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Abstract. In this work we consider the following class of elliptic problems{
−∆Au + u = a(x)|u|q−2u + b(x)|u|p−2u in RN ,

u ∈ H1
A(R

N),
(P)

with 2 < q < p < 2∗ = 2N
N−2 , a(x) and b(x) are functions that can change sign and

satisfy some additional conditions; u ∈ H1
A(R

N) and A : RN → RN is a magnetic
potential. Also using the Nehari method in combination with other complementary
arguments, we discuss the existence of infinitely many solutions to the problem in
question, varying the assumptions about the weight functions.

Key Words: Magnetic potential, sign-changing weight functions, Nehari manifold, Fibering map.

AMS Subject Classifications: 35Q60, 35Q55,35B38, 35B33

1 Introduction

We are interested in studying the following class of elliptic problems{
−∆Au + u = a(x)|u|q−2u + b(x)|u|p−2u in RN ,
u ∈ H1

A(R
N),

(P)

with 2 < q < p < 2∗ = 2N
N−2 , a(x) and b(x) are functions that can change sign and satisfy

some additional conditions, u ∈ H1
A(R

N) and A : RN → RN is a magnetic potential. We
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will discuss the existence of infinitely many solutions to the problem in question, varying
the hypotheses about the weight functions.

We will make use of the magnetic operator in which we work with the Magnetic
Laplacian. Denote ∇Au = (∇+ iA)u and then we have

−∆Au := (−i∇+ A)2u.

The Magnetic Laplacian is given by (−i∇+ A)2 + V, where A : RN → RN is the mag-
netic potential and V : RN → R is the electrical potential. We describe this operator and
the H1

A(R
N) space with more details later on. Its importance in physics was discussed in

Alves and Figueiredo [3] and also in Arioli and Szulkin [5].
Still seeking to contextualize the problems that we deal with in this work, we will

speak a little of what has been done with respect to problems of the convex type with the
usual Laplacian. Starting with the work of Alama and Tarantello [2] who considered the
problem {

−∆u− λu = W(x) f (u), x ∈ Ω,
u(x) = 0, x ∈ ∂Ω.

In this case W is a function that can change sign and f satisfies

lim
|u|→∞

f (u)
|u|p−2u

= a > 0

for some 2 < p ≤ 2∗ (2 < p < ∞ if N = 1 or 2). They deal with the existence of positive
solutions. In the case where f is an odd function, they show the existence of infinitely
many solutions which may even be solutions that change sign.

In [7], Berestycki et al. studied the existence and non-existence of solutions to the
following class of problems{

−∆u + m(x)u = a(x)up, x ∈ Ω,
Bu(x) = 0, x ∈ ∂Ω.

In this case, m(x) can change sign, 1 < p < 2∗ − 1 and Bu = u, Bu = ∂νu or Bu =
∂νu + α(x)u, α > 0.

Other works that also dealt with the convex case in the bounded domain with the
usual Laplacian can be seen in [1, 8, 9, 16, 25].

Already in RN , Miyagaki [19] studies the existence of nontrivial solutions for the fol-
lowing class of elliptic problems

−∆u + a(x)u = λ|u|q−1u + |u|p−1u, x ∈ RN ,

where 1 < p < q ≤ 2∗ − 1 = N+2
N−2 , λ > 0 is a constant and a(x) : RN → R is a continuous

function satisfying some additional conditions.
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Jalilian and Szulkin [15] considered an equation of the type{
−∆u + u = a(x)|u|p−2u + b(x)|u|q−2u, x ∈ RN ,
u ∈ H1(RN),

with 2 < p < q < 2∗ = 2N
N−2 , on what a(x) or b(x) are functions that can change sign.

They investigated the existence of infinitely many solutions. This is the problem that we
extend.

We will present, at this point, the main works that use the Magnetic Laplacian, in
order to contextualize and highlight the importance of the study that we develop.

The first results in non-linear Schrödinger equations, with A 6= 0 can be attributed to
Esteban and Lions [14] in which the existence of stationary solutions for equations of the
type

−∆A + Vu = |u|p−2u, u 6= 0, u ∈ L2(RN),

p ∈ (2, ∞), using minimization methods for the case V = 1, with constant magnetic field
and also for the general case.

In [18], Kurata showed that the equation(
h
i
∇− A(x)

)2

u + V(x)u− f (|u|2)u = 0, x ∈ RN , (1.1)

with certain assumptions about the magnetic field A, as well as for the potential V and f,
has at least a solution that concentrates near the set of global minimums of V, as h→ 0.

Also, Chabrowski and Szulkin [10] worked with this operator in the critical case and
with the electric potential V being able to change sign. Cingolani, Jeanjean and Secchi [11]
consider the existence of mult-peak solutions in the subcritical case, obtaining multiplic-
ity results using topological arguments and proving that the magnetic potential A only
contributes to the phase factor of Eq. (1.1) for very small values of h > 0.

Alves and Figueiredo [3] work with a problem of the type

−∆Au = µ|u|q−2u + |u|2∗−2u, u 6= 0, x ∈ Ω ⊂ RN ,

Ω is a bounded domain, µ > 0 and 2 ≤ q < 2∗, which relates the number of solutions
with the topology of Ω.

Also, Alves, Figueiredo and Furtado [4] studied the following equation(
−i∇− A

( x
λ

))2
u + u = f (|u|2)u, x ∈ Ωλ,

in which the set Ω ⊂ RN is a bounded domain, λ > 0 is a real parameter, A is a regular
magnetic field and f is a superlinear function with subcritical growth. For values of λ
sufficiently large, the authors show the existence and multiplicity of solutions relating
the number of solutions with the topology of Ω.
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In our case A : RN → RN is a magnetic potential in L2
loc(R

N , RN). We will use the
method introduced by Nehari in 1960, which has become very useful in critical-point the-
ory. The method of fibering map introduced by Drabek and Pohozaev [13] and discussed
by Brown and Zhang [9], relates the functional to a real function. The information about
this function gives us an important basis to achieve the result we are looking for. We did
not find in the literature works with the Laplacian magnetic that deal with the convex
case with weight functions and can change the sign. We are interested in studying the
following class of elliptic problems{

−∆Au + u = a(x)|u|q−2u + b(x)|u|p−2u,
u ∈ H1

A(R
N),

(P)

where x ∈ RN , 2 < q < p < 2∗ = 2N
N−2 , a and b are functions that can change sign and

satisfy some additional conditions. Besides that, u ∈ H1
A(R

N) and A : RN → RN is a
magnetic potential L2

loc(R
N , C). We will discuss the existence of solutions and, varying

the hypotheses under the weight functions, we will study the existence of infinitely many
solutions to the problem in question.

In this case, we need to enumerate some hypotheses among which the functions a, b
can assume in the theorems that follow. Before that, we will make the following defini-
tion.

Definition 1.1. Let g ∈ E(RN) and j ∈ ZZ. We say that the function g is 1-periodic in xi if

g(x1, · · · , xi, · · · , xn) = g(x1, · · · , xi+j, · · · , xn),

for i = 1, · · · , n.

In what follows, we assume that a, b satisfy some of the following hypotheses:

(D1) a ∈ Lr and b ∈ Ls, where 1 < r
r−1 < 2∗

p and 1 < s
s−1 < 2∗

q ;

(D2) a, b ∈ L∞(RN), lim sup|x|→∞ a(x) ≤ 0 and lim sup|x|→∞ b(x) ≤ 0;

(D3) a, b ∈ L∞(RN), a and b are 1-periodic functions in x1, · · · , xn;

(D4) b ≥ 0 and the set {x ∈ RN ; b > 0} has not empty interior;

(D5) a ≤ 0 and the set {x ∈ RN ; b > 0} has not empty interior.

