[
X∗11X21 + Y∗21Y11 X∗11X22 + Y∗21Y12
X∗12X21 + Y∗22Y11 X∗12X22 + Y∗22Y12

]
.

Then by (3.1), we have[
X∗21 Y∗11
X∗22 Y∗12

] [
X11 X12
Y21 Y22

]
=

[
X∗11 Y∗21
X∗12 Y∗22

] [
X21 X22
Y11 Y12

]
,

which verifies that (3.3) is a complex Lagrangian boundary condition. Let

ẑ(t) =


z̃2(t)
z1(t)
z̃1(t)
z2(t)


and define the operator

Â = −J2n
d
dt

on L2([0, T]; C4n)

with domain

EΛ0,ΛT = {ẑ ∈W1,2([0, T]; C4n)
∣∣ ẑ(0) ∈ Λ0, ẑ(T) ∈ ΛT}.

Then Â is a self-adjoint operator and has compact resolvent. Then by the discussion in
(2.2), we have

σ(Â) = {λ̂j,k|λ̂j,k = θj/T + kπ/T, 1 ≤ j ≤ 2n, k ∈ Z}.

The corresponding eigenfunctions are denoted by

êj,k = (êj,k,l)1≤l≤4 =


êj,k,1
êj,k,2
êj,k,3
êj,k,4

 ,
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where êj,k,l ∈ L2([0, T]; Cn), 1 ≤ l ≤ 4. Let P̂N be the projections from L2([0, T]; C4n) to
span

{
êj,k : 1 ≤ j ≤ 2n, |k| ≤ N

}
, and PN be the projections from L2([0, T]; C2n) to

span
{[

êj,k,2
êj,k,4

]
: 1 ≤ j ≤ 2n, |k| ≤ N

}
,

respectively. Then Range(PN) ⊂ Range(PM) for N ≤ M and PN converges to the identity
I on L2([0, T]; C2n) in the strong operator topology. P̂N has similar properties.

Recall that

z̃(t) =
[

z̃1(t)
z̃2(t)

]
and z(t) =

[
z1(t)
z2(t)

]
.

Then the Hamiltonian system (3.2)–(3.3) can be rewritten as{
˙̃z(t) = 0,
ż(t) = Jn(B(t) + λD(t))z(t),

(3.4)

with the boundary condition[
z̃(0)
z(0)

]
∈
[

I2n
I2n

]
and

[
z̃(T)
z(T)

]
∈
[

X
Y

]
= Λ. (3.5)

Moreover, we have the following conclusion.

Lemma 3.1. z(t) is a solution of (1.3)–(1.4) if and only if
[

z(0)
z(t)

]
is a solution of (3.4)–(3.5).

Following [22], denote

M � N =


m11 0 m12 0

0 n11 0 n12
m21 0 m22 0

0 n21 0 n22


for

M =

[
m11 m12
m21 m22

]
, N =

[
n11 n12
n21 n22

]
∈ M(2n),

and mij, nij ∈ M(n). Let

B̂(t) = 02n � B(t) and D̂(t) = 02n � D(t).

Then by Lemma 2.3 ii), we have

Tr(D̂(Â− B̂)−1) = lim
N→∞

Tr(P̂N(D̂(Â− B̂)−1)P̂N)
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exists and is finite. Thus, det(I − D̂(Â− B̂)−1) is well-defined. By the special choice of
PN , we have

Tr(P̂N(D̂(Â− B̂)−1)P̂N) = Tr(PN(D(A− B)−1)PN), (3.6)

and thus,
Tr(D(A− B)−1) = lim

N→∞
Tr(PN(D(A− B)−1)PN)

exists and is finite. Hence, the conditional Fredholm determinant det(I−D(A− B)−1) is
well defined associated to the projections {PN}. Denote

γλ(t) =
[

γλ,11(t) γλ,12(t)
γλ,21(t) γλ,22(t)

]
the fundamental solutions of (1.3) with the initial data γλ(0) = I2n. Then I2n � γλ(t) is
the fundamental solutions of (3.2) with the initial data I2n � γλ(0) = I4n. Now, we are in a
position to prove Theorem 1.1: the Hill-type formula for Hamiltonian system (1.3)–(1.4).

