Reducing Subspaces of Toeplitz Operators on N_{φ} -type Quotient Modules on the Torus^{*}

WU YAN^{1,2} AND XU XIAN-MIN²

(1. School of Mathematical Sciences, Fudan University, Shanghai, 200433)

(2. Institute of Mathematics, Jiaxing University, Jiaxing, Zhejiang, 314001)

Communicated by Ji You-qing

Abstract: In this paper, we prove that the Toeplitz operator with finite Blaschke product symbol $S_{\psi(z)}$ on N_{φ} has at least m non-trivial minimal reducing subspaces, where m is the dimension of $H^2(\Gamma_{\omega}) \ominus \varphi(\omega) H^2(\Gamma_{\omega})$. Moreover, the restriction of $S_{\psi(z)}$ on any of these minimal reducing subspaces is unitary equivalent to the Bergman shift M_z .

Key words: module, N_{φ} -type quotient module, the analytic Toeplitz operator, reducing subspace, finite Blaschke product

2000 MR subject classification: 47B35, 47A15

Document code: A

Article ID: 1674-5647(2009)01-0019-11

1 Introduction

Let D denote the open unit disk in the complex plane \mathbb{C} and T^2 be cartesian product of two copies of T, where T is the unit circle. It is well known that T^2 , as usually is endowed with the rotation invariant Lebesgue measure, is the distinguished boundary of D^2 . Let dm(z)denote the normalized Lebesgue measure on T and $dm(z)dm(\omega)$ be the product measure on the torus T^2 . The Bergman space is denoted by $L^2_a(D)$ and Bergman shift is denoted by M_z . Let $H^2(\Gamma^2)$ be the Hardy space on the two dimensional torus T^2 . We denote by z and ω the coordinate functions. Shift operators T_z and T_ω on $H^2(\Gamma^2)$ are defined by $T_z f = zf$ and $T_\omega f = \omega f$ for $f \in H^2(\Gamma^2)$. Clearly, both T_z and T_ω have infinite multiplicity. A closed subspace M of $H^2(\Gamma^2)$ is called a submodule (over the algebra $H^{\infty}(D^2)$), if it is invariant under multiplications by functions $H^{\infty}(D^2)$. Equivalently, M is a submodule if it is invariant for both T_z and T_ω . The quotient space $N : H^2(\Gamma^2) \ominus M$ is called a quotient module. Clearly, $T_z^*N \subset N$ and $T_{\omega}^*N \subset N$. In the study here, it is necessary to distinguish the classical Hardy space in the variable z and that in the variable ω , for which we denote

^{*}Received date: Oct. 29, 2007.

Foundation item: The NSF (10671083) of China.

by $H^2(\Gamma_z)$ and $H^2(\Gamma_\omega)$, respectively. In this paper, we look at submodules of the form $[z-\varphi(\omega)]$, where φ is an inner function in $H^2(\Gamma_\omega)$ and $[z-\varphi(\omega)]$ is the closure of $(z-\varphi)H^\infty(\Gamma^2)$ in $H^2(\Gamma^2)$. For simplicity we denote $[z-\varphi(\omega)]$ by M_{φ} . $N_{\varphi} = H^2(\Gamma^2) \ominus M_{\varphi}$ denote N_{φ} -type quotient modules on the torus. For a function $\psi \in H^\infty(D^2)$, we define the Toeplitz operator S_{ψ} on N_{φ} with symbol ψ by

$$S_{\psi}(f) = P_{N_{\varphi}}(\psi f), \qquad \forall f \in N_{\varphi},$$

where $P_{N_{\varphi}}$ is a projection from $H^2(\Gamma^2)$ to N_{φ} .

The quotient module N_{φ} has a very rich structure. In deed, when φ is inner, N_{φ} can be identified with the tensor product of two well-known classical spaces, namely the quotient space $H^2(\Gamma) \oplus \varphi H^2(\Gamma)$ and the Bergman space $L^2_a(D)$. Clearly, when $\varphi(\omega) = \omega$, N_{φ} is unitary equivalent to $L^2_a(D)$. In fact, it is shown in [1] that $\{T_z, T_\omega, H^2(\Gamma^2)\}$ is the minimal super-isometrical dilation of M_z . Then the reducible problem of Toeplitz operator with finite Blaschke product on the Bergman space is turned to the reducible problem of Toeplitz operator with finite Blaschke product on N_{ω} . It is obtained in [1] that Toeplitz operator with finite Blaschke product $S_{\psi(z)}$ on N_{ω} has at least a reducing subspace M, moreover, $S_{\psi}|_M \cong M_z$. In this paper, we prove that when φ is a non-constant inner function, the conclusion like that in [1] is also true.

2 Preliminaries

In order to prove the main theorem, we need the following lemma.

Lemma 2.1^[2] Let $\varphi(\omega)$ be a one variable non-constant inner function and $\{\lambda_k(\omega) : k = 1, 2, \dots, m\}$ be an orthonormal basis of $H^2(\Gamma_\omega) \ominus \varphi(\omega) H^2(\Gamma_\omega)$, and

$$e_j(z,\omega) = \frac{\omega^j + \omega^{j-1}z + \dots + z^j}{\sqrt{j+1}}$$
 $(j = 0, 1, \dots).$

Let

$$E_{k,j} = \lambda_k(\omega)e_j(z, \varphi(\omega)).$$

Then $\{E_{k,j}: k = 1, 2, \cdots, m; j = 0, 1, \cdots\}$ is an orthonormal basis for N_{φ} .

Lemma 2.2^[2] There exists a unitary operator U, $U: N_{\varphi} \longrightarrow (H^2(\Gamma_{\omega}) \ominus \varphi(\omega) H^2(\Gamma_{\omega})) \otimes L^2_a(D),$ $E_{k,j} \longmapsto \lambda_k(\omega) \sqrt{j+1} \xi^j$

such that

$$US_z = (I \bigotimes M_z)U_z$$

where I is an identity map on $H^2(\Gamma_{\omega}) \ominus \varphi(\omega) H^2(\Gamma_{\omega})$.

Lemma 2.3^[1] Suppose that

$$\varphi(\omega) = \omega, \qquad \psi(z) = z \prod_{l=1}^{N-1} \frac{z - \alpha_l}{1 - \bar{\alpha}_l z} \quad (\mid \alpha_l \mid > 0, \ \alpha_l \neq \alpha_k (\forall l \neq k), \ 1 \le l, k \le N$$

-1).