The conditions (D4) and (D5) appear first in [16, Example 4.3] in which the existence of
positive solutions to a problem with the usual Laplacian and bounded domain is studied.
Also Jalilian and Szulkin in [15] use the above hypotheses to treat an elliptic problem in
RN .
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Theorem 1.1. Assume that (D1) or (D2) and (D4) or (D5) are satisfied. So the problem (P)
has infinitely many solutions.

We will now announce our second result.

Theorem 1.2. Assume (D3) and also (D4) or (D5) are satisfied. So the problem (P) has infinitely
many geometrically distinct solutions.

We will use the relationship between the Nehari manifold and the fibering map to dis-
cuss the existence of nontrivial solutions for this class of elliptic problems. We will show
that the Nehari manifold is closed and is a C2 manifold under each of the hypotheses of
the above theorems. To obtain the result of Theorem 1.1, we show that the PS condition is
satisfied in the manifold, and we will use a Krasnoselskii genus argument, which can also
be seen in [15]. Under the hypotheses Teorema 1.2, the PS condition is not valid, hence
we need to use an deformation type argument which is based on an idea of Szulkin and
Weth [22] to show the existence of infinitely many different geometric solutions.

2 Some preliminary considerations for the problem (P)

We denote by HA(R
N) the Hilbert space obtained by the closing of C∞

0 (RN , C) with the
following inner product:

〈u, v〉A = Re
∫

R
(∇Au∇Av + uvdx),

where ∇Au := (D1u, D2u, · · · , DNu) and Dj := −i∂j − Aj(x), with j = 1, 2, · · · , N, with
A(x) = (A1(x), · · · , AN(x)). The norm induced by this product is given by

||u||2A :=
∫

R
(|∇Au|2 + u2dx),

as we can see in Tang [23].
The diamagnetic inequality is proved by Esteban and Lions, [14, Section II]. For all

u ∈ H1
A(R

N) it is worth

|∇|u|(x)| =
∣∣∣∣Re

(
∇u

u
|u|

)∣∣∣∣ = ∣∣∣∣Re
(
(∇u− iAu)

u
|u|

)∣∣∣∣ ≤ |∇Au(x)|,

that way, if u ∈ H1
A(R

N) we have that |u| belongs to the usual Sobolev space H1
0(R

N).
In this section we will define the Nehari manifold associated with the (P) problem

and its relation to the fibering map. The functional associated with the problem in ques-
tion is given by

I(u) :=
1
2
||u||2A −

1
q

∫
RN

a(x)|u|qdx− 1
p

∫
RN

b(x)|u|pdx



F. Paiva, S. Lima and O. Miyagaki / Anal. Theory Appl., 38 (2022), pp. 148-177 153

and since (D1), (D2) or (D3) are satisfied we will have that the functional is of class
C2(H1

A(R
N), C). We can also see that the critical points of the functional are weak so-

lutions to the problem (P).

Proposition 2.1. If (D4) or (D5) are satisfied, then the functional I is not bounded below in
H1

A(R
N).

Proof. Considering without loss of generality that∫
RN

b(x)|u|pdx > 0

for some u ∈ H1
A(R

N) with u > 0 in RN and consider t > 0, like this

I(tu) =
t2

2
||u||2A −

tq

q

∫
RN

a(x)|u|qdx− tp

p

∫
RN

b(x)|u|pdx

=tp
(

1
2tp−2 ||u||

2
A−

1
qtp−q

∫
RN

a(x)|u|qdx− 1
p

∫
RN

b(x)|u|pdx
)

.

Taking t → ∞, as 2 < q < p < 2∗, we have that I(tu) → −∞, that is, I is not bounded
below in H1

A(R
N).

2.1 Nehari Manifold associated with (P)

We want to find a subset of H1
A(R

N), where the functional I is well defined, that is, where
this function is bounded below. We then define

M = {u ∈ H1
A(R

N) \ {0} : 〈I′(u), u〉 = 0}.

M is the Nehari manifold associated with functional I. Therefore,

u ∈M ⇔ I′(u)u = 0

⇔ ||u||2A −
∫

RN
a(x)|u|qdx−

∫
RN

b(x)|u|pdx = 0. (2.1)

Remembering that if u ∈M then u 6= 0, because 0 /∈M. We note that M ⊂ H1
A(R

N) and
now we will find the functional set on the Nehari manifold. For u ∈M

I(u) =I(u)− 1
q

I′(u)u

=

(
1
2
− 1

q

)
||u||2A −

(
1
p
− 1

q

) ∫
RN

b(x)|u|pdx

=

(
1
2
− 1

p

)
||u||2A −

(
1
q
− 1

p

) ∫
RN

a(x)|u|qdx.

We will now see that the I functional is well behaved in the Nehari manifold.
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Corollary 2.1. Assume that (D4) or (D5) is satisfied, then the functional I is bounded from
below in M.

Proof. In fact, by (2.1) and by (D4) we have

I(u) =
1
2
||u||2A −

1
q

∫
RN

a(x)|u|qdx− 1
p

∫
RN

b(x)|u|pdx

=

(
1
2
− 1

q

)
||u||2A −

(
1
p
− 1

q

) ∫
RN

b(x)|u|pdx ≥ 0, (2.2)

yet, when (D5) is satisfied

I(u) =
1
2
||u||2A −

1
q

∫
RN

a(x)|u|qdx− 1
p

∫
RN

b(x)|u|pdx

=

(
1
2
− 1

p

)
||u||2A −

(
1
q
− 1

p

) ∫
RN

a(x)|u|qdx ≥ 0, (2.3)

which concludes the boundness from bellow.

We will now make some considerations and we will present some properties of the
manifold and its relation with the fibering map.

2.2 Fibering map

We will now define the fibering map associated with the functional I, which are the func-
tions of the form Tu : t→ I(tu); (t > 0, u 6= 0), we will analyze its behavior and show its
relation with the manifold of Nehari.

If u ∈ H1
A(R

N), we have

Tu(t) =
t2

2
||u||2A −

tq

q

∫
RN

a(x)|u|qdx− tp

p

∫
RN

b(x)|u|pdx, (2.4a)

T′u(t) = t||u||2A − tq−1
∫

RN
a(x)|u|qdx− tp−1

∫
RN

b(x)|u|pdx, (2.4b)

T′′u (t) = ||u||2A − (q− 1)tq−2
∫

RN
a(x)|u|qdx− (p− 1)tp−2

∫
RN

b(x)|u|pdx. (2.4c)

The proposition below relates the Nehari manifold and the Fibering map.

Proposition 2.2. Let Tu be the function defined above and u ∈ H1
A(R

N), then

(i) u ∈M if and only if, T′u(1) = 0;

(ii) More generally tu ∈M if and only if, T′u(t) = 0.

From the definitions made, we will analyze the behavior of the fibering map in order
to obtain information about our functional.
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Remark 2.1. Note that if u ∈M, that is, T′u(1) = 0, then

T′′u (1) =(2− q)||u||2A − (p− q)
∫

RN
b(x)|u|pdx

=(2− p)||u||2A − (q− p)
∫

RN
a(x)|u|qdx. (2.5)

Note that the essential nature of the fibering map Tu is determined by the sign of∫
RN

a(x)|u|qdx and
∫

RN
b(x)|u|pdx.