Proof of Theorem 1.1. Since A− B is non-degenerate, we have z(t) ≡ 0 is the only solution
of (1.3)–(1.4) for λ = 0. By Lemma 3.1,[

z̃(t)
z(t)

]
≡
[

0
0

]
is the only solution of (3.4)–(3.5) for λ = 0. Thus, Â− B̂ is non-degenerate. Since (3.3) is
a Lagrangian boundary condition, we apply (1.10) in Remark 1.2 to (3.2)–(3.3) to get

det(I − D̂(Â− B̂)−1) = lim
N→∞

det(I − P̂N D̂(Â− B̂)−1P̂N)

=det((I2n � γ1(T))Λ0, ΛT) · det((I2n � γ0(T))Λ0, ΛT)
−1. (3.7)

For k = 0, 1, we have

det((I2n � γk(T))Λ0, ΛT) = det




In 0 0 0
0 γk,11(T) 0 γk,12(T)
0 0 In 0
0 γk,21(T) 0 γk,22(T)




0 In
In 0
In 0
0 In

 ,


X21 X22
Y11 Y12
X11 X12
Y21 Y22




=det




0 In X21 X22
γk,11(T) γk,12(T) Y11 Y12

In 0 X11 X12
γk,21(T) γk,22(T) Y21 Y22


 = (−1)2n det




In 0 X11 X12
0 In X21 X22

γk,11(T) γk,12(T) Y11 X12
γk,21(T) γk,22(T) Y21 Y22




=det
([

I2n X
γk(T) Y

])
= det(Y− γk(T)X). (3.8)

Then we prove that

det2(I − D̂(Â− B̂)−1) = det2(I − D(A− B)−1). (3.9)
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Assume that (3.9) is true. By (3.6) we have

det(I − D̂(Â− B̂)−1) = det2(I − D̂(Â− B̂)−1) lim
N→∞

eTr(−P̂N D̂(Â−B̂)−1 P̂N)

=det2(I − D(A− B)−1) lim
N→∞

eTr(−PN D(A−B)−1PN) = det(I − D(A− B)−1). (3.10)

Then (1.8) follows from (3.10), (3.8) and (3.7).
It rests to prove (3.9). By Lemma 3.1,

σ(D̂(Â− B̂)−1) = σ(D(A− B)−1).

We will prove that the algebraic multiplicity of λ as an eigenvalue of D̂(Â− B̂)−1 is the
same as that of λ as an eigenvalue of D(A− B)−1. Suppose that v̂1 is an eigenfunction of
λ ∈ σ(D̂(Â− B̂)−1). Let

û1 = (û1,j)1≤j≤4 := (Â− B̂)−1v̂1,

where û1,j ∈ L2([0, T]; Cn). Since

(Â− B̂)û1 = λ−1D̂û1

and û1 satisfies the boundary condition (3.3), we have

û1(t) = (û1,4(0)T, u1,2(t)T, û1,2(0)T, û1,4(t)T)T and (û1,j)j=2,4 ∈ EΛ.

Let
v1 = (A− B)(û1,j)j=2,4.

Then v1 is an eigenfunction of λ ∈ σ(D(A− B)−1), and vice versa. Suppose that v̂2 is a
generalized eigenfunction of λ ∈ σ(D̂(Â− B̂)−1) satisfying

(D̂(Â− B̂)−1 − λ)v̂2 = v̂1.

Let
û2 = (û2,j)1≤j≤4 := (Â− B̂)−1v̂2.

Then
(Â− B̂)(û2 + λ−1û1) = λ−1D̂û2.

Denoting
w = (wj)1≤j≤4 := (û2,j + λ−1û1,j)1≤j≤4,

we have
w(t) = (w4(0)T, w2(t)T, w2(0)T, w4(t)T)T

and thus, (wj)j=2,4 ∈ EΛ. Then

(û2,j)j=2,4 = (wj − λ−1û1,j)j=2,4 ∈ EΛ,

(A− B)(û2,j + λ−1û1,j)j=2,4 = λ−1D(û2,j)j=2,4.
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Let
v2 = (A− B)(û2,j)j=2,4.

