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Abstract. Let G be a stratified Lie group and let {X1, · · · , Xn1} be a basis of the first
layer of the Lie algebra of G. The sub-Laplacian ∆G is defined by

∆G = −
n1

∑
j=1

X2
j .

The operator defined by

∆G −
n1

∑
j=1

Xj p
p

Xj

is called the Ornstein-Uhlenbeck operator on G, where p is a heat kernel at time 1 on
G. In this paper, we investigate Gaussian BV functions and Gaussian BV capacities
associated with the Ornstein-Uhlenbeck operator on the stratified Lie group.
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1 Introduction

A function of bounded variation, simply a BV-function, is a real-valued function whose
total variation is finite. In recent decades, many scholars have been paying attention to
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the BV function due to its application to calculus of variation and image processing. In
the multi-variable setting, a function defined on an open subset Ω ⊆ Rd, d ≥ 2, is said
to have bounded variation provided that its distributional derivative is a vector-valued
finite Radon measure over the subset Ω (cf. [2] or [13]). Precisely,

Definition 1.1. A function u ∈ L1(Ω) whose partial derivatives in the sense of distributions are
measures with finite total variation ‖Du‖ in Ω is called a function of bounded variation, where

‖Du‖ := sup
{ ∫

Ω
u div νdx : ν = (ν1, · · · , νd) ∈ C∞

0 (Ω, Rd), |ν(x)| ≤ 1, x ∈ Ω
}
< ∞.

The class of all such functions will be denoted by BV(Ω). The norm of BV(Ω) is defined as

‖u‖BV := ‖u‖L1(Ω) + ‖Du‖.

In the study of the pointwise behavior of a Sobolev function, the notion of capac-
ity plays a crucial role. In recent years, the capacity related to bounded variation func-
tions attracts the attentions of many researchers. Please refer to [13] for the classical
BV-capacity in Rd. After that, many scholars generalize the BV- capacity to other set-
tings. Hakkarainen and Kinnunen [5] studied basic properties of the BV-capacity and
the Sobolev capacity in a complete metric space equipped with a doubling measure and
supporting a weak Poincaré inequality. In [11], J. Xiao introduced the BV-type capac-
ity on Gaussian spaces Gd, and as an application, the Gaussian BV-capacity was used to
study the trace inequalities of Gaussian BV-space. Recently, the authors in this paper in-
vestigate the capacity and perimeters derived from α-Hermite Bounded Variation in [6].
The author in [9] investigates two analogues of the Ornstein-Uhlenbeck semi-group in
the setting of stratified groups G, which can be regarded as the generalization of Gauss
spaces to the case of Lie group. Motivated by the previous works, we will investigate the
Gaussian BV function and the Gaussian BV capacity associated with Ornstein-Uhlenbeck
operators on stratified Lie groups.

To state our results, we recall some basic facts on the stratified Lie group, which can
be easily found in Folland and Stein’s book [3]. Let G be a stratified group of dimension n
with the Lie algebra g. This means that g is equipped with a family of dilations {αr : r >
0} and g is a direct sum

⊕m
j=1 gj such that [gi, gj] ⊂ gi+j, g1 generates g, and αr(X) = rjX

for X ∈ gj. Q = ∑m
j=1 j nj is called the homogeneous dimension of G, where nj = dim gj.

G is topologically identified with g via the exponential map exp : g 7→ G. αr is also
viewed as an automorphism of G and if x ∈ G, r > 0, we write

αrx = (rd1 x1 , · · · , rdn xn),

where 1 ≤ d1 ≤ · · · ≤ dn. We fix a homogeneous norm of G, which satisfies the general-
ized triangle inequalities

|xy| ≤ γ(|x|+ |y|) for all x, y ∈ G,∣∣|xy| − |x|
∣∣ ≤ γ|y| for all x, y ∈ G with |y| ≤ |x|

2
,
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where γ ≥ 1 is a constant. The homogeneous norm induces a quasi-metric d which is
defined by d(x, y) := |x−1y|. In particularly,

d(e, x) = |x| and d(x, y) = d(e, x−1y).

The ball of radius r centered at x is written by

B(x, r) = {y ∈ G : d(x, y) < r}.

The Haar measure on G is simply the Lebesgue measure on Rn under the identification
of G with g and the identification of g with Rn, where n = ∑m

j=1 nj. The measure of B(x, r)
is ∣∣B(x, r)

∣∣ = b rQ,

where b is a constant.
We identify g with gL, the Lie algebra of left-invariant vector fields on G. Let {Xj :

j = 1, · · · , n1} be a basis of g1. The sub-Laplacian ∆G is defined by

∆G =
n1

∑
j=1

X2
j ,

and the horizontal gradient operator∇G is denoted by∇G = (X1, · · · , Xn1). Moreover, if
φ = (φ1, · · · , φn1) is a vector-valued function such that Xjφj ∈ L1

loc(G) for j = 1, · · · , n1,
we define the divergence divGφ as the real valued function

divG(φ) := −
n1

∑
j=1

X∗j φj =
n1

∑
j=1

Xjφj.