In fact, consider the function

mu(t) =
1

tq−2 ||u||
2
A − tp−q

∫
RN

b(x)|u|pdx, t > 0. (2.6)

Remark 2.2. Note that, for t > 0, tu ∈M if and only if t is a solution of

mu(t) =
∫

RN
a(x)|u|qdx. (2.7)

In fact, by replacing (2.6) in (2.7), we have∫
RN

a(x)|u|qdx = t2−q||u||2A − tp−q
∫

RN
b(x)|u|pdx,

0 = t2−q||u||2A −
∫

RN
a(x)|u|qdx− tp−q

∫
RN

b(x)|u|pdx.

Multiplying the above equation by tq

0 = t2||u||2A − tq
∫

RN
a(x)|u|qdx− tp

∫
RN

b(x)|u|pdx,

or equivalently I′(tu)tu = 0. Therefore, tu ∈M. Also, deriving (2.6) we get

m′u(t) = (2− q)t1−q||u||2A − (p− q)tp−q−1
∫

RN
b(x)|u|pdx. (2.8)

Let us now analyze the behavior of mu for the following cases.

(i) When
∫

RN b(x)|u|pdx > 0, mu is a strictly decreasing function.

In fact, where 2 < q < p for t > 0

m′u(t) = (2− q)t1−q||u||2A − (p− q)tp−q−1
∫

RN
b(x)|u|pdx < 0,

whenever ∫
RN

b(x)|u|pdx > 0.
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mu(t)

t

Figure 1: mu sketch when
∫

RN b(x)|u|pdx > 0.

In addition, if t → 0 then mu(t) → +∞. Now, if t → ∞ then mu(t) → −∞. Thus we
conclude that mu(t) has a single point of inflection in

ti =

(
(2− q)||u||2A

(p− q)
∫

RN b(x)|u|pdx

) 1
p−2

< 0,

and its graph has a sketch as in Fig. 1.

(ii) When
∫

RN b(x)|u|pdx = 0, mu is also a strictly decreasing function.

In fact, for t > 0 then
m′u(t) = (2− q)t1−q||u||2A < 0,

whenever ∫
RN

b(x)|u|pdx = 0.

Furthermore, if t → 0 then mu(t) → +∞. If t → ∞, then mu(t) → 0. In this way we
conclude that mu(t) has the graph as in Fig. 2.

(iii) When
∫

RN b(x)|u|pdx < 0.

In this case mu is a decreasing and then increasing function with a single critical point in

tmin =

(
(2− q)||u||2A

(p− q)
∫

RN b(x)|u|pdx

) 1
p−2

.

In addition, mu(t) > 0 for all t > 0. Noting that

lim
t→0

mu(t) = ∞ and lim
t→∞

mu(t) = ∞,

we can conclude that mu has a graph as in Fig. 3.
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mu(t)

t

Figure 2: mu sketch when
∫

RN b(x)|u|pdx = 0.

mu(t)

ttmin

Figure 3: mu sketch when
∫

RN b(x)|u|pdx < 0.

Remark 2.3. It is important to note that if tu ∈M, by (2.5) and (2.6) we have

T′′tu(1) = tq+1m′u(t).

In fact,

T′′tu(1) =(2− q)t2||u||2A − (p− q)tp
∫

RN
b(x)|u|pdx

=tq+1
(
(2− q)t1−q||u||2A − (p− q)tp−q−1

∫
RN

b(x)|u|pdx
)

=tq+1m′u(t).

This observation is fundamental, because if we know the sign of m′u(t), we will know the
sign of T′′tu(t). Thus we can know if Ttu has a local minimum, maximum local or inflection
point.
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2.2.1 Function description Tu

Let us now see the description of the nature of the fibering map for cases where (D4) or
(D5) is satisfied.

(I) When (D4) is satisfied, there will be u′s ∈ H1
A(R

N), such that
∫

RN b(x)|u|pdx > 0
with strict inequality. Looking at the graph that we construct in item (i) above,
there are t′us, solution of (2.7) for any value of

∫
RN a(x)|u|qdx.In these conditions,

for each u such that ∫
RN

b(x)|u|pdx > 0,

there exists a unique tu > 0, such that tuu ∈ M. Also, tu > 0 is a maximum point
for Ttu, since T′′tu(1) = tq+1m′u(t) < 0 in this case.From this analysis, we conclude
that the graph Tu has its sketch as shown in Fig. 4.

Tu(t)

t

Figure 4: Possible form of Tu when
∫

RN b(x)|u|pdx > 0.

(I I) In the case where the hypothesis (D5) is satisfied we have∫
RN

a(x)|u|qdx ≤ 0.

Observing the graphs 1, 2 and 3, We see that Eqs. (2.7) only has solution when∫
RN

b(x)|u|pdx > 0.

Conditions that have already been analyzed in item (I).
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From these observations we have the following.

Lemma 2.1. Suppose the hypothesis (D1) is satisfied and that a, b ∈ L∞(RN).

(i) If (D4) is satisfied and we also have∫
RN

b(x)|u|pdx > 0 or
∫

RN
a(x)|u|qdx > 0,

then the equation T′u(t) = 0 has exactly one solution tu > 0. Also, I(u) > 0 for all u ∈M;

(ii) If (D5) is satisfied and ∫
RN

b(x)|u|pdx > 0,

then the equation T′u(t) = 0 has exactly one solution tu > 0. Also, I(u) > 0 for all u ∈M.

2.3 Properties of the Nehari manifold

Next we will see that under certain assumptions the Nehari manifold is indeed a mani-
fold.

Lemma 2.2. Suppose that (D1) and also (D4) or (D5) is satisfied. Then the Nehari manifold is
a C2 manifold, closed and such that ||u||A ≥ δ > 0 for all u ∈M.

Proof. Let u ∈M, a direct consequence of the definition of the manifold gives us

||u||2A =
∫

RN
a(x)|u|qdx +

∫
RN

b(x)|u|pdx.

Hence, by Hölder and Sobolev, by (D1) and by the diamagnetic inequality we have

||u||2A ≤||a||r||u||
q
qr′ + ||b||s||u||

p
ps′

≤c1||a||r||u||
q
A + c2||b||s||u||pA, (2.9)

where r′ = r
r−1 , s′ = s

s−1 and c1, c2 are positive constants. Dividing (2.9) by ||u||2A we get

1 ≤ c1||a||r||u||
q−2
A + c2||b||s||u||p−2

A . (2.10)

Assume by contradiction that there exists a sequence {un} ∈M such that ||un||A → 0, as
n → ∞. Then, like 2 < q < p, by (2.10) we get that 1 ≤ 0 which is absurd. It follows that
there is δ > 0 such that ||u||A ≥ δ > 0, for all u ∈M.

We will now show that the Nehari manifold is closed and C2. Define α : X → R by

α(u) := 〈J′(u), u〉 = ||u||2A −
∫

RN
a(x)|u|qdx−

∫
RN

b(x)|u|pdx.

