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Abstract: In this note, we establish several results concerning the gliding hump

properties of matrix domains. In order to discuss F -WGHP, we introduce the UAK-

property and find that this sort of property has close relationship with F -WGHP. In

the course of discussing F -WGHP and WGHP of (c0)Cn
, we discuss the F -WGHP

and WGHP of the almost-null sequence space f0.
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1 Introduction

Recently, Boos and his collaborators have presented classes of infinite matrices A such that

the matrix domain EA has a certain gliding hump property whenever a given sequence space

E has this property in [1]. In this note we discuss the F -WGHP and WGHP of (c0)Cn
, then

give the F -WGHP and WGHP of the almost-null sequence space f0.

The gliding hump technique of proof was originally introduced by Lebesgue (see [2]).

Now this kind of method has been used to treat numerous topics in analysis, and this

kind of property was generalized extensively and used to establish some important results,

and you can refer to [3], [4] for detailed information. While there are known examples

of sequence spaces possessing the various gliding hump properties, there are few known

examples of spaces with signed gliding hump and signed F -gliding hump properties so it

would be of interest to have constructions which provide examples of sequence spaces with
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various gliding hump properties. In [1], Boos and his collaborators introduced a general

procedure for constructing a sequence space from a given sequence and an infinite matrix.

In this note we continue to use this procedure given by J. Boos to construct examples of

sequence spaces with singed F -weak gliding hump and F -weak gliding hump properties.

2 Notations and Preliminaries

We begin by fixing the notations and describing the general procedure which we employ

for generating sequence spaces from infinite matrices. Let E be a vector space of scalar

sequences which contains the subspace c00 of all sequences which are eventually 0. Let

A = [aij ]

be an infinite matrix. If x = (xj) is a scalar sequence, let

Ax =
( ∞∑

j=1

aijxj

)

be the image of x under the matrix A provided each series
∞∑

j=1

aijxj converge for every i.

We use the sequence space E and matrix A to generate a further sequence space. We define

EA to be the vector space of all sequences x such that Ax ∈ E. Then A is a linear map from

EA into E. Some of the familiar sequence spaces can be generated by this construction.

In particular, cA and (c0)A are the spaces of all sequences which are A-summable and A-

summable to 0, respectively. Note, EA is an FK-space whenever E is.

Example 2.1 Let B = [bij ] be the matrix with bij = 1 for j ≤ i and bij = 0 otherwise.

Then l∞B = bs, the space of bounded series, and cB = cs, the space of convergent series.

Example 2.2 Let n be an arbitrary nonnegative integer and Cn = (cij) be the matrix

with cij = 1/i for n + 1 ≤ j ≤ i + n and cij = 0 otherwise. Then Cn becomes the Cesàro

matrix when n = 0. So we call Cn to be generalized Cesàro matrix. In particular, l∞Cn
is the

vector space of sequences with bounded averages

l∞Cn
=

{
x : sup

k∈N

∣∣∣
1

k

k+n∑

j=n

xj

∣∣∣ < ∞
}

.

Example 2.3 More generally, we consider Riesz matrices (means) Rp (instead C0) also

known as weighed means: we consider exclusively real sequences p = (pk) with

p1 > 0, pk ≥ 0 (k ∈ N), and Pn :=

n∑

k=1

pk (k ∈ N) (2.1)

Then the Riesz matrix Rp = (rij) (associated with p) is defined by

rij =

{
pj/Pi, if j ≤ i;

0, otherwise.

Note that if p = (1, 1, · · · ), then Rp = C1. Each Riesz matrix Rp is conservative and is

either regular (being equivalent to p /∈ l1) or coercive (see [5], Section 3.2).