If f and g are measurable functions on G, their convolution f ∗ g is defined by

f ∗ g(x) =
∫

G
f (y)g(y−1x)dy =

∫
G

f (xy−1)g(y)dy.

The [3] implies that for any k = 1, 2, · · · , n1,

Xk( f ∗ g) = f ∗ (Xkg).

Let {Ts : s > 0} =
{

e−s(−∆G) : s > 0
}

be the heat semigroup with the convolution
kernel ps(x). [7] and [12] imply that the heat kernel ps(x) satisfies the following estimates

0 < ps(x) ≤ Cs−
Q
2 e−A1s−1|x|2 , (1.1a)

|Xi ps(x)| ≤ C s−
Q+1

2 e−A2s−1|x|2 , (1.1b)
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where A1 and A2 are positive constants, i = 1, 2, · · · , n1. Moreover, we know from [3,
Proposition 1.68] that ps(x−1) = ps(x) for any x ∈ G. The Gauss p-divergence of φ ∈
C1

c (O, Rn1) is determined by

divpφ = divG(φ) +
n1

∑
j=1

Xj p
p

φj,

where p is a heat kernel at time 1 on G.
The paper is organized as follows. In Section 2, we introduce the Gaussian BV func-

tion on the stratified Lie group and study its properties. Section 3 is devoted to the proofs
of some results for Gaussian BV capacity on the stratified Lie group.

2 Gaussian BV functions on the stratified Lie group

Let Ω ⊆ G be an open set. The p-total variation of f ∈ L1(Ω) is defined by

‖DG,p f ‖(Ω) = sup
ϕ∈F (Ω)

{ ∫
Ω

f (x)divp ϕ(x)p(x)dx
}

,

where F (Ω) denotes the class of all functions

ϕ = (ϕ1, ϕ2, · · · , ϕn1) ∈ C1
0(Ω, Rn1)

satisfying
‖ϕ‖∞ = sup

x∈Ω
(|ϕ1(x)|2 + · · ·+ |ϕn1(x)|2)1/2 ≤ 1.

It should be noted that when p = 1, ‖DG,p f ‖(Ω) is the total variation on the stratified Lie
group (cf. [1]) and when G = Rn, ‖DG,p f ‖(Ω) is the γ-total variation in [8].

An L1 function f is said to have the bounded p-total variation on Ω if

‖DG,p f ‖(Ω) < ∞,

and the collection of all such functions is denoted by BVG,p(Ω), which is a Banach space
with the norm

‖ f ‖BVG,p(Ω) = ‖ f ‖L1 + ‖DG,p f ‖(Ω).

Please see Lemma 2.3. A function f ∈ L1
loc(Ω, R) is said to be of locally p-total variation

and we write f ∈ BV loc
G,p(Ω) if

‖DG,p f ‖(U) < ∞

holds true for every open set U ⊂ Ω.
Let Ω ⊂ G be an open and bounded set and E ⊂ Ω be a Borel set. Then using the

Riesz representation theorem in [2, Theorem 1.38], it is easy to check that

‖DG,p f ‖(E) := inf
{
‖DG,p f ‖(U) : E ⊂ U, U ⊂ Ω open

}
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extends ‖DG,p f ‖(·) to a Radon measure in Ω.
The Gaussian p perimeter of E ⊆ Ω can be defined as follows:

PG,p(E, Ω) = ‖DG,p1E‖(Ω) = sup
ϕ∈F (Ω)

{ ∫
E

divp ϕ(x)p(x)dx

}
,

where 1E denotes the characteristic function of E.
In what follows, we will collect some properties of the space BVG,p(Ω).

Lemma 2.1. (i) If f ∈ C1
c (Ω), then

‖DG,p f ‖(Ω) =
∫

Ω
|∇G f (x)|p(x)dx. (2.1)

(ii) The Gaussian p variation has the following lower semicontinuity: if

f , fk ∈ BVG,p(Ω), k ∈N, be such that fk → f in L1
loc(Ω),

then
lim inf

k→∞
‖DG,p fk‖(Ω) ≥ ‖DG,p f ‖(Ω). (2.2)

Proof. (i) If f ∈ C1
c (Ω), then we have ∇G f ∈ L1(Ω). For every

ϕ ∈ C1
c (Ω, Rn1) with ‖ϕ‖L∞(Ω) ≤ 1,

we have ∣∣∣∣∫Ω
f (x)divp ϕ(x)p(x)dx

∣∣∣∣
=

∣∣∣∣∣
∫

Ω
∇G( f (x)p(x)) · ϕ(x)dx−

∫
Ω

f (x)
n1

∑
j=1

Xj p(x)ϕj(x)dx

∣∣∣∣∣
=

∣∣∣∣∫Ω
∇G f (x) · ϕ(x)p(x)dx

∣∣∣∣ ≤ ∫Ω
|∇G f (x)|p(x)dx.