See that α ∈ C2 and by the definition of α, we have to M = α−1(0) \ {0}. The fact that
δ > 0 exists such that ||u||A ≥ δ > 0, for every u ∈ M, gives M is closed. We need
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to show that 0 is a regular value of α, that is, for all u ∈ M, α′(u) is a linear overhead
transformation. Since the function image α is R,that is, it is a space of one dimension, just
show that α′(u) 6= 0 for all u ∈M. Note that for every u ∈M,

||u||2A =
∫

RN
a(x)|u|qdx +

∫
RN

b(x)|u|pdx. (2.11)

Also,

〈α′(u), u〉 = 2||u||2A − q
∫

RN
a(x)|u|qdx− p

∫
RN

b(x)|u|pdx. (2.12)

Now, by (2.11) and (2.12) we have

〈α′(u), u〉 = (2− q)||u||2A + (q− p)
∫

RN
b(x)|u|pdx. (2.13)

If (D4) is satisfied then
∫

RN b(x)|u|pdx ≥ 0 and by (2.13)

〈α′(u), u〉 < 0. (2.14)

Also, by (2.11) and (2.12) we have

〈α′(u), u〉 = (2− p)||u||2A + (p− q)
∫

RN
a(x)|u|qdx. (2.15)

Hence, if (D5) is satisfied then ∫
RN

a(x)|u|pdx ≤ 0

and by (2.15)
〈α′(u), u〉 < 0. (2.16)

Thus, by (2.14) and (2.16) follows that α′(u) 6= 0. We conclude that 0 is a regular value of
α, giving us that the Nehari manifold is a fact manifold and C2 class.

We will now show that the same conclusions from the previous lemma are also valid
when we consider the hypotheses described in the following lemma.

Lemma 2.3. Assume that a, b ∈ L∞(RN) and also (D4) or (D5) are satisfied. Then the Nehari
manifold is a C2 manifold, closed and such that ||u||A ≥ δ > 0 for all u ∈M.

Proof. Let u ∈M and let a, b ∈ L∞(RN). We have that

||u||2A =
∫

RN
a(x)|u|qdx +

∫
RN

b(x)|u|pdx

≤||a||∞||u||qq + ||b||∞||u||
p
p

≤c1||a||∞||u||
q
A + c2||b||∞||u||pA, (2.17)
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where c1, c2 are positive constants. Dividing (2.9) by ||u||2A we get

1 ≤ c1||a||∞||u||
q
A + c2||b||∞||u||pA. (2.18)

Assume by contradiction that there exists a sequence {un} ∈M such that ||un||A → 0, as
n → ∞. Then, like 2 < q < p, by (2.18) we get that 1 ≤ 0 which is absurd. It follows that
there exists δ > 0 such that ||u||A ≥ δ > 0, for all u ∈ M. The demonstration follows as
in Lemma 2.2. We conclude that under these conditions the Nehari manifold is a closed
and C2 manifold.

From the results we have just done we are ready to relate the critical points of the
functional restricted to the Nehari manifold with the critical points of the functional de-
fined throughout H1

A(R
N).

Lemma 2.4. Suppose that the hypotheses of Lemmas 2.2 or 2.3 are satisfied. Then u 6= 0 is a
critical point of the functional I, if and only if, it is also a critical point of I|M. Also, {un} ⊂M

is a (PS)c sequence of I if and only if it is a (PS)c sequence for I|M.

Proof. If u 6= 0 is a critical point of I, we have to 〈I′(u), v〉 = 0 for all v ∈ H1
A(R

N), in
particular for u = v and by the definition of the Nehari manifold, we have that u ∈ M.
Besides that, 〈I′(u), v〉 = 0 for all v ∈ TuM, from where we conclude that u is a critical
point of I|M.

On the other hand, let u ∈ M be a critical point of I|M. We already know that
〈I′(u), tu〉 = t〈I′(u), u〉 = 0 for all t ∈ R, then to ensure that u is the critical point of
I in H1

A(R
N) it is necessary to show that 〈I′(u), v〉 = 0 for all v out of Ru (space gener-

ated by u). This is the same as showing that TuM ⊥ Ru. For this, consider v ∈ TuM, then
there is a way φ : [0, 1] ⊂ R→M such that φ(0) = u and φ′(0) = v. Note that

〈I′(φ(t)), φ(t)〉 = I′′(φ(t))φ(t)φ′(t) + I′(φ(t))φ′(t).

As φ(0) = u ∈M, we have 〈I′(φ(0)), φ(0)〉 = 0. So by making t = 0 and multiplying the
above equality by u we obtain

I′′(φ(0))φ(0)φ′(0)u + I′(φ(0))φ′(0)u = 0.

Replacing φ(0) = u and φ′(0) = v, we have

〈I′′(u), u〉〈v, u〉+ 〈I′(u), u〉v = 0.

See that 〈I′(u), u〉 = 0 and by (2.13), we have 〈α′(u), u〉 < 0, then 〈v, u〉 = 0 for all
v ∈ TuM, thus concluding the first part of the lemma.

To show the second sentence of this lemma, consider {un} ⊂ M a (PS)c sequence of
I, that is, I(un) = c and

||I′(un)|| = sup
v∈H1

A; ||v||A=1
〈I′(un), v〉 → 0. (2.19)
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First, note that I(un) = c. In addition, we have

||I′|M(un)|| = sup
w∈Tun M; ||w||A=1

〈I′(un), w〉, (2.20)

as [24, Definition 5.10], which also goes to zero since it is a particular case of (2.19), that
concludes the outgoing.

To show the other side of the statement consider {un} ⊂M a (PS)c sequence for I|M,
that is,

I|M(un) = c

and
||I′|M(un)|| = sup

w∈Tun M; ||w||A=1
〈I′(un), w〉 → 0. (2.21)

In the same way as above we have I′(un) = I(un) = c. In addition, we have seen that
H1

A(R
N) = Tun M⊕Run , so every v ∈ H1

A(R
N) such that ||v||A = 1 can be written as

v = w + z with w ∈ Tun M and z ∈ Run . In this way, we have

||I′(un)|| = sup
v∈H1

A;||v||A=1
〈I′(un), v〉

= sup
||w||A=1

〈I′(un), w〉+ sup
||z||A=1

〈I′(un), z〉. (2.22)

The first term of (2.22) converges to zero by hypothesis and the second term converges to
zero by the same argument used in the first part of that demonstration.

3 Preliminaries of Theorem 1.1

To prove the theorem 1.1 we need some auxiliary results. In order to facilitate the notation
we will define the following functional

A(u) =
∫

RN
a(x)|u|pdx, (3.1a)

B(u) =
∫

RN
b(x)|u|qdx. (3.1b)

In addition we will need the following definitions.

Definition 3.1. We say that the functional F is weakly continuous when F(un) → F(u) when-
ever un ⇀ u, as n→ ∞.

Definition 3.2. We say that the functional F′ : X → X∗ is completely continuous when
F′(un)→ F′(u) whenever un ⇀ u, as n→ ∞.

Lemma 3.1. Suppose the hypothesis (D1) is satisfied. So, A′, B′ : H1
A(R

N) → H1
A(R

N)
∗ are

completely continuous.
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Proof. We will begin by proving that A′ is completely continuous. Let un ∈ H1
A(R

N) be
with un ⇀ u. Being {un} bounded in H1

A(R
N), using the diamagnetic inequality we

obtain ∫
|∇|un||2 ≤

∫
|∇Aun|2 < C (3.2)

for all n ∈ R, whence {|un|} is bounded in H1.
Turning to a subsequence if necessary, by Rellich-Kondrachov’s theorem [17, Theorem

8.16] we have

|un|⇀ u in H1(RN), (3.3a)

|un| → u in Ll
loc(R

N) for all 2 ≤ l < 2∗, (3.3b)

|un| → u a.e. RN . (3.3c)

Then we have

un → u in Ll
loc(R

N), a.e. for all 2 ≤ l < 2∗. (3.4)

This can be concluded because un → u in Ll
loc(R

N) if and only if |un| → u in Ll
loc(R

N).
Choose vn := |un|p−2un − |u|p−2u. By (3.4)

vn → 0 a.e. in RN . (3.5)

