Eigenvalue Problem of Doubly Stochastic Hamiltonian Systems with Boundary Conditions^{*}

HAN YUE-CAI^{1,2} AND MA YONG¹

(1. School of Mathematics, Jilin University, Changchun, 130012)

(2. School of Mathematics, Shandong University, Jinan, 250100)

Communicated by Li Yong

Abstract: In this paper, we investigate the eigenvalue problem of forward-backward doubly stochastic differential equations with boundary value conditions. We show that this problem can be represented as an eigenvalue problem of a bounded continuous compact operator. Hence using the famous Hilbert-Schmidt spectrum theory, we can characterize the eigenvalues exactly.

Key words: doubly stochastic Hamiltonian system, eigenvalue problem, spectrum theory

2000 MR subject classification: 60H10, 62P05 **Document code:** A **Article ID:** 1674-5647(2009)01-0030-07

1 Introduction

Stochastic Hamiltonian systems were introduced in the theory of stochastic optimal control as a necessary condition of an optimal control, known as the stochastic version of the maximum principle of Pontryagin's type (see [1]–[6]). In fact, those stochastic Hamiltonian systems with boundary conditions are forward-backward stochastic differential equations (FBSDE for short). These have been extensively investigated by Antonelli^[7], Ma *et al.*^[8], Hu and Peng^[9], Peng and Wu^[10], Yong^[11]. Recently, combining the FBSDE and the backward doubly stochastic differential equations introduced by Pardoux and Peng^[12], Peng and Shi^[13] have investigated a type of time-symmetric FBSDE. They showed the uniqueness and existence of solutions for these equations under certain monotonicity conditions.

In this paper, we study a special type of time-symmetric FBSDE, namely doubly stochastic Hamiltonian systems (DSHS for short). We discuss the eigenvalue problem of this type

^{*}Received date: July 4, 2008.

Foundation item: The NSF (10601019 and J0630104) of China, Chinese Postdoctoral Science Foundation and 985 Program of Jilin University.

of stochastic Hamiltonian system in a standard functional analysis way.

The rest of this paper is organized as follows. The next section begins with a general formulation of time-symmetric FBSDE, then a special case, DSHS with boundary conditions. In Section 3, we give the proof of the main results.

2 Preliminaries

Let (Ω, \mathcal{F}, P) be a probability space and T > 0 be fixed throughout this paper. Let $\{W_t : 0 \le t \le T\}$ and $\{B_t : 0 \le t \le T\}$ be two mutually independent standard Brownian motions which are \mathbf{R}^d -valued processes defined on (Ω, \mathcal{F}, P) . Without loss of generality, we assume that d = 1. Let \mathcal{N} denote the class of P-null sets of \mathcal{F} . For each $t \in [0, T]$, we define $\mathcal{F}_t \stackrel{\Delta}{=} \mathcal{F}_t^w \lor \mathcal{F}_{t,T}^B$,

where

$$\mathcal{F}_t^w = \mathcal{N} \lor \sigma\{W_r - W_0 : 0 \le r \le t\},$$

$$\mathcal{F}_{t,T}^B = \mathcal{N} \lor \sigma\{B_r - B_t : t \le r \le T\}.$$

Note that the collection $\{\mathcal{F}_t : t \in [0,T]\}$ is neither increasing nor decreasing. Thus it does not constitute a filtration.

Let $M^2(0,T; \mathbf{R}^n)$ denote the set of all classes $(dt \times dP \text{ is equal a.e.}) \quad \mathcal{F}_t$ -measurable stochastic processes $\{\varphi_t : t \in [0,T]\}$ which satisfy

$$\mathbf{E} \int_0^T |\varphi_t|^2 \mathrm{d}t < +\infty.$$

For a given $\varphi_t, \psi_t \in M^2(0, T; \mathbf{R}^n)$, one can define the forward Itô integration $\int_0^{T} \varphi_s dW_s$ and the backward Itô integration $\int_0^{T} \psi_s dB_s$. They are both in $M^2(0, T; \mathbf{R}^n)$.

Let $H(y, Y, z, Z) : \mathbf{R}^n \times \mathbf{R}^n \times \mathbf{R}^n \times \mathbf{R}^n \to \mathbf{R}$ and $\Phi(y) : \mathbf{R}^n \to \mathbf{R}$ be C^1 functions. Find a triple

$$(y, Y, z, Z) \in M^2(0, T; \mathbf{R}^n)$$

such that a boundary problem for a doubly stochastic Hamiltonian system satisfies the following form

$$\begin{cases} dy_t = H_Y(t, y_t, Y_t, z_t, Z_t)dt + H_Z(t, y_t, Y_t, z_t, Z_t)dW_t - z_t dB_t, \\ y(0) = y_0, \\ -dY_t = H_y(t, y_t, Y_t, z_t, Z_t)dt + H_z(t, y_t, Y_t, z_t, Z_t)dB_t - Z_t dW_t, \\ Y_T = \Phi_y(y_T), \end{cases}$$
(2.1)

where H_y , H_Y , H_z , H_Z are gradients of the function H with respect to y, Y, z, Z respectively.

This is a sort of time-symmetric FBSDE introduced by Peng and Shi^[13]. Let

$$\begin{split} \boldsymbol{\xi} &= (\boldsymbol{y},\boldsymbol{Y},\boldsymbol{z},\boldsymbol{Z})^{\top},\\ \boldsymbol{\Lambda}(\boldsymbol{t},\boldsymbol{\xi}) &= (-H_y,H_Y,-H_z,H_Z)^{\top}(\boldsymbol{t},\boldsymbol{\xi}). \end{split}$$

We assume the following:

NO. 1