By taking the supremum over ϕ, we conclude that f ∈ BVG,p(Ω) and

‖DG,p f ‖(Ω) ≤
∫

Ω
|∇G f (x)|p(x)dx. (2.3)

Define ϕ ∈ L∞(Ω, Rn1) as follows:

ϕ(x) :=


∇G f (x)
|∇G f (x)| , if x ∈ Ω and ∇G f (x) 6= 0,

0, otherwise.
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It is easy to see that ‖ϕ‖∞ ≤ 1. We choose a sequence {ϕn}n∈N ⊂ C∞
c (Ω, Rn1) such that

ϕn → ϕ as n → ∞, with ‖ϕn‖L∞(Ω) ≤ 1 for all n ∈ N. Combining the definition of
‖DG,p f ‖(Ω) with integration by parts derives that for every n ≥ 1,

‖DG,p f ‖(Ω) ≥
n1

∑
i=1

∫
Ω

(
Xi( f (x)p(x))− f (x)Xi p(x)

)
ϕ
(i)
n (x)dx

=
∫

Ω
∇G f (x) · ϕn(x)p(x)dx.

By the dominated convergence theorem and the definition of ϕ, we have

‖DG,p f ‖(Ω) ≥
∫

Ω
|DG,p f (x)|dx

via letting n→ ∞, which is the opposite of the inequality (2.3).

(ii) Fix ϕ ∈ C∞
c (Ω, Rn1) with ‖ϕ‖L∞(Ω) ≤ 1. By the definition of ‖DG,p fk‖(Ω), we have

‖DG,p fk‖(Ω) ≥
∫

Ω
fk(x)divp ϕ(x)p(x)dx.

Since { fk}k∈N converges to f in L1
loc(Ω), so by Fatou’s lemma, we get

lim inf
k→∞

‖DG,p fk‖(Ω) ≥
∫

Ω
f (x)divp ϕ(x)p(x)dx.

Therefore, (ii) is proved.

The following lemma gives the structure theorem for Gaussian BV functions on the
stratified Lie group.

Lemma 2.2. Let Ω ⊂ G be an open and bounded set. There exists a unique Rn1-valued finite
Radon measure µ such that∫

Ω
u(x)divp ϕ(x)p(x)dx =

∫
Ω

ϕ(x) · dµ(x)

for every ϕ ∈ C∞
c (Ω, Rn1) and

‖DG,pu‖(Ω) = |µ|(Ω).

The lower semicontinuity and the standard procedure imply the follow lemma.

Lemma 2.3. The space (BVG,p(Ω), ‖ · ‖BVG,p(Ω)) is a Banach space.

Next we will list the following approximation result for the Gaussian p variation.



J. Huang, P. Li and Y. Liu / Anal. Theory Appl., 37 (2021), pp. 311-329 317

Theorem 2.1. If u ∈ BVG,p(Ω), there exists a sequence of functions {uh}h∈N ∈ C∞(Ω) ∩
BVG,p(Ω) such that

lim
h→∞
‖uh − u‖L1 = 0 and lim

h→∞

∫
Ω
|∇Guh(x)|p(x)dx = ‖DG,pu‖(Ω).

Proof. Inspired by the method in [2, Theorem 5.3] or [4, Theorem 1.14] and via the semi-
continuity property of Lemma 2.1, we only need to verify that, for every ε > 0, there
exists a function uε ∈ C∞(Ω) such that∫

Ω
|u(x)− uε(x)|p(x)dx < ε and ‖DG,puε‖(Ω) < ‖DG,pu‖(Ω) + ε. (2.4)

Given a positive integer m, let {Ωj}j∈N be a sequence of open sets which are defined as
follows

Ωj :=
{

x ∈ Ω
∣∣∣ dist(x, ∂Ω) >

1
m + j

}⋂
B(0, k + m), j ∈N,

where B(0, k + m) denotes the open ball of center 0 and radius k + m, and dist(x, ∂Ω)
represents the distance from x to ∂Ω. Since ‖DG,pu‖(·) is a Radon measure, given ε > 0
we can choose m ∈N so large that

‖DG,pu‖(Ω \Ω0) < ε. (2.5)

In fact, we find that the sequence of open sets {Ωj} satisfy the following properties:

Ωj ⊂ Ωj+1 ⊂ Ω for any j ∈N and
∞⋃

j=0

Ωj = Ω.

Set
U0 := Ω0, Uj := Ωj+1 \Ωj−1 for j ≥ 1.

The proof of Theorem 1.14 in [4] implies that there exists a partition of unity related to the
covering {Uj}j∈N, which means that there exists { f j}j∈N ∈ C∞

c (Uj) such that 0 ≤ f j ≤ 1
for every j ≥ 0 and ∑∞

j=0 f j = 1 on Ω. In particular, the following fact is valid:

∞

∑
j=0
∇G f j = 0 on Ω. (2.6)

Let η ∈ C∞
c (G) be a radial nonnegative function with∫

G
η(x)dx = 1 and supp(η) ⊂ B(0, 1).