Knowing that |a + b|t ≤ 2t−1(at + bt) for t > 1 we have,

|vn|
p

p−1 =||un|p−2un − |u|p−2u|
p

p−1

≤2
p

p−1−1[(|un|p−1)
p

p−1 − (|u|p−1)
p

p−1 ]

=C(|un|p − |u|p). (3.6)

Note that u ∈ H1
A(R

N), then |u| ∈ H1, where

(∫
(|u|p) r

r−1

) r−1
r

= ||u||ppr
r−1

< ∞, (3.7)

since by (D4) we have pr
r−1 < 2∗. The same goes for every un of the given sequence. Hence,

for (3) and (3.7) we have |vn|
p

p−1 ∈ L
r

r−1 . By boudedness of {un} in H1
A(R

N), by (3.7) and

(3.5) we have {|vn|
p

p−1 } is bounded in L
r

r−1 (RN). This gives us that there is a subsequence
such that

|vn|
p

p−1 ⇀ 0 in L
r

r−1 . (3.8)
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Now, take w ∈ H1
A(R

N) such that ||w||A < 1. Due to the inequalities Hölder and Sobolev
we have

|〈A′(un)− A′(u), w〉| =
∣∣∣∣Re

∫
RN

a(x)vnw̄dx
∣∣∣∣ ≤ ∫

RN
|a(x)|

1
p |w||a(x)|

1
p′ vndx

≤
(∫

RN
|a(x)||w|pdx

) 1
p
(∫

RN
|a(x)||vn|p

′
dx
) 1

p′

≤||a||
1
p
r

(∫
RN
|w|pr′dx

) 1
pr′
(∫

RN
|a(x)||vn|p

′
dx
) 1

p′

≤C||a||
1
p
r ||w||pr′

(∫
RN
|a(x)||vn|p

′
dx
) 1

p′

, (3.9)

with C > 0 constant. Then a ∈ Lr = (Lr′)∗, with this and by (3.8) we have (3.9) goes to
zero uniformly with respect to ||w||A ≤ 1. Which proves that A′ is completely continu-
ous. For B′ the proof is analogous.

Assuming that the hypothesis (D2) is satisfied, we are interested in showing that the
functional satisfies the (PS)c condition in Nehari manifold, for all c ∈ R. Since the weight
functions can change sign, we will separate the functional A and B previously defined in
their positive and negative parts in order to show that the positive part of its derivatives
are completely continuous. In this way, we will make the following definitions.

a−(x) := max{0,−a(x)}, a+(x) := max{0, a(x)}, (3.10)

and we define b±(x) similarly. Still,

A±(u) :=
∫

RN
a±(x)|u|qdx, B±(u) :=

∫
RN

b±(x)|u|pdx. (3.11)

Then, we present the following result.

Lemma 3.2. Suppose the hypothesis (D2) is satisfied. Then A′+, B′+ : H1
A(R

N) → H1
A(R

N)
∗

are completely continuous.

Proof. First we show that A′+ is completely continuous. Be {un} ∈ H1
A(R

N) and un ⇀ u0
in H1

A(R
N). If we need a subsequence and use the same argument of Lemma expression

(3.1) we get (3.3a) - (3.3c). As we have done before, choose vn := |un|p−2un − |u|p−2u. As
un → u in Lp

loc(R
N), by result [24, Theorem A.2] and by (3.3c)

vn → 0 in L
p

p−1

loc RN . (3.12)

By the hypothesis (D2) for all ε > 0 there will be an R > 0 such that

a+(x) < ε, whenever |x| > R. (3.13)
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Using the inequalities of Hölder and Sobolev and by (3.12) we obtain

sup
||w||≤1

∣∣∣∣∫|x|≤R
a+(x)vnwdx

∣∣∣∣ ≤||a+||∞ (∫|x|≤R
|vn|

p
p−1

) p−1
p
(∫
|x|≤R

|w|p
) 1

p

≤C1

(∫
|x|≤R

|vn|
p

p−1

) p−1
p

→ 0, (3.14)

as n → ∞. As seen in the previous lemma, {vn} is limited in L
p

p−1 (RN). Using this fact,
the inequalities of Hö lder and Sobolev and by (3.13) we obtain that there exists a constant
C2 > 0 independent of ε > 0 such that

sup
||w||≤1

∣∣∣∣∫|x|≤R
a+(x)vnwdx

∣∣∣∣ ≤ C2ε. (3.15)

Using (3.14) and (3.15), we have

sup
||w||≤1

|〈A′+(un)− A′+(u), w〉| = sup
||w||≤1

∣∣∣∣∫|x|>R
a+(x)vnwdx

∣∣∣∣ → 0,

as n → ∞, from which we conclude that A′+ is completely continuous. For B′+ the argu-
ment is analogous.

Lemma 3.3. Suppose the hypotheses (D4) or (D5) are satisfied. Then, every (PS)c sequence
{un} ⊂M is bounded.

Proof. Let c ∈ R and let {un} ⊂M a (PS)c sequence. Then

||un||2 = A(un) + B(un), (3.16)

and I′(un) → 0, I(un) → c. If (D4) is satisfied, then B(un) ≥ 0 and by (3.16) and by the
limitation of I(un),

I(un) =
1
2
||un||2A −

1
p

A(un)−
1
q

B(un)

=

(
1
2
− 1

p

)
||un||2A +

(
1
p
− 1

q

)
B(un)

≥
(

1
2
− 1

p

)
||un||2A, (3.17)

for all n large enough. Also, if (D5) is satisfied, then A(un) ≤ 0 and by (3.16) again we
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get

I(un) =
1
2
||un||2A −

1
p

A(un)−
1
q

B(un)

=

(
1
2
− 1

p

)
||un||2A −

(
1
p
− 1

q

)
A(un)

≥
(

1
2
− 1

p

)
||un||2A, (3.18)

for all n large enough. As I(un) → c, we have that in the two cases {un} is a bounded
sequence. As we wanted to demonstrate.

Now we are ready to show that (PS)c condition is satisfied by the functional I in M

for all c ∈ R.

Proposition 3.1. Supose (D1) or (D2) and (D4) or (D5) are satisfied. Then, the functional I
satisfies (PS)c condition in M for all c ∈ R.

Proof. Let c ∈ R and let {un} ⊂M a (PS)c sequence. Since we are under the assumptions
(D4) or (D5), by the Lemma 3.3, {un} is a bounded sequence. Thus, there is u ∈ H1

A(R
N)

such that, passing to a subsequence if necessary, un ⇀ u. Thus, by having I′(un)→ 0, we
obtain I′(u) = 0. Thereby,

〈I′(un)− I′(u), un − u〉
=||un − u||2 − 〈A′(un)− A′(u), un − u〉 − 〈B′(un)− B′(u), un − u〉 → 0. (3.19)

Now, if (D1) is satisfied, then by Lemma 3.1, A′(un)→ A′(u) and B′(un)→ B′(u). Thus,
by (3.19) we obtain un → u ∈ X. Suppose now that (D2) is satisfied. Using the fact that
the function v 7→ |v|t is convex to t ≥ 2 (in particular for t = p and q), we get

(|v|t−2v− |u|t−2u)(v− u) ≥ 0.

With this, by (3.19),

||un − u||2A − 〈A′+(un)− A′+(u), un − u〉 − 〈B′+(un)− B′+(u), un − u〉
≤〈A′(un)− A′(u), un − u〉 − 〈B′(un)− B′(u), un − u〉 → 0.

By Lemma 3.2, A′+(un) → A′+(u) and B′+(un) → B′+(u), then un → u also in this case,
which concludes the proof of the proposition.