Then v2 is a generalized eigenfunction of λ ∈ σ(D(A− B)−1) satisfying

(D(A− B)−1 − λ)v2 = v1

and vice versa. If the algebraic multiplicity of λ as an eigenvalue of D̂(Â− B̂)−1 is k0 and

(D̂(Â− B̂)−1 − λ)v̂i+1 = v̂i for 2 ≤ i ≤ k0 − 1,

by induction we can construct a corresponding generalized eigenfunction vi+1 of λ ∈
σ(D(A− B)−1) satisfying

(D(A− B)−1 − λ)vi+1 = vi

and vice versa.
Denote R(F) = (I + F)e−F − I for an operator F ∈ J2 and {λj} be all the eigenvalues

of D̂(Â− B̂)−1, where the algebraic multiplicity is counted. Then R(−D̂(Â− B̂)−1) ∈ J1
and all the eigenvalues of R(−D̂(Â− B̂)−1) are {(1−λj)eλj − 1}. Meanwhile, R(−D(A−
B)−1) ∈ J1 and all the eigenvalues of R(−D(A− B)−1) are {(1−λj)eλj − 1}. By Theorem
3.7 in [27], we have

det2(I − D̂(Â− B̂)−1) =det(I + R(−D̂(Â− B̂)−1)) = ∏
j
(1 + (1− λj)eλj − 1)

=det(I + R(−D(A− B)−1)) = det2(I − D(A− B)−1).

This proves (3.9).

3.2 Krein-type trace formula for Hamiltonian systems with any self-adjoint
boundary condition

In this subsection, we derive the Krein-type trace formula for Hamiltonian systems with
any self-adjoint boundary condition. The idea is similar as Section 2 in [12]. First, we
study the Taylor expansion of the parameterized conditional Fredholm determinant and
the linearly parameterized monodromy matrices, separately. Then we obtain the Krein-
type trace formula by comparing the coefficients of the expansions in the parameterized
Hill-type formula.

Recall that F = F (B, D) and the conditional Fredholm determinant det(I − αF ) is
well-defined associated to {PN}, which is given in Subsection 3.1. Then by Theorem 2.6
in [16] we have

det(I − αF ) = exp

(
−

∞

∑
m=1

1
m

Tr(Fm)αm

)
. (3.11)
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Next, we consider the expansion of the parameterized monodromy matrices. Let

M(α) = Y− γα(T)X, f (α) = det M(α)det M(0)−1 and P = γ0(T)−1Y− X.

Then

f (α) =det(γ0(T)−1(Y− γα(T)X))det(P−1)

=det(I2n − P−1(γ0(T)−1γα(T)− I2n)X).

Following Subsection 2.2 in [12], we have

γ0(T)−1γα(T)− I2n =
∞

∑
j=1

αj Mj,

where Mj is defined in (1.11). Then

f (α) = det(I2n −
∞

∑
j=1

αjGj),

where Gj = P−1MjX. Similar to (2.6) in [12], we have f (α) = eg(α), where

g(m)(0)
m!

=
m

∑
k=1

−1
k

(
∑

j1+···+jk=m
Tr(Gj1 · · ·Gjk)

)
. (3.12)

Now, we give the proof of Theorem 1.2.

Proof of Theorem 1.2. By Theorem 1.1, we get the parameterized Hill-type formula det(I−
αF ) = f (α). Then the proof is done by comparing the coefficients of (3.11) and (3.12).

4 Hill-type formula and Krein-type trace formula for the
Sturm-Liouville system with any self-adjoint boundary
condition

In this section, we prove the Hill-type formula and the Krein-type trace formula for the
Sturm-Liouville system (1.16)–(1.17). Recall that

A = − d
dt

(
P

d
dt

+ Q
)
+ QT d

dt
+ R

is defined on L2([0, T]; Cn) with domain EΛ. If A is invertible, then R1A−1 ∈ J1. Thus,
the classical Fredholm determinant det(I + λR1A−1) can be defined. We need the fol-
lowing lemma, where γλ(t) is the fundamental solutions of (1.18) with the initial data
γλ(0) = I2n, and (XT, YT)T is a frame of Λ in (1.17).
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Lemma 4.1.
i) det(I + λ0R1A−1) = 0 if and only if det(Y− γλ0(T)X) = 0.
ii) Suppose R1 > 0. Then the order of det(I + λR1A−1) at a zero point λ0 is the same as that of
det(Y− γλ(T)X) at λ0.