Given ε > 0 and u ∈ L1(Ω, R), extended to zero out of Ω, define

uε(x) :=
1

εQ

∫
G

η
(

αε(xy−1)
)

u(y)dy =
1

εQ

∫
B(x,ε)

η
(

αε(xy−1)
)

u(y)dy. (2.7)
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For every j ≥ 0, there exists 0 < ε j < ε such that
supp

(
( f ju)ε j

)
⊆ Uj,∫

Ω
|( f ju)ε j − f ju|dx < ε2−(j+1),∫

Ω
|(u∇G f j)ε j − u∇G f j|dx < ε2−(j+1).

(2.8)

Define

φε :=
∞

∑
j=0

(u f j)ε j .

Since the sum is locally finite, then we conclude that

φε ∈ C∞(Ω) and u =
∞

∑
j=0

u f j

pointwise. Since η is radial,
η(xy−1) = η(yx−1).

Denote by

ηε j(x) =
1

εQ
j

η
(

αε−1
j
(x)
)

.

A direct computation implies that∫
Ω

φε(x)divp ϕ(x)dx

=
∞

∑
j=0

∫
Ω

(
ηε j ∗ (u f j)

)
(x)divp ϕ(x)dx

=
∞

∑
j=0

∫
Ω

∫
Ω

1

εQ
j

η
(

αε−1
j
(xy−1)

)
u(y) f j(y)divp ϕ(x)dydx

=
∞

∑
j=0

∫
Ω

∫
Ω

1

εQ
j

η
(

αε−1
j
(xy−1)

)
u(y) f j(y)

[
divG ϕ(x) +

n1

∑
k=1

Xk p(x)
p(x)

ϕk(x)
]
dydx

= : I + I I,

where

I =
∞

∑
j=0

∫
Ω

∫
Ω

1

εQ
j

η
(

αε−1
j
(xy−1)

)
u(y) f j(y)

[ n1

∑
k=1

Xk ϕk(x)
]
dydx

=
∞

∑
j=0

∫
Ω

u(y)
n1

∑
k=1

∫
Ω

1

εQ
j

η
(

αε−1
j
(y−1x)

)
f j(y)

[
Xk ϕk(x)

]
dydx

=
∞

∑
j=0

∫
Ω

u(y) f j(y)
n1

∑
k=1

[
ηε j ∗ Xk ϕk(y)

]
dy
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=
∞

∑
j=0

∫
Ω

u(y) f j(y)
n1

∑
k=1

[
Xk(ηε j ∗ ϕk)(y)

]
dydx,

I I =
∞

∑
j=0

∫
Ω

∫
Ω

1

εQ
j

η
(

αε−1
j
(xy−1)

)
u(y) f j(y)

[ n1

∑
k=1

Xk p(x)
p(x)

ϕk(x)
]
dydx.

As for I, we get I = I1 + I2, where

I1 :=
∞

∑
j=0

∫
Ω

u(y)
[ n1

∑
k=1

Xk

(
f j(y)(ηε j ∗ ϕk(y))

)]
dy,

I2 := −
∞

∑
j=0

∫
Ω

u(y)
[ n1

∑
k=1

Xk f j(y)(ηε j ∗ ϕk(y))
]
dy

= −
∞

∑
j=0

∫
Ω

[ n1

∑
k=1

ηε j ∗ (uXk f j)(y)ϕk(y)−
n1

∑
k=1

(uXk f j)(y)ϕk(y)
]
dy.

When ‖ϕ‖L∞ ≤ 1, it holds that

|
(

f j(y)
)
(ηε j ∗ ϕk(y))| ≤ 1

for all j ≥ 0 and k = 1, · · · , d. Moreover, it follows from (2.8) that |I2| < ε.
For I I, a direct computation gives

I I =
∞

∑
j=0

∫
Ω

∫
Ω

1
εd

j
η
(

αε−1
j
(xy−1)

)
u(y) f j(y)

[ n1

∑
k=1

Xk p(x)
p(x)

ϕk(x)
]
dydx

=
∞

∑
j=0

∫
Ω

u(y)
( d

∑
k=1

Xk p(x)
p(x)

f j(y)(ηε j ∗ ϕk(y))dy

=
∞

∑
j=0

∫
Ω

u(y)
( d

∑
k=1

Xk p(y)
p(y)

f j(y)(ηε j ∗ ϕk(y))dy

+
∞

∑
j=0

∫
Ω

u(y)
( d

∑
k=1

(Xk p(x)
p(x)

− Xk p(y)
p(y)

)
f j(y)(ηε j ∗ ϕk(y))dy.