To prove the Theorem 1.1 we need to make some considerations.

Definition 3.3. The set K ⊂ H1
A(R

N) is symmetric if K = −K.
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Definition 3.4. Let
Σ := {K ⊂ X : K is closed and symmetric}.

For K 6= ∅ and K ∈ Σ, the Krasnoselskii genus of K is the smallest integer n such that there is an
odd function f ∈ C(K, Rn \ {0}).

The K genus is denoted by γ(K). If there is no f that satisfies the above properties for any n,
then γ(K) := ∞. Note also that γ(∅) := 0.

Theorem 3.1 ([21, Theorema II.5.7]). Assume that J ∈ C1(M) be a functional even in a mani-
fold C1,1, complete and symmetric M ⊂ V \ {0} in a Banach space V. Supose that J satisfies the
(PS)c condition for all c ∈ R and is bounded below in M. Consider

γ̂(M) := sup{γ(K) : K ⊂ M is compact and simetric}.

Then, the functional J has at least γ̂(M) ≤ ∞ critical point pairs.

3.1 Proof of Theorem 1.1

Our goal is to show that the (P) problem has infinitely many solutions. For this, we are
considering the functional I defined in the Nehari manifold M ⊂ H1

A(R
N). By Lemmas

2.1-2.3 and by Proposition 3.1, M is a symmetrical and closed C2 manifold, I(u) > 0 for
all u ∈ M and I satisfies the (PS)c condition in M for all c ∈ R. With this, we are in the
hypothesis of the theorem 3.1. It remains then to show that γ̂(M) = ∞. We will do this
by proving that for all n ≥ 1 there is a symmetric and compact set Kn ⊂ M such that
γ(Kn) ≥ n. Hence, the first statement of this theorem follows from the Lemma 2.4 and
the Theorem 3.1.

Let n ≥ 1 and let Xn a subspace generated by n functions vj ∈ C∞
0 (RN) linearly

independent and such that supp vj ⊂ {x ∈ RN : b(x) > 0} and let

Sn−1 := Xn ∩ {u ∈ H1
A(R

N) : ||u||A = 1}.

By the definition of Sn−1, we get B(u) > 0 for all u ∈ Sn−1 and by Lemma 2.1 the equation
α′u(t) = 0 has exactly one solution tu ∈ (0, ∞). Thus, the function φ : Sn−1 →M given by
φ(u) := tuu is well defined. Moreover, by the way we find tu in Lemma 2.1 we can see
that tu = t−u, then

φ(−u) = t−u(−u) = −tuu = −φ(u)

giving us φ is an odd function.
Affirmation: φ : u 7→ tuu is a continuous function.
To show the statement, note that if the necessary and sufficient condition of existence

of a tu given in Lemma 2.1 is satisfied, then T′′u (t) < 0 for t = tu, as shown in the graph 4.
Thus, by calling f (t, u) = T′u(t), we will have

f (tu, u) = T′u(tu) = 0, with
∂ f
∂t

= T′′u (t) < 0.
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Hence, by the implicit function theorem we obtain the continuity of u 7→ tuu, concluding
the statement. Thus, φ is a continuous and odd function of Sn−1 into M and we have that
Kn := φ(Sn−1) is homeomorphic to Sn−1. Follows from the property of the genus that
γ(Kn) = γ(Sn−1) = n, as [21, Section II.5].

4 Preliminaries of Theorem 1.2

We want to establish existence results and multiplicity of solutions for the case where the
hypothesis (D3) and one of the conditions (D4) or (D5) are satisfied. We try to adapt to
our case a method that was developed by [22] and also used in [15]. Next, we present
the necessary considerations to construct the proof of the Theorem 1.2. Our next result
shows the existence of nontrivial solutions to the problem (P) when a and b are periodic.

Proposition 4.1. Suppose (D3) and also (D4) or (D5) be satisfied. Then, there is v ∈ M such
that I ′(v) = 0 and |v(x)| > 0 for all x ∈ RN .

Proof. By Lemma 2.1, I is bounded below in M. As a consequence of the Variational
Principle of Ekeland [12, Corolary A.3], there exists a sequence {un} ⊂M such that

I′(un)→ 0, I(un)→ c0 := inf
u∈M

I(u).

By Lemma 3.3, we have {un} bounded. Thus, passing to a subsequence if necessary, will
exist u ∈ H1

A(R
N) such that un ⇀ u. By the principle of concentration and compactness,

according to the Lemma of P. L. Lions [24, Lemma 1.21], if for some r > 0 we have

lim
n→∞

sup
y∈RN

∫
B(y,r)

|un|2dx = 0,

then |un| → 0 in Lp(RN) and Lq(RN). In this case we would have

A(un) =
∫

RN
a(x)|un|pdx → 0,

B(un) =
∫

RN
b(x)|un|qdx → 0,

and how ||un||2A = A(un) + B(un), it follows that |un| → 0 in H1
A(R

N).
However, by Lemma 2.3 we have ||u||A ≥ δ > 0 for all u ∈ M, which leads us to

a contradiction. Thus, there exists yn ⊂ ZZN , ρ > 0 and R ≥ r such that, passing to a
subsequence if necessary we have vn(x) := un(x− yn) satisfying

lim
n→∞
|vn|2dx =

∫
B(yn,R)

|un|2dx ≥ ρ > 0. (4.1)
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Being {vn} bounded in H1
A(R

N) there exists v ∈ H1
A(R

N) such that vn ⇀ v in H1
A(R

N).
In addition, by the diamagnetic inequality we have∫

|∇|vn||2 ≤
∫
|∇Avn|2 < C

for all n ∈ R, whence {un} is bounded in H1
0 . Moving on to a subsequence if necessary,

by the Theorem of Rellich-Kondrachov [17, Theorem 8.16] we get

|vn|⇀ |v| in H1(RN), (4.2a)

|vn| → |v| in Ll
loc(R

N), 2 ≤ l < 2∗, (4.2b)

|vn| → |v| a.e. in RN . (4.2c)

By (4.2b),

||v||22 ≥
∫

B(0,R)
|v|2 = lim

n→∞

∫
B(0,R)

|vn|2 ≥ ρ > 0.

Then |v| 6= 0. As yn ∈ ZZN , follows from the periodicity of a that

A(vn) =A(un(x− yn)) =
∫

a(x− yn)|un(x− yn)|p

=
∫

a(x)|un(x− yn)|p =
∫

a(x)|un(x)|p = A(un).

In the same way, by the b, B(vn) = B(un). Thereby,

||I′(vn)||A = ||I′(un)||A → 0.

We can show that I′(v) = 0. In fact, just take φ ∈ C∞
c (RN), using (4.1)-(4.2b) we get

〈I′(vn), φ〉 → 0. (4.3)

On the other hand,

〈I′(vn), φ〉 =
∫
∇Aun∇Aφ−

∫
a(x)|vn|p−1φ−

∫
b(x)|vn|q−1φ→ 〈I′(v), φ〉,

which together with (4.3) gives us that 〈I′(v), φ〉 = 0 for all φ ∈ C∞
c (RN). By the density

of C∞
c (RN) in H1

A(R
N) we obtain 〈I′(v), w〉 = 0 for all w ∈ H1

A(R
N), and we conclude

that I′(v) = 0. Now we will show that v is a minimum for I in M. As I(vn) = I(un),
I(vn)→ c0. If (D4) is satisfied, then b ≥ 0 and by Fatou’s Lemma

lim inf
n→∞

[B(vn)] ≥ B(lim inf
n→∞

vn) = B(v).
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With this, we have

c0 = lim inf
n→∞

I(vn) = lim inf
n→∞

(
I(vn)−

1
p
〈I′(vn), vn〉

)
= lim inf

n→∞

[(
1
2
− 1

p

)
||vn||2A +

(
1
p
− 1

q

)
B(vn)

]
≥
(

1
2
− 1

p

)
||v||2A +

(
1
p
− 1

q

)
B(v)

=I(v)− 1
p
〈I′(v), v〉 = I(v) ≥ c0.