Proof. i) det(I + λ0R1A−1) = 0 ⇐⇒ −1/λ0 is an eigenvalue of R1A−1 ⇐⇒ λ0 is an

eigenvalue of (1.16)–(1.17)⇐⇒ λ0 is an eigenvalue of (1.18)–(1.17)⇐⇒
[

z(0)
γλ0(T)z(0)

]
∈

Λ =

[
X
Y

]
for some 0 6= z(0) ∈ C2n ⇐⇒ (Y − γλ0(T)X)a = 0 for some 0 6= a ∈ C2n ⇐⇒

det(Y− γλ0(T)X) = 0, where we used Theorem 3.5 (c) in [27] for the first equivalence.

ii) Note that H : L2
R1
([0, T]; Cn) → L2([0, T]; Cn), Hu = R

1
2
1 u defines an isometry,

where

L2
R1
([0, T]; Cn) =

{
u
∣∣∣ ‖u‖2

R1
:=
∫ T

0
u∗R1udt < ∞

}
.

Without confusion, we still use R
1
2
1 for the usual multiplication operator on L2([0, T]; Cn).

Then
Â := H−1R−

1
2

1 AR−
1
2

1 H

defines a self-adjoint operator on L2
R1
([0, T]; Cn).

Denote the orders of det(I + λR1A−1) and det(Y− γλ(T)X) at the zero point λ0 by k0
and k1, respectively. Let τ1(λ, F) and τ2(λ, F) be the algebraic and geometric multiplicities
of λ ∈ σp(F) for an operator F, respectively. Then it suffices to prove that for i = 1, 2,

k0 = τi(−1/λ0, R1A−1) = τi(−λ0, R−
1
2

1 AR−
1
2

1 ) = τi(−λ0, Â) = k1. (4.1)

By Theorem 3.5(c) in [27] again,

k0 = τ1(−1/λ0, R1A−1).

Since
R−

1
2

1 (R1A−1)R
1
2
1 = R

1
2
1A
−1R

1
2
1 ,

we have R1A−1 is diagonable and thus −1/λ0 is semi-simple, which means

τ1(−1/λ0, R1A−1) = τ2(−1/λ0, R1A−1).

Note that v is an eigenfunction of −1/λ0 ∈ σ(R1A−1) if and only if R
1
2
1A−1v is an eigen-

function of −λ0 ∈ σ(R−
1
2

1 AR−
1
2

1 ). Thus,

τ2(−1/λ0, R1A−1) = τ2(−λ0, R−
1
2

1 AR−
1
2

1 ).
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Since H is an isometry, and both R−
1
2

1 AR−
1
2

1 and Â are self-adjoint, we have

τi(−λ0, R−
1
2

1 AR−
1
2

1 ) = τi(−λ0, Â) for i = 1, 2.

By Theorem 5.1 and Remark 5.1 in [11], we have τi(−λ0, Â) = k1 for i = 1, 2.† This proves
(4.1).

Now, we are ready to prove Theorem 1.3: the Hill-type formula for Sturm-Liouville
system (1.16)–(1.17).

Proof of Theorem 1.3. Since R1A−1 ∈ J1, by Theorem 3.7 in [27] we have

det(I + λR1A−1) = ∏
j
(1− λ−1

j λ).

First, we prove (1.20) for R1 > 0. Following the proof of Lemma 2.3 in [17], we have
γλ(T) is an entire function on λ and

‖γλ(T)‖ ≤ C0|λ|1/2 exp(C|λ|1/2).

Then
g(λ) := det(Y− γλ(T)X)

is an entire function and it is not hard to check that for any ε > 0, there exists Cε such that

|g(λ)| ≤ Cε exp(ε|λ|).

By Lemma 4.1, all the zeros (counting orders) of g(λ) are {λj}. Moreover, ∑j |λj|−1 < ∞
due to R1A−1 ∈ J1. Since A is non-degenerate, g(0) 6= 0. By Lemma 3.6 in [27], we have

g(0)−1g(λ) = ∏
j
(1− λ−1

j λ) = det(I + λR1A−1), (4.2)

and in particular,
∏

j
(1− λ−1

j ) = g(0)−1g(1),

which proves (1.20) for R1 > 0. In the general case, we choose α0 ∈ R such that R1− α0 >
0 andA+ α0 is non-degenerate. We rewrite γλ(T) by γλ(T, R1) to indicate its dependence
on R1. Following (2.5) in [17], we have

det(I + R1A−1) = det[I + (R1 − α0)(A+ α0)
−1] · det(I + α0A−1)

=[det(Y− γα0(T, In)X)−1g(1)] · [g(0)−1 det(Y− γα0(T, In)X)] = g(0)−1g(1),

where we used (4.2). This proves (1.20) in the general case.