Therefore, the above estimate for the term I2 indicates that∣∣∣ ∫
Ω

φε(x)divp ϕ(x)dx
∣∣∣ = |I1 + I2 + I I| ≤ J1 + J2 + ε,

where

J1 :=
∣∣∣ ∞

∑
j=0

∫
Ω

u(y)
[ n1

∑
k=1

Xk

(
f j(y)(ηε j ∗ ϕk(y))

)]
dy

+
∞

∑
j=0

∫
Ω

u(y)
( d

∑
k=1

Xk p(y)
p(y)

f j(y)(ηε j ∗ ϕk(y))dy
∣∣∣,
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J2 :=
∣∣∣ ∞

∑
j=0

∫
Ω

u(y)
( d

∑
k=1

(Xk p(x)
p(x)

− Xk p(y)
p(y)

)
f j(y)(ηε j ∗ ϕk(y))dy

∣∣∣.
Note that, by the construction of Uj, every point x ∈ Ω belongs to at most three of the

sets Uj. Then we have

J1 ≤
∣∣∣{ ∫

Ω
u(y)

[ n1

∑
k=1

Xk

(
f0(y)(ηε j ∗ ϕk(y))

)]
dy
}

+
∫

Ω
u(y)

[( d

∑
k=1

Xk p(y)
p(y)

f0(y)(ηε j ∗ ϕk(y))
]
dy
}∣∣∣

+
∣∣∣{ ∞

∑
j=1

∫
Ω

u(y)
[ n1

∑
k=1

Xk

(
f j(y)(ηε j ∗ ϕk(y))

)]
dy
}

+
{ ∞

∑
j=1

∫
Ω

u(y)
[ n1

∑
k=1

Xk p(y)
p(y)

f j(y)(ηε j ∗ ϕk(y))
]
dy
}∣∣∣

.c
(
‖DG,pu‖(Ω) +

∞

∑
j=1
‖DG,pu‖(Uj)

)
.c
(
‖DG,pu‖(Ω) + 3‖DG,pu‖(Ω\Ω0)

)
.c
(
‖DG,pu‖(Ω) + 3ε

)
≤ c,

where we have used (2.5) in the last inequality.
It follows the stratified mean value theorem in [3] that∣∣∣Xk p(x)

p(x)
− Xk p(y)

p(y)

∣∣∣ ≤ ∥∥∥∇G

(Xk p
p

)∥∥∥
L∞
|y−1x|,

that is, Xk p(y)
p(y) is Lipschitz continuous, ‖ϕ‖ ≤ 1 and supp(η) ⊆ B1(0), then we have

J2 ≤ cε
∥∥∥∇G

(Xk p
p

)∥∥∥
L∞

∫
G

η(z)|z|dz
∫

Ω

∞

∑
j=1
| f j(y)||u(y)|dy ≤ cε.

By taking the supremum over ϕ and the arbitrariness of ε > 0, we conclude that (2.4)
holds true.

Moreover, we have the following max-min property of the Gaussian p variation.

Theorem 2.2. Let u, v ∈ L1(Ω). Then

‖DG,p max{u, v}‖(Ω) + ‖DG,p min{u, v}‖(Ω) ≤ ‖DG,pu‖(Ω) + ‖DG,pv‖(Ω).
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Proof. Without loss of generality, we may assume

‖DG,pu‖(Ω) + ‖DG,pv‖(Ω) < ∞.

Take two functions uh, vh ∈ C∞
c (Ω) ∩ BVG,p(Ω), h = 1, 2, · · · , such that

uh → u, vh → v in L1(Ω),∫
Ω
|DG,puh(x)|dx → ‖DG,pu‖(Ω),∫

Ω
|DG,pvh(x)|dx → ‖DG,pv‖(Ω).

Since
max{uh, vh} → max{u, v}, min{uh, vh} → min{u, v} in L1(Ω),

it follows that

‖DG,p max{u, v}‖(Ω) + ‖DG,p min{u, v}‖(Ω)

≤ lim inf
h→∞

∫
Ω
|DG,p max{uh, vh}|dx + lim inf

h→∞

∫
Ω
|DG,p min{uh, vh}|dx

≤ lim inf
h→∞

( ∫
Ω
|DG,p max{uh, vh}|dx +

∫
Ω
|DG,p min{uh, vh}|dx

)
≤ lim

h→∞

∫
Ω
|DG,puh(x)|dx + lim

h→∞

∫
Ω
|DG,pvh(x)|dx

=‖DG,pu‖(Ω) + ‖DG,pv‖(Ω).

Thus, we complete the proof.

For any compact subsets E, F in Ω, via choosing u = 1E and u = 1F, the following
lemma can be deduced from Theorem 2.2 immediately.

Lemma 2.4. For any subsets E, F in Ω, we have

PG,p

(
E
⋂

F, Ω
)
+ PG,p

(
E
⋃

F, Ω
)
≤ PG,p(E, Ω) + PG,p(F, Ω).

In what follows, we establish the coarea formula for Gaussian BV functions on the
stratified Lie group.

Theorem 2.3. If f ∈ BVG,p(Ω), then

‖DG,p f ‖(Ω) =
∫ ∞

−∞
‖DG,p1Et‖(Ω)dt. (2.9)

Proof. Let f : Ω → G and t ∈ R. Denote by Et = {x ∈ Ω : f (x) > t}. The structure
of the Gaussian p-divergence and [2, Section 5.5, Lemma 1] imply the following fact: if
f ∈ BVG,p(Ω), the mapping t 7→ ‖DG,p1Et‖(Ω) is Lebesgue measurable for t ∈ R.
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Let ϕ ∈ C1
c (Ω, Rn1) and ‖ϕ‖L∞ ≤ 1. Firstly, we claim that∫

Ω
f (x)divp ϕ(x)p(x)dx =

∫ ∞

−∞

( ∫
Et

divp ϕp(x)dx
)

dt.