Then, I(v) = c0. Similarly, if (D5) is satisfied, then a ≤ 0 and hence

c0 = lim inf
n→∞

I(vn) = lim inf
n→∞

(
I(vn)−

1
p
〈I′(vn), vn〉

)
= lim inf

n→∞

[(
1
2
− 1

p

)
||vn||2A +

(
1
p
− 1

q

)
A(vn)

]
≥
(

1
2
− 1

p

)
||v||2A +

(
1
p
− 1

q

)
A(v)

=I(v)− 1
p
〈I′(v), v〉 = I(v) ≥ c0,

thus, I(v) = c0 also in this case.

In the case where the hypothesis (D3) is satisfied, we can not show the complete con-
tinuity of A′+ and B′+. Because of this it is not possible to guarantee the condition (PS)c
for the functional I in the range, for no c ∈ R. In order to overcome this problem, we
need a type deformation argument. For this we will make use of the following notations

K := {u ∈M : I′(u) = 0},
Kd := {u ∈ K : I(u) = d}.

In addition, we defined the following level sets of the Nehari manifold

Id := {u ∈M : I(u) ≤ d}, Ie := {u ∈M : e ≤ I(u)}, Id
e := Ie ∩ Id.

Let K be a subset of K such that K = −K and each orbit O(u) ⊂ K has a single K.
Our goal now is to show that K has infinite elements under the hypothesis (D3) and

also (D4) or (D5). For this we suppose that K is finite to arrive at a contradiction. For the
same argument used in [22, Lemma 2.13] we can show the next result.

Lemma 4.1. The smallest of the distances between two distinct elements of the set K ∪ {0} is a
positive number.
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Proof. The demonstration of this lemma follows the idea of what was done in [22, Lemma
2.13].

We want to show that

κ := inf{||v− w|| : v, w ∈ K ∪ {0}, v 6= w} > 0.

Take vn and wn in K and kn, ln in ZZN such that vn(· − kn) 6= wn(· − ln) for all n and

||vn(· − kn)− wn(· − ln)|| → κ as n→ ∞.

Take mn = kn − ln. By the finiteness of K, passing a subsequence we have vn = v ∈ K,
wn = w ∈ K. In addition we have two possibilities, or mn = m ∈ ZZN for almost
everything n, or |mn| → ∞. If mn = m ∈ ZZN for almost all n, then

0 <||vn(· − kn)− wn(· − ln)|| = ||v(· − kn)− w(· − ln)||
=||v− w(· −mn)|| = ||v− w(· −m)|| = κ for all n ∈N.

On the other hand, if |mn| → ∞, then w(· −mn) ⇀ 0 and we have

κ = lim
n→∞
||v− w(· −mn)|| ≥ ||v|| = 1.

As we wanted to demonstrate.

In [22] the minimum is assumed to be all v, w ∈ K, but since 0 is an isolated critical
point, κ remains positive even if v or w is 0.

Next, we will establish a property that is related to the notion of Palais-Smale discrete
attractor introduced in [6], also used in [15, Lemma 4.4] and [22, Lemma 2.14].

Lemma 4.2. Assume (D3) and also (D4) or (D5) are satisfied and that {un}, {vn} ⊂ M are
two (PS)c sequences of I. Then, or ||un − vn||A → 0 as n→ ∞ or

lim sup
n→∞

||un − vn||A ≥ κ > 0.

Proof. It follows from Lemma 3.3 that un and vn are bounded in H1
A(R

N).
Case 1: Suppose first that ||un − vn||p, ||un − vn||q → 0 as n→ ∞. By Hölder inequal-

ity we have

||un − vn||2A =〈I′(un), (un − vn)〉 − 〈I′(vn), (un − vn)〉

+
∫

RN
a(x)[|un|p−2un − |vn|p−2vn](un − vn)dx

+
∫

RN
b(x)[|un|q−2un − |vn|q−2vn](un − vn)dx

≤〈I′(un), (un − vn)〉 − 〈I′(vn), (un − vn)〉

+ ||a||∞(||un||p−1
p − ||vn||p−1

p )||un − vn||p
+ ||b||∞(||un||q−1

q − ||vn||q−1
q )||un − vn||q.
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First, as I′(un)→ 0 and I′(vn)→ 0 and also un and vn are bounded in H1
A(R

N), it follows
that {un − vn} is also bounded in H1

A(R
N), thereby

〈I′(un), (un − vn)〉 → 0 and 〈I′(vn), (un − vn)〉 → 0.

In addition, by limitation of {un} and {vn} in Lp(RN) and Lq(RN), we conclude that
||un − vn||A → 0.

Case 2: Let us now assume that ||un − vn||p 9 0 or ||un − vn||q 9 0 as n → ∞. As
un and vn are bounded in H1

A(R
N), by diamagnetic inequality |un| and |vn| are bounded

in H1. Then, by P.L. Lions Lemma [24, Lemma 1.21], there exists δ0 > 0, {yn} ⊂ ZZN and
r > 0 such that, passing to a subsequence if necessary, un(x− yn)− vn(x− yn) satisfies

lim
n→∞

∫
B(0,r)

|un(x− yn)− vn(x− yn)|2dx ≥ δ0 > 0. (4.4)

Note that I and M are invariant by translating u 7→ u(· − k), k ∈ ZZN , thereby defining

u1
n(x) := un(x− yn) and v1

n(x) := vn(x− yn),

we have that u1
n, v1

n ∈M and {u1
n}, {v1

n} are (PS)c sequences (with the same c).
With this, we are again in the hypotheses of the lemma 3.3, where we obtain that {u1

n},
{v1

n} are bounded. Then, there exists u1 and v1 ∈ H1
A(R

N) such that,

u1
n → u1 and v1

n → v1,

as n → ∞. Turning to a subsequence if necessary, (4.2a) and (4.2b) are also valid for u1
n

and v1
n. By (4.4) and the strong convergence of un and vn in L2

loc(R
N), we have u1− v1 6= 0.

As was previously seen I′(u1) = I′(v1) = 0. Thus, u1, v1 ∈ K ∪ {0} and hence

lim sup
n→∞

||vn − un||A ≥ lim inf
n→∞

||vn − un||A ≥ ||v1 − u1||A ≥ κ,

which completes the proof.

Recalling our notation, we are denoting the inner product in H1
A(R

N) for 〈·, ·〉. Define
the I gradient by duality, that is, by the set

〈∇A I(v), w〉 := 〈I′(v), w〉 for all w ∈ H1
A(R

N).

Since M is a C2 manifold, closed in H1
A(R

N), by the result [21, Lemma II.3.9], we have I|M
admits a vector field of pseudo gradients H, that is, a locally Lipschitzian and continuous
function H : M \ T → TM such that

||H(v)||A < 2||∇A I(v)||A, (4.5a)

(H(v),∇A I(v)) >
1
2
||∇A I(v)||2A, (4.5b)
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worth for all v ∈ M \ K. Moreover, since I is even, we assume that H is odd, as can be
seen in [21, Remark II.3.10]. Note that 〈∇A I(v), v〉 = 0 if v ∈ M and ∇A I is equal to the
gradient of I|M for each v.