†Although the Sturm-Liouville system (1.16) is slightly general than (1.1) in [11] due to the additional ‘Q’-
terms, the same proof of Theorem 5.1 in [11] works here.
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Next, we give the proof of Theorem 1.4.

Proof of Theorem 1.4. Since R1A−1 ∈ J1, we have by (5.12) in [27] that

det(I + λR1A−1) = exp

(
∞

∑
m=1

(−1)m+1

m
λmTr((R1A−1)m)

)
. (4.3)

Let
f (λ) = det(Y− γλ(T)X) · det(Y− γ0(T)X)−1.

Similar to (3.12), we have f (λ) = eh(λ), where

h(m)(0)
m!

=
m

∑
k=1

−1
k

(
∑

j1+···+jk=m
Tr(Gj1 · · ·Gjk)

)
. (4.4)

Here Gj = P−1MjX, Mj and D̂(t) are defined in (1.11), D(t) is defined in (1.19). By Theo-
rem 1.3, we get the parameterized Hill-type formula det(I + λR1A−1) = f (λ). Compar-
ing the coefficients of (4.3) and (4.4), we have

m

∑
k=1

1
k

(
∑

j1+···+jk=m
Tr(Gj1 · · ·Gjk)

)
=

(−1)m

m
Tr((R1A−1)m)

=
(−1)m

m ∑
j

(−1)m

λm
j

=
1
m ∑

j

1
λm

j
.

This complete the proof.

Moreover, we have

Tr(R1A−1)k = Tr(F k(B, D)), k ∈N,

where B and D are defined in (1.18).
When the Hamiltonian system comes from the Legendre transformation of Sturm-

Liouville system, the operator F (B, D) ∈ J∞, and thus,

det(I −F ) = ∏
j
(1− λ−1

j ) and Tr(F ) = ∑
j

λ−1
j . (4.5)

(4.5) does not hold for general Hamiltonian systems, and a counterexample could be
found in Subsection 3.3 of [13].

Finally, we give an example to illustrate how to get infinite identity from the trace
formula. Consider the eigenvalue problem

ÿ + λy = 0 (4.6)
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with the boundary conditions

y(0) = 0 and cos(θ)y(T) + sin(θ)ẏ(T) = 0, θ ∈ [0, π/2]. (4.7)

It is well known that the k-th eigenvalue λk is the k-th positive solution of the next tran-
scendental equation

tan(
√

λT) = − tan(θ)
√

λ. (4.8)

It is easy to check that if θ = 0, then λk =
k2π2

T2 ; and if θ = π/2, then λk =
π2

T2 (k− 1
2 )

2. For
θ ∈ (0, π/2), it is obvious that (

k− 1
2

)
π <

√
λkT < kπ.

However, λk can only be solved numerically. As an application of the trace formula, we
have the following equality, which itself is interesting:

∑
k∈N

1
λk

=
3T2 sin(θ) + T3 cos(θ)
6(sin(θ) + T cos(θ))

. (4.9)

Obviously, for θ = 0, (4.9) gives the well known identity

∑
k∈N

1
k2 =

π2

6

and for θ = π/2, (4.9) gives the identity

∑
k∈N

1
π2(k− 1

2 )
2
=

1
2

.

To the best of our knowledge, for θ ∈ (0, π/2), we don’t know any such kind of formula
on the sum of 1

λk
ever before. The detailed calculation could be found in [17].

5 Applications

The relative Morse index for linear Hamiltonian system is equal to the Maslov-type in-
dex for the corresponding fundamental solutions, and the Maslov-type index is a very
useful tool in studying the multiplicity and stability of periodic solution in Hamiltonian
systems [22]. In this section, we give the relation of conditional Fredholm determinant
and relative Morse index, also we estimate the relative Morse index by the trace formula.
Therefore the trace formula could be used to judge the linear stability via the Maslov-type
index.
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5.1 Relation with the relative Morse index and Maslov-type index