The above claim can be proved by the following facts∫
Ω

f (x)
Xj p(x)

p(x)
ϕp(x)dx =

∫ ∞

−∞

( ∫
Et

Xj p(x)
p(x)

ϕ(x)p(x)dx
)

dt

for j = 1, 2, · · · , n1 and∫
Ω

f divG ϕp(x)dx =
∫ ∞

−∞

( ∫
Et

divG ϕp(x)dx
)

dt,

where the latter can be proved by [4, (5.2)]. Therefore, we conclude that for all ϕ as above∫
Ω

f divp ϕdx ≤
∫ ∞

−∞
‖DG,p1Et‖(Ω)dt.

Furthermore,

‖DG,p f ‖(Ω) ≤
∫ ∞

−∞
‖DG,p1Et‖(Ω)dt.

Secondly, we claim that (2.9) holds true for all f ∈ BVG,p(Ω)
⋂

C∞(Ω). Next we will
prove the claim according to the idea of [10, Proposition 4.2]. Let

m(t) =
∫
{x∈Ω: f (x)≤t}

|∇G f |p(x)dx. (2.10)

Then it is obvious that ∫ ∞

−∞
m′(t)dt ≤

∫
Ω
|∇G f |p(x)dx. (2.11)

Define a function gh as follows:

gh(s) =


0, if s ≤ t,

h(t− s) + 1, if t ≤ s ≤ t + 1/h,

1, if s ≥ t + 1/h,

where t ∈ R. We define the sequence vh(x) := gh( f (x)). At this time, vh → 1Et in L1(Ω).
In fact, ∫

Ω
|vh(x)− 1Et(x)|dx =

∫
{x∈Ω:t< f (x)≤t+1/h}

gh( f (x))dx

≤
∣∣∣{x ∈ Ω : t < f (x) ≤ t + 1/h

}∣∣∣→ 0,
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since {x ∈ Ω : t < f (x) ≤ t + 1/h} → ∅ when h→ ∞. Then∫
Ω
|∇Gvh(x)|p(x)dx =h

∫
{x∈Ω:t< f (x)≤t+1/h}

|∇G f (x)|p(x)dx

=h
(
m(t + 1/h)−m(t)

)
.

Taking the limit h→ ∞ and noting that Theorem 2.1, we have

‖DG,p1Et‖(Ω) ≤ lim sup
h→∞
‖DG,pvh‖(Ω) ≤ m′(t). (2.12)

Integrating (2.12) and using (2.13), we obtain∫ ∞

−∞
‖DG,p1Et‖(Ω)dt ≤

∫
Ω
|∇G f |p(x)dx. (2.13)

Finally, by approximation and using the lower semi-continuity of the Gaussian p perime-
ter, we conclude that (2.9) holds true for all f ∈ BVG,p(Ω) (see Evans and Gariepy [2] for
details).

3 Gaussian BV capacity on the stratified Lie group

In terms of the results on Gaussian BV spaces, we introduce the Gaussian BV capacity
and investigate its properties on the stratified Lie group.

Definition 3.1. For a set E ⊆ G, let A(E,BVG,p(G)) be the class of admissible functions on
G, i.e., f ∈ BVG,p(G) satisfying 0 ≤ f ≤ 1 and f = 1 in a neighborhood of E (an open set
containing E). The Gaussian BV capacity of E is defined by

cap(E,BVG,p(G)) := inf
f∈A(E,BVG,p(G))

{
‖ f ‖L1 + ‖DG,p f ‖(G)

}
. (3.1)

Via the co-area formula for Gaussian BV functions in Theorem 2.3, we obtain the
following basic assertion.

Theorem 3.1. A geometric description of the Gaussian BV capacity of a set in G is given as
follows:

(i) For any set K ⊆ G,

cap(K,BVG,p(G)) = inf
A

{
|A|+ PG,p(A)

}
,

where the infimum is taken over all sets A ⊆ G such that K ⊆ int(A).



324 J. Huang, P. Li and Y. Liu / Anal. Theory Appl., 37 (2021), pp. 311-329

(ii) For any compact set K ⊆ G,

cap(K,BVG,p(G)) = inf
A

{
|A|+ PG,p(A)

}
,

where the infimum is taken over all bounded open sets A with smooth boundary in G con-
taining K.

Proof. (i) If A ⊆ G with K ⊆ int(A) and |A|+ PG,p(A) < ∞, 1A ∈ A(K,BVG,p(G)) and
hence,

cap(K,BVG,p(G)) ≤ |A|+ PG,p(A).

By taking the infimum over all such sets A, we obtain

cap(K,BVG,p(G)) ≤ inf
A

{
|A|+ PG,p(A)

}
.

In order to prove the reverse inequality, we may assume that cap(K,BVG,p(G)) < ∞.
Let ε > 0 and f ∈ A(K,BVG,p(R

d)) such that

‖ f ‖L1 + ‖DG,p f ‖(G) < cap(K,BVG,p(G)) + ε.