Now, let η : D →M be the flow corresponding to the field of pseudo-gradient vectors
H, that is, η is defined by

d
dt

η(t, v) = −H(η(t, v)),

η(0, v) = v.
(P)

Here D := {(t, v) : v ∈ M \ K, t ∈ Iv} and Iv := (T−(v), T+(v)) it is the maximum
interval of existence for the initial value problem (P).

Remark 4.1. For a result in [20, Theorem A.4] η is odd in v.

Remark 4.2. As I ∈ C2(M), we can actually choose H as the gradient vector field of I|M,
that is, we can put H(v) := ∇A I(v), with v ∈M. For this H we can show that the flow η
exists for all (t, v) ∈ R×M.

Lemma 4.3. For all v ∈M the limit limt→T+(v) η(t, v) exists and is a critical point of I.

Proof. The proof follows similarly to what was done in [22, Lemma 2.15], with ρ(d) re-
placed by κ. Note that the argument used in [22] only uses the existence of the pseudo-
gradient flow η in a complete manifold and also the fact that the (PS)c sequence is dis-
crete. This last property is valid in the context of Lemma 4.2.

Let v ∈M and let I(v) = D. We will split the proof into two cases.
Case 1: T+(v) < +∞. For 0 ≤ s < t < T+(v), by (4.5a), (4.5b) and (2) we have that

||η(t, v)− η(s, v)||A ≤
∫ t

s
||H(η(τ, v))||Adτ

≤2
√

2
∫ t

s

√
〈H(η(τ, v)),∇A I(η(τ, v))〉dτ

≤2
√

2(t− s)
(∫ t

s
〈H(η(τ, v)),∇A I(η(τ, v))〉dτ

)1/2

=2
√

2(t− s)[I(η(s, v))− I(η(t, v))]1/2

≤2
√

2(t− s)[I(v)− c]1/2.

We then have the limit limt→T+(v) η(t, v) exists, since T+(v) < +∞. Also, the limit is a
critical point of I, otherwise we would have that the trajectory t 7→ η(t, v) could continue
beyond T+(v) < +∞.

Case 2: T+(v) = +∞. We need to show that for all ε > 0 exists tε > 0 with
||η(tε, v)− η(t, v)|| < ε for t > tε. Supposing it is absurd that this is false. Thus we will
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have ε between 0 and κ, where κ is as in Lemma 4.1, and a sequence (tn) ⊂ [0, ∞) with
tn → ∞ and ||η(tn, v)− η(tn+1, v)|| = ε. Choose the smallest t1

n ∈ (tn, tn+1) such that

||η(tn, v)− η(t1
n, v)||A =

ε

3
and let

δn := min
s∈[tn,t1

n]
||∇A I(η(s, v))||ds.

Thus,

ε

3
=||η(tn, v)− η(t1

n, v)||A ≤
∫ t1

n

tn

||H(η(s, v))||ds

≤2
∫ t1

n

tn

||∇A I(η(s, v))||ds ≤ 2
δn

∫ t1
n

tn

||∇A I(η(s, v))||ds

≤ 4
δn

∫ t1
n

tn

〈H(η(s, v)),∇A I(η(s, v))〉ds =
4
δn
(I(η(tn, v))− I(η(t1

n, v))).

But the latter term goes to zero as n→ ∞. Implies that δn → 0 and also, exists s1
n ∈ [tn, t1

n]
such that ∇A I(η(s1

n, v)) → 0. In the same way, we seek the greatest t2
n ∈ (t1

n, tn+1) for
which

||η(tn+1, v)− η(t2
n, v)||A =

ε

3
,

and then ∇A I(η(s2
n, v))→ 0. Calling v1

n := η(s1
n, v) and v2

n := η(s2
n, v) we have

||v1
n − η(tn, v)||A ≤

ε

3
and ||v2

n − η(tn+1, v)||A ≤
ε

3
,

there is, {v1
n} and {v2

n} are two PS sequences such that
ε

3
≤ ||v1

n − v2
n||A ≤ 2ε < κ,

which contradicts the Lemma 4.2. Thus we can show that for all ε > 0 existe tε > 0 with
||η(tε, v) − η(t, v)||A < ε for t > tε, therefore, the limit exists and is a critical point of
I.

Let O ⊂M and δ > 0. Define

Uδ(O) := {w ∈M : dist(w, O) < δ}.

Lemma 4.4. Let d ≥ c0 = infu∈M I(u). Then, for all δ > 0 exists ε = ε(δ) > 0 such that

(a) Id+ε
d−ε ∩ K = Kd;

(b) limt→T+(v) I(η(t, v)) < d− ε for v ∈ Id+ε \Uδ(Kd).

Proof. (a) It follows immediately from the finiteness of K.
(b) This part can be proved by the same argument used in [22, Lemma 2.16], but with

κ instead of ρ(d + 1). This argument is based on Lemmas 4.2 and 4.3 and involves a
careful analysis of the flow.
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4.1 Proof of Theorem 1.2

The existence of solutions was shown in Proposition 4.1. To show the fact that there are
infinitely many geometrically distinct solutions, we use the same argument used in [22,
Theorem 1.2] as we will show below.

Consider the sequence

ck := inf{d ∈ R : γ(Id) ≥ k}, k ∈ N,

that is, for every k ∈N we take the lowest level d such that the genus of Id is greater than
k. We want to use the finiteness of K to arrive at a contradiction. For this, we will show
that

Kck 6= ∅ and ck < ck+1 for all k.

Kck 6= ∅ assures us that for each term of the sequence there is a w ∈ H1
A(R

N) such that
I′(w) = 0, that is, such that w is the solution of (P) and I(w) = ck. Also, showing that
ck < ck+1 ensures that every k we are working at a different level from the previous one.
Let us make d = ck. By the Lemma 4.1, γ(Kd) = 0 or 1. Using the continuity property of
the genus, there is a δ such that 0 < δ < κ

2 and with γ(Ū) = γ(Kd), where

U := Uδ(Kd) = {w ∈M : dist(w, Kd) < δ},

that is, there is a range around the d level such that the genus remains the same. For this
δ, we choose one ε = ε(δ) > 0 such that the conclusion of Lemma 4.4 follows. Thus, for
each v ∈ Id+ε \U exists t ∈ [0, T+(v)) such that I(η(t, v)) < d− ε.

Now, define the function e : Id+ε \U → [0, ∞);

e(v) := inf{t ∈ [0, T+(v)); I(η(t, v)) < d− ε}.

As d − ε is not a critical value of I, it follows by the Lemma 4.4 that the function e is
continuous and moreover, it is even (since I is even).

Let h : Id+ε \U → Id−ε; h(v) := η(e(v), v). See that

h(−v) = η(e(−v),−v) = η(e(v),−v) = −η(e(v), v) = −h(v).

There is, h is odd and continuous. Now, using the properties of the genus and the defini-
tion of ck, we get

γ(Id+ε) ≤ γ(Ū) + γ(Id−ε) ≤ γ(Kd) + k− 1.

By the definitions of d = ck and ck+1 we have

γ(Kd) ≥ 1, if ck+1 > ck

and
γ(Kd) > 1, if ck+1 = ck.

By Lemma 4.1, we have γ(Kd) ≤ 1. Then we get γ(Kd) = 1 and Kd 6= ∅ and also
ck < ck+1 for all k. Thus, there are infinitely many pairs (±vk) of solutions geometrically
distinct from (P) such that I(vk) = ck contradicting the finiteness of K, which completes
the proof.
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