A simple way to understand the relative Morse index I(A − B, A − B − D) is from the
viewpoint of spectral flow. For reader’s convenience, we first give a brief review of the
spectral flow. The spectral flow was introduced by Atiyah, Patodi and Singer [1] in their
study of index theory on manifolds with boundary. Let {A(θ), θ ∈ [0, 1]} be a continu-
ous path of self-adjoint Fredholm operators on a Hilbert spaceH. Roughly speaking, the
spectral flow of path {A(θ), θ ∈ [0, 1]} counts the net change in the number of negative
eigenvalues of A(θ) as θ goes from 0 to 1, where the enumeration follows from the rule
that each negative eigenvalue crossing to the positive axis contributes +1 and each pos-
itive eigenvalue crossing to the negative axis contributes −1, and for each crossing, the
multiplicity of eigenvalue is counted.

Our main interests in this paper are Hamiltonian dynamics. Given a Hamiltonian
system

ż = JH
′
(t, z), (5.1)

we consider its solution under some self-adjoint boundary condition. Let z be a so-
lution to (5.1), and the fundamental solution of the linearized Hamiltonian system be
γ : [0, T] → Sp(2n) with γ(0) = I2n. The corresponding linear operator is −J d

dt − B(t)
with B(t) = H

′′
(t, z(t)). Let EΛ be defined in (1.6) for Λ ∈ Lag(V , Ω). Then both −J d

dt
and −J d

dt − B(t) are self-adjoint Fredholm operators with domain EΛ.
In general, suppose

Bs(t) = B(s, t) ∈ C([0, 1]× [0, T];S(2n)).

Let Bs ∈ C([0, T];S(2n)) for s ∈ [0, 1]. Then each operator −J d
dt − Bs(t) has domain EΛ.

For such two operators A − B0 and A − B1, we can define the relative Morse index via
spectral flow. In fact, by [14] we have

I(A− B0, A− B1) = −S f ({A− B(s), s ∈ [0, 1]}). (5.2)

There is another natural topological characterization for each orbit of the system,
namely its Maslov index [4]. Here we use the Maslov index theory of the complex La-
grangian subspaces, the details of which can be found in [29]. Let (C2n, ωn) be the com-
plex symplectic vector space. Recall that a complex subspace V is Lagrangian if ωn|V = 0
and dimC V = n. Let V± = ker(i J ∓ I2n). Then any Lagrangian subspace can be ex-
pressed as Gr(U) = {(x, Ux) | x ∈ V+}, where U : V+ → V− is some unitary matrix,
and the converse is also true. This shows that the (complex) Lagrangian Grassmannian
Lag(C2n) is homeomorphic (isomorphic) to the unitary group U(n), which we denote by
F : Lag(C2n)→ U(n). For V1, V2 ∈ Lag(C2n), it is obvious that

dim(V1 ∩V2) = dim ker(F(V2)
−1F(V1)− In).
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For any fixed U ∈ U(n), let

ΣU = {U0 ∈ U(n) | det(U−1U0 − In) = 0)}

be the singular cycle of U. For any U0 ∈ ΣU , the path eitU0(|t| < ε) is transversal to ΣU .
Let U(t)(t ∈ [a, b]) be any path in U(n). For ε > 0 small enough, e−εiU(a) and e−εiU(b)
are not in the singular cycle of U, and the intersection number [e−εiU(t) : ΣU ] is well
defined. For a path of complex Lagrangian subspaces V(t) and Λ ∈ Lag(C2n), we define
the Maslov index to be

µ(Λ, V(t)) := [e−εiF (V(t)) : ΣF (Λ)].

For the fundamental solution γ(t), t ∈ [0, T] of the linearized Hamiltonian system along
the solution z(t), the Maslov index of z is defined to be

µ(z) = µ(Λ, Gr(γ(t))),

where Λ ∈ Lag(V , Ω) is the boundary condition.

Theorem 5.1. In [14], the authors showed that for each orbit of the Hamiltonian system, its
relative Morse index is equal to its Maslov index under the Lagrangian boundary conditions, that
is,

I
(
− J

d
dt

,−J
d
dt
− B(t)

)
= µ(Λ, Gr(γ(t))).

The Maslov-type index for symplectic paths is a powerful tool in studying the stability
problem. We give its relation to the Maslov index, and the details can be found in [22,23].
As usual, consider paths in Sp(2n):

PT(2n) = {γ ∈ C([0, T]; Sp(2n)) | γ(0) = I2n}.