Using the co-area formula (2.9) and the Cavalieri principle, we have∫
G

f (x)dx + ‖DG,p f ‖(G) =
∫ 1

0

[∣∣∣{x ∈ G : f (x) > t
}∣∣∣+ PG,p({x ∈ G : f (x) > t}

]
dt

≥ inf
A
{|A|+ PG,p(A)},

where we have used the fact: K ⊆ int
{

x ∈ G : f (x) > t
}

for 0 < t < 1. Then

inf
A

{
|A|+ PG,p(A)

}
≤ cap(K,BVG,p(G)) + ε.

The desired inequality now follows by letting ε→ 0.
(ii) Using the co-area formula (2.9) and the Cavalieri principle again, we can also

prove (ii) similar to the proof of (i) and so we omit the details here.

In what follows, we give the measure-theoretic nature of Gaussian BV capacity.

Theorem 3.2. Assume A, B are subsets of G.

(i)
cap(∅,BVG,p(G)) = 0.

(ii) If A ⊆ B, then
cap(A,BVG,p(G)) ≤ cap(B,BVG,p(G)).
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(iii)

cap
(

A
⋃

B,BVG,p(G)
)
+ cap

(
A
⋂

B,BVG,p(G)
)

≤cap(A,BVG,p(G)) + cap(B,BVG,p(G)).

(iv) If Ak, k = 1, 2, · · · , are subsets in G, then

cap
( ∞⋃

k=1

Ak,BVG,p(G)
)
≤

∞

∑
k=1

cap(Ak,BVG,p(G)).

(v) For any sequence {Ak}∞
k=1 of subsets of G with A1 ⊆ A2 ⊆ A3 ⊆ · · · ,

lim
k→∞

cap(Ak,BVG,p(G)) = cap
( ∞⋃

k=1

Ak,BVG,p(G)
)

.

(vi) If Ak, k = 1, 2, · · · , are compact sets in Rd and A1 ⊇ A2 ⊇ A3 ⊇ · · · , then

lim
k→∞

cap(Ak,BVG,p(G)) = cap
( ∞⋂

k=1

Ak,BVG,p(G)
)

.

Proof. (i)-(ii). Statements (i) and (ii) are the evident consequences of Definition 3.1.
(iii) Without loss of generality, we may assume

cap(A,BVG,p(G)) + cap(B,BVG,p(G)) < ∞.

For any ε > 0, there are two functions φ ∈ A(A,BVG,p(G)) and ψ ∈ A(B,BVG,p(G)),
such that ‖φ‖L1 + ‖DG,pφ‖(G) < cap(A,BVG,p(G)) +

ε

2
,

‖ψ‖L1 + ‖DG,pψ‖(G) < cap(B,BVG,p(G)) +
ε

2
.

Let
ϕ1 = max{φ, ψ}, ϕ2 = min{φ, ψ}.

It is easy to see that

ϕ1 ∈ A
(

A
⋃

B,BVG,p(G)
)

, ϕ2 ∈ A
(

A
⋂

B,BVG,p(G)
)

.

Then by Theorem 2.2,

cap
(

A
⋃

B,BVG,p(G)
)
+ cap

(
A
⋂

B,BVG,p(G)
)

≤
∫

G
ϕ1(x)dx +

∫
G

ϕ2(x)dx + ‖DG,p ϕ1‖(G) + ‖DG,p ϕ2‖(G)

≤
∫

G
φ(x)dx +

∫
G

ψ(x)dx‖DG,pφ‖(G) + ‖DG,pψ‖(G)

≤cap(A,BVG,p(G)) + cap(B,BVG,p(G)) + ε.
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The assertion (iii) is proved.
(iv) Suppose

∞

∑
k=1

cap(Ak,BVG,p(G)) < ∞.

For any ε > 0 and k = 1, 2, · · · , there is fk ∈ A(Ak,BVG,p(G)) such that

‖ fk‖L1 + ‖DG,p fk‖(G) < cap(Ak,BVG,p(G)) +
ε

2k .

Setting f = supk fk gives

∫
G

f (x)dx ≤
∞

∑
k=1

∫
G

fk(x)dx <
∞

∑
k=1

cap(Ak,BVG,p(G)) +
ε

2k < ∞,

which implies f ∈ L1(G).
Via the lower semicontinuity (2.2) of the Gaussian p variation we get∫

G
f (x)dx + ‖DG,p f ‖(G) ≤

∞

∑
k=1

∫
G

fk(x)dx + lim inf
k→∞
‖DG,p max{ f1, · · · , fk}‖(G)

≤
∞

∑
k=1

∫
G

fk(x)dx +
∞

∑
k=1
‖DG,p fk‖(G)

≤
∞

∑
k=1

cap(Ak,BVG,p(G)) + ε.

Then we have f ∈ A(∪∞
k=1Ak,BVG,p(G)) and this completes the proof of (iv) via letting

ε→ 0.
(v) It is obvious that

lim
k→∞

cap(Ak,BVG,p(G)) ≤ cap
( ∞⋃

k=1

Ak,BVG,p(G)
)

.