For any ω ∈ U and γ ∈ PT(2n), we define

νω(γ) = dimC kerC(γ(T)−ωI2n),

iω(γ) = [e−εJγ ∗ ξn : Sp(2n)0
ω],

the intersection number with ε to be a small positive number, where

Sp(2n)0
ω = {M ∈ Sp(2n) | Dω(M) = 0}

is the codimensional one hypersurface in Sp(2n) with

Dω(M) = (−1)n−1ωn det(M−ωI2n), ∀ω ∈ U, M ∈ Sp(2n).

Then we have the following theorem, which is from [23].
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Theorem 5.2. For any γ ∈ PT(2n), we have

i1(γ) + n = µ(4, Gr(γ(t))),
iω(γ) = µ(Gr(ω), Gr(γ(t))), ω ∈ U \ {1},

where4 is the diagonal Gr(I2n) and Gr(ω) = Gr(ωI2n).

Now, we briefly review the Morse index theorem of Sturm-Liouville systems with
any self-adjoint boundary condition, and the details can be found in [18]. Consider the
Sturm-Liouville system (1.16). We define the Morse index of Sturm-Liouville operator by
m−(A) which is the number of total negative eigenvalues ofA, and set m0(A) = ker(A).
Then we have the following Morse index theorem from [18], which gives the relation
between the Morse index of A and the Maslov index of the corresponding Hamiltonian
system.

Theorem 5.3. For the Sturm-Liouville system (1.16) under the boundary condition (1.17), we
have

µ(Λ, Gr(γ(t)), t ∈ [0, T])−m−(A) = n− i(Gr(I2n), Λ, ΛD),

where i(Gr(I2n), Λ, ΛD) is the Duistermaat triple index.

The details of triple index can be found in [8,28]. Let Λn
N = {0} ⊕Cn and Λn

D = Cn ⊕
{0}, which are Lagrangian subspaces of (C2, ωn) and can be considered as the Neumann
and Dirichlet boundary conditions, respectively. We set ΛD = Λn

D ⊕ Λn
D and ΛN =

Λn
N ⊕Λn

N . It is evident that

ΛD = {(z(0), z(T)) ∈ C4n | y(0) = y(T) = 0},
{(z(0), z(T)) ∈ C4n | x(0) = x(T) = 0}.

We list several important examples to compute i(Gr(I2n), Λ, ΛD).
1. The first is from Theorem 1.2 in [14]. Let V be any subspace of ΛN and the boundary
condition be given by ΛV = JV⊥ ⊕V,where J = −Jn ⊕ Jn. Then

i(Gr(I2n), Λ, ΛD) = n− dim(V⊥ ∩ Gr(−In)).

There are two important cases:
(i) dim(V⊥ ∩ Gr(−In)) = dim(M− I2n), ∀V = Gr(M), M ∈ GL(Cn). Let V1 and V2 be
two subspaces of Cn. Then
(ii) dim(V⊥ ∩ Gr(−In)) = dim(V⊥1 ) ∩V⊥2 , ∀V = V1 ⊕V2. As special cases, we have

a. Dirichlet boundary condition: i(Gr(I2n), ΛD, ΛD) = 0.

b. Neumann boundary condition: i(Gr(I2n), ΛN , ΛD) = n.
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c. Periodic boundary condition: i(Gr(I2n), G(I2n), ΛD) = 0.

2. Separated boundary conditions. For this case, we have

i(Gr(I2n), Λs ⊕Λe, ΛD) = n− dim(Λs ∩Λn
D) + i(Λs, Λe, Λn

D).

For the special case y(0) = Asx(0), y(T) = Aex(T), we have

i(Gr(I2n), Λs ⊕Λe, ΛD) = n + m+(As − Ae),

where m+(A) is the total number of positive eigenvalues of operator A.

5.2 Estimation of the relative Morse index and the stability criteria

In this subsection, we consider the relation of conditional Fredholm determinant and
relative Morse index, also we could estimate the relative Morse index by the Krein-type
trace formula. As in [12, 15], we have the following theorem.

Theorem 5.4. Assume A− B and A− B−D are non-degenerate, then det(I −F (B, D)) > 0
(< 0) if and only if I(A− B, A− B− D) is even (odd).