The equality holds if
lim
k→∞

cap(Ak,BVG,p(G)) = ∞.

Let ε > 0 and assume
lim
k→∞

cap(Ak,BVG,p(G)) < ∞.

For k = 1, 2, · · · , there is
fk ∈ A(Ak,BVG,p(G)),

such that
‖ fk‖L1 + ‖DG,p fk‖(G) < cap(Ak,BVG,p(G)) +

ε

2k .
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Set 
φk = max

1≤i≤k
fi = max{φk−1, fk},

φ0 = 0, A0 = ∅,

ϕk = min{φk−1, fk}.
Then

φk, ϕk ∈ BVG,p(G), Ak−1 ⊆ int{x ∈ G : ϕk(x) = 1}.
Since φk = max{φk−1, φk}, an application of Theorem 2.2 derives

‖DG,p max{φk−1, φk}‖(G) + ‖DG,p min{φk−1, φk}‖(G)

≤‖DG,pφk−1‖(G) + ‖DG,pφk‖(G),

and then

‖φk‖L1 + ‖DG,pφk‖(G) + cap(Ak−1,BVG,p(G))

≤‖φk‖L1 + ‖DG,pφk‖(G) + ‖ϕk‖L1 + ‖DG,p ϕk‖(G)

≤‖φk‖L1 + ‖φk−1‖L1 + ‖DG,pφk‖(G) + ‖DG,pφk−1‖(G)

≤‖φk−1‖L1 + ‖DG,pφk−1‖(G) + cap(Ak,BVG,p(G)) +
ε

2k ,

where we have used the fact that Ak−1 ⊆ Ak. Therefore,

‖φk‖L1 + ‖DG,pφk‖(G)− ‖φk−1‖L1 − ‖DG,pφk−1‖(G)

≤cap(Ak,BVG,p(G))− cap(Ak−1,BVG,p(G)) +
ε

2k .

By adding the above inequalities from k = 1 to k = j, we get

‖φj‖L1 + ‖DG,pφj‖(G) ≤ cap(Aj,BVG,p(G)) + ε.

Let φ̃ = limj→∞ φj. Via the monotone convergence theorem, we obtain∫
G

φ̃(x)dx = lim
j→∞

∫
G

φj(x)dx ≤ lim
j→∞

cap(Aj,BVG,p(G)) + ε.

Then via the lower semicontinuity (2.2) of the Gaussian p variation, we have

φ̃ ∈ A
( ∞⋃

j=1

Aj,BVG,p(G)
)

and

cap
( ∞⋃

j=1

Aj,BVG,p(G)
)
≤‖φ̃‖L1 + ‖DG,pφ̃‖(G)

≤ lim inf
j→∞

( ∫
G

φj(x)dx + ‖DG,pφj‖(G)
)

≤ lim
j→∞

cap(Aj,BVG,p(G)) + ε.
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(vi) Let A = ∩∞
k=1Ak. By monotonicity,

cap
( ∞⋂

k=1

Ak,BVG,p(G)
)
≤ lim

k→∞
cap(Ak,BVG,p(G)).

Let U be an open set containing A. Then by the compactness of A, we know that Ak ⊆ U
for all sufficiently large k. Therefore,

lim
k→∞

cap(Ak,BVG,p(G)) ≤ cap(U,BVG,p(G)).

Corollary 3.1 implies that cap(·,BVG,p(G)) is an outer capacity. Then we obtain the claim
by taking infimum over all open sets U containing A.

Corollary 3.1. (i) If E ⊆ G, then

cap(E,BVG,p(G)) = inf
open O⊇E

{
cap(O,BVG,p(G))

}
.

(ii) If E ⊆ G is a Borel set, then

cap(E,BVG,p(G)) = sup
compact K⊆E

{
cap(K,BVG,p(G))

}
.

Proof. (i) The statement (ii) of Theorem 3.2 implies

cap(E,BVG,p(G)) ≤ inf
open O⊇E

{
cap(O,BVG,p(G))

}
.

To prove the reverse inequality, we may assume

cap(E,BVG,p(G)) < ∞.

Via Definition 3.1, for any ε > 0, there is f ∈ A(E,BVG,p(G)) such that

‖ f ‖L1 + ‖DG,p f ‖(G) < cap(E,BVG,p(G)) + ε.

Hence, there exists an open set O ⊇ E such that f = 1 on O, which implies

cap(O,BVG,p(G)) ≤ ‖ f ‖L1 + ‖DG,p f ‖(G) < cap(E,BVG,p(G)) + ε.

Therefore,
cap(E,BVG,p(G)) ≥ inf

open O⊇E

{
cap(O,BVG,p(G))

}
.

(ii) This follows from (v) and (vi) of Theorem 3.2.

Remark 3.1. In this paper, we generalize the BV functions and BV capacity on the classical
Gauss space to the case of the stratified Lie group. There are many other problems which
are worth studying, such as isoperimetric inequality and Sobolev inequality etc. We will
investigate them in the future study.
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