In [12], the trace of F k(B, D) was used to get the nontrivial estimation of relative
Morse index. Although we dealt with operators in the S-periodic case in [12], it is totally
same for the Lagrangian boundary conditions. The following theorem is from [12].

Proposition 5.1. Suppose A− B is non-degenerate and D > 0. Then for k ∈N,

I(A− B, A− B− D) + υ(A− B− D) < Tr
(
F 2k),

where υ(A− B− D) = dim ker(A− B− D).

Proposition 5.2. Suppose D > 0. Then

−Tr
(
F 2k

)
< I(A− B, A− B + D) ≤ 0, ∀k ∈N.

Corollary 5.1. Suppose D > 0. If Tr
(
F 2k) ≤ 1 for some k ∈N, then

I(A− B, A− B + D) = I(A− B, A− B− D) + υ(A− B− D) = 0.

Theorem 5.5. Suppose A− B is non-degenerate. Assume that there exist D1, D2 ∈ B(2n) such
that D1 < D < D2 with D1 < 0, D2 > 0. If there exists k ∈ 2N such that TrF k(B, Dj) < 1 for
j = 1, 2, then A− B− D is non-degenerate, and moreover, I(A− B, A− B− D) = 0.

Theorem 5.6. Suppose A− B is non-degenerate and D1 ≤ D ≤ D2, where D1 < 0, D2 > 0.
Let

m− = inf{[Tr(F (B, D1)
k)], k ∈ 2N} and m+ = inf{[Tr(F (B, D2)

k)], k ∈ 2N}.

Then

−m− ≤ I(A− B, A− B− D) ≤ m+.
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Connected with the trace formula (1.12), we can give an estimation of relative Morse
index by the trace of matrices. As a corollary of Theorem 5.5, we have

Corollary 5.2. Suppose A− B is non-degenerate. Assume that D ≥ 0, Tr(G2
1) + 2Tr(G2) < 1.

Then A− B− D is non-degenerate, and I(A− B, A− B− D) = 0. The case D < 0 is similar.

Now we give the stability criteria. Suppose z(t) is a T-periodic solution of Hamil-
tonian system (5.1) with the fundamental solutions γ(t). z is called (spectrally) stable if
σ(γ(T)) ⊂ U, is called hyperbolic if σ(γ(T))∩U = ∅. we denote γ̃ to be the fundamen-
tal solutions with respect to B + D, and write M̃ = γ̃(T). In many physical systems, D
can be regarded as the perturbation of the original system with respect to B. It is natural
to consider the problems: can we give some criteria such that the original system is sta-
ble (or hyperbolic)? How can we estimate the perturbation region such that its stability
(or hyperbolicity) still preserves? Our trace formula is a useful tool to study these prob-
lems. In order to estimate the stability, we use the Maslov-type index iω(γ) as mentioned
above.

Let e(M) be the total number of eigenvalues of M on U. Then a simple but useful
stability criterion is

e(γ(T))/2 ≥ |i−1(γ)− i1(γ)|. (5.3)

Then we have following propositions.

Proposition 5.3. Let ω = eνT, ν ∈
√
−1R and consider the boundary condition Λ =

Gr(ωI2n). Suppose D1 ≤ D ≤ D2, where D1 < 0, D2 > 0. If

Tr
(
F (B, Dj)

2
)
≤ 1, j = 1, 2,

hold true for any ν ∈
√
−1R, then iω(γ) = iω(γ̃). Especially, if Tr

(
F (B, Dj)

)
≤ 1 for

ν = 0, ν =
√
−1π/T and j = 1, 2, then

e(M̃)/2 ≥ |i1(γ)− i−1(γ)|. (5.4)

If |i1(γ)− i−1(γ)| = n for the original system, then after the perturbation by D, we
still have e(M̃) = 2n, and thus it remains spectrally stable. We can compute the trace by
the trace formula given by (1.12), hence the trace formula can estimate the stable region
of the perturbation system.

Proposition 5.4. Suppose M is hyperbolic and consider the boundary condition Λ = Gr(ωI2n)
for ω = eνT, ν ∈

√
−1R. If

Tr
(
F 2((B, D))

)
≤ 1 for ν ∈

[
0,
√
−1π

T

]
,

then M̃ is hyperbolic.

For the applications of the trace formula to stability estimation in the planar three-
body problem, we refer the readers to [12, 13] for the